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Functional Programming
Overview

What is functional programming?

– Functions are first class (objects).

– That is, everything you can do with “data” can be done with functions

themselves (such as passing a function to another function).

– Recursion is used as a primary control structure.

– In some languages, no other “loop” construct exists.

– There is a focus on list processing.

– Lists are often used with recursion on sub-lists as a substitute for

loops.

– “Pure” functional languages eschew side-effects.

– This excludes assignments to track the program state.

– This discourages the use of statements in favor of expression evalua-

tions.

Whys

– All these characteristics make for more rapidly developed, shorter,

and less bug-prone code.

– A lot easier to prove formal properties of functional languages

and programs than of imperative languages and programs.
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Functional Programming
Overview

The basic idea is to model everything as a «mathematical function».

There are only two linguistic constructs:

– abstraction, used to define the function;

– application, used to call it.

No state concept

– this means no assignments are allowed

– variables are just names.

E.g., in f (x) = x + 1 the name f is irrelevant,

– the function g(x) = x + 1 represents the same function;

– it can be referred as x 7→ x + 1.
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Functional Programming
ń-Calculus [Church and Kleene ∼1930].

ń-expressions are made of constants, variables, ń, . and paren-
thesis

1. if x is a variable or a constant then x is a ń-expression;

2. if x is a variable and M is a ń-expression then λx .M is a ń-expression;

3. if M,N are ń-expressions then (MN) is a ń-expression.

Abstraction & Application
ń-calculus provides only two basic operations: abstraction and
application

– λx .x + 1 is an example of abstraction that defines the successor;

– (λx .x + 1)7 is an example of application that calculates the successor
of 7;

– application is left-associative, i.e., MNP ≡ (MN)P .

Binding, Free and Bound Variables

– in λx .xy x is a bound variable whereas y is unbound (free)

– in λx .λy .xy (for short λxy .xy) both variables are bound;

– in (λx .M)y , all the occurrences of x in M are replaced by y (denoted
as M[x/y ]) and brings to M[x/y ] as a result

– e.g., (λx.x + 1)7 → x + 1[x/7] → 7 + 1 → 8.
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Functional Programming
ML [Milner et al. ∼1970]

ML is a general-purpose functional programming language de-
veloped by Robin Milner et al. in the 70ies.

– ML is the acronym for metalanguage, since it is an abstraction on

polymorphic ń-calculus.

Features of ML include:

– a call-by-value evaluation strategy, first-class functions, parametric

polymorphism,

– static typing, type inference, algebraic data types, pattern matching,

and exception handling.

ML uses eager evaluation, which means that all subexpressions
are always evaluated.

– lazy evaluation can be achieved through the use of closures.

We will use OCaML (http://caml.inria.fr).
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Functional Programming
ML/OCaML [Leroy et al. ∼1980]

OCaML is an implementation of ML with extra functionality

(object-orientation, modules, imperative statements, . . . ).

OCaML comes with

– an interpreter (ocaml) and

– a compiler (ocamlc).

let main() = print_string("Hello World in ML Style!!!\n");;
main();;

[12:28]cazzola@surtur:~/lp/ml>ocamlc -o helloworld helloworld.ml
[12:28]cazzola@surtur:~/lp/ml>ls
helloworld* helloworld.cmi helloworld.cmo helloworld.ml
[12:28]cazzola@surtur:~/lp/ml>helloworld
Hello World in ML Style!!!
[12:28]cazzola@surtur:~/lp/ml>rlwrap ocaml

Objective Caml version 4.12.0

# let main() = print_string("Hello World in ML Style!!!\n");;
val main : unit -> unit = <fun>
# main();;
Hello World in ML Style!!!
- : unit = ()
# ^D
[12:29]cazzola@surtur:~/lp/ml>
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Functional Programming
ML Functions

ML derives directly from ń-calculus:

– functions are defined independently of their name

let succ = fun x -> x+1;;
let succ x = x+1;;

functions can be aliased

let succ’ = succ;;

– calls are simply the application of the arguments to the function

succ 2;;
(fun x -> x+1) 2;;

[DING!]cazzola@surtur:~/lp/ml>ocaml
Objective Caml version 4.12.0

# let succ = fun x -> x+1;;
val succ : int -> int = <fun>
# succ 7;;
- : int = 8
# succ -1;;
Error: This expression has type int -> int

but an expression was expected of type int
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Functional Programming
Name Scope

Scoping

– a new binding to a name hides the old bind;

– static binding is used in function definition (closure).

– i.e., a triplet: args list, function body and environment (x, x+y, [5/y]).

[17:01]cazzola@surtur:~/lp/ml>ocaml
Objective Caml version 4.12.0

# let f x = 5;;
val f : ’a -> int = <fun>
# let f x = 7;;
val f : ’a -> int = <fun>
# f 1;;
- : int = 7
# let y = 5;;
val y : int = 5
# let addy = fun x -> x+y;;
val addy : int -> int = <fun>
# addy 8;;
- : int = 13
# let y=10;;
val y : int = 10
# addy 8;;
- : int = 13
# (fun x -> x+y) 8;;
- : int = 18
[17:57]cazzola@surtur:~/lp/ml>

http://caml.inria.fr
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Functional Programming
High-Order Functions

In ML functions are first class citizens

– i.e., they can be used as values;

– when passed to a function this is an high-order function.

let compose f g x = f (g x);;
let compose (f, g) x = f (g x);;

[15:30]cazzola@surtur:~/lp/ml>ocaml

# let compose f g x = f (g x);;
val compose : (’a -> ’b) -> (’c -> ’a) -> ’c -> ’b = <fun>
# let compose’ (f,g) x = f (g x);;
val compose’ : (’a -> ’b) * (’c -> ’a) -> ’c -> ’b = <fun>

# let succ = fun x -> x +1;;
val succ : int -> int = <fun>
# let plus1 = compose succ;;
val plus1 : (’_a -> int) -> ’_a -> int = <fun>
# let plus1’ = compose’ succ;;
Error: This expression has type int -> int

but an expression was expected of type (’a -> ’b) * (’c -> ’a)

# let plus2 = plus1 succ;;
val plus2 : int -> int = <fun>
# let plus2’= compose’(succ, succ);;
val plus2’ : int -> int = <fun>
# plus2 7;;
- : int = 9
# plus2’ 7;;
- : int = 9
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Functional Programming
Functions & Pattern Matching

Functions can be defined by pattern matching.

match expression with
| pattern when boolean expression -> expression
| pattern when boolean expression -> expression

Patterns can contain

– constants, tuples, records, variant constructors and variable names;

– a catchall pattern denoted _ that matches any value; and

– sub-patterns containing alternatives, denoted pat1|pat2 .

When a pattern matches

– the corresponding expression is returned.

– the (optional) when clause is a guard on the matching; it filters out

undesired matchings.

let invert x =
match x with
| true -> false
| false -> true ;;

let invert’ = function
true -> false | false -> true ;;
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Recursion
Definition: Recursive Function

A function is called recursive when it is defined through itself.

Example: Factorial.

– 5! = 5 * 4 * 3 * 2 * 1

– Note that: 5! = 5 * 4!, 4! = 4 * 3! and so on.

Potentially a recursive computation.

From the mathematical definition:

n! =

{
1 if n=0,

n*(n-1)! otherwise.

When n=0 is the base of the recursive computation (axiom)

whereas the second step is the inductive step.
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Recursion
What in ML?

Still, a function is recursive when its execution implies another
invocation to itself.

– directly, i.e. in the function body there is an explicit call to itself;

– indirectly, i.e. the function calls another function that calls the func-

tion itself (mutual recursion).

let rec fact(n) = if n<=1 then 1 else n*fact(n-1);;

let main() =
print_endline("fact( 5) : - "^string_of_int(fact(5)));
print_endline("fact( 7) : - "^string_of_int(fact(7)));
print_endline("fact( 15) : - "^string_of_int(fact(15)));
print_endline("the largest admissible integer is ;- "^string_of_int(max_int));
print_endline("fact( 25) : - "^string_of_int(fact(25)));;

main();;

[11:31]cazzola@surtur:~/lp/ml>ocamlc -o fact fact.ml
[11:31]cazzola@surtur:~/lp/ml>fact
fact( 5) : - 120
fact( 7) : - 5040
fact( 15) : - 1307674368000
the largest admissible integer is ;- 4611686018427387903
fact( 25) : - -2188836759280812032
[11:31]cazzola@surtur:~/lp/ml>
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Recursion
Execution: What’s Happen?

[11:45]cazzola@surtur:~/lp/ml>ocaml
Objective Caml version 4.12.0

# let rec fact(n) =
if n<=1
then 1
else n*fact(n-1);;

val fact : int -> int = <fun>
# fact 4;;
- : int = 24
[11:46]cazzola@surtur: /lp/ml>

It runs fact(4):

– a new frame with n = 4 is pushed on

the stack;

– n is greater than 1;

– it calculates 4*fact(3)6, it returns

24

It runs fact(3):
– a new frame with n = 3 is pushed on

the stack;

– n is greater than 1;

– it calculates 3*fact(2)2, it returns 6

It runs fact(2):
– a new frame with n = 2 is pushed on

the stack;

– n is greater than 1;

– it calculates 2*fact(1)1, it returns 2

It runs fact(1):
– a new frame with n = 1 is pushed on

the stack;

– n is equal to 1;

– it returns 1
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Recursion
Side Notes on the Execution.

At any invocations the run-time environment creates an acti-
vation record or frame used to store the current values of:

– local variables, parameters and the location for the return value.

To have a frame for any invocation permits to:

– trace the execution flow;

– store the current state and restore it after the execution;

– avoid interferences on the local calculated values.

Warning:

Without any stopping rule, the inductive step will be applied “for-
ever”.

– Actually, the inductive step is applied until the memory reserved by

the virtual machine is full.
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Recursion
Case Study: Fibonacci Numbers

Leonardo Pisano, known as Fibonacci, in 1202 in his book “Liber

Abaci” faced the (quite unrealistic) problem of determining:

«how many pairs of rabbits can be produced from a

single pair if each pair begets a new pair each month

and every new pair becomes productive from the second

month on, supposing that no pair dies»

to introduce a sequence whose i-th member is the sum of the

2 previous elements in the sequence. The sequence will be soon

known as the Fibonacci numbers.
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Recursion
Case Study: Fibonacci Numbers (Cont’d)

Fibonacci numbers are recursively defined:

f(n) =


0 if n=0,

1 if n=1 or n=2,

f(n-1) + f(n-2) otherwise.

The implementation comes forth from the definition:

open List;;
let rec fibo(n) = if n<=1 then n else fibo(n-1) + fibo(n-2);;

let main() =
let in’s = [5; 7; 15; 25; 30] in
for i=0 to List.length in’s -1 do
print_endline(
"fibo("^string_of_int(nth in’s i)^") :- "^string_of_int(fibo(nth in’s i)));

done;;
main();;

[16:08]cazzola@surtur:~/lp/ml>ocamlc -o fibo fibo.ml
[16:14]cazzola@surtur:~/lp/ml>fibo
fibo(5) :- 5
fibo(7) :- 13
fibo(15) :- 610
fibo(25) :- 75025
fibo(30) :- 832040
[16:14]cazzola@surtur:~/lp/ml>
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Recursion
Recursion Easier & More Elegant

The recursive solution is more intuitive:

let rec fibo(n) = if n<=1 then n else fibo(n-1) + fibo(n-2);;

The iterative solution is more cryptic:

let fibo(n) =
let fib’ = ref 0 and fib’’= ref 1 and fib = ref 1 in
if n<=1 then n
else
(for i=2 to n do
fib := !fib’ + !fib’’;
fib’ := !fib’’;
fib’’ := !fib;

done;
!fib);;

But . . .
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Recursion
Tail Recursion

The iterative implementation is more efficient:

[18:22]cazzola@surtur:~/lp/ml>time time_ifibo 50
fibo(50) :- 12586269025
0.000u 0.006s 0:00.00 0.0% 0+0k 0+0io 0pf+0w
[18:22]cazzola@surtur:~/ml/lp>time time_rfibo 50
fibo(50) :- 12586269025
1605.211u 1.688s 26:48.62 99.8% 0+0k 0+0io 0pf+0w
[18:49]cazzola@surtur:~/lp/ml>

The overhead is mainly due to the creation of the frame but

this also affects the occupied memory.

This can be avoided with a tail recursive solution:

let rec trfiboaux n m fib_m’ fib_m =
if (n=m) then fib_m
else (trfiboaux n (m+1) fib_m (fib_m’+fib_m));;

let fibo n = if n<=1 then 1 else trfiboaux n 1 0 1;;

[16:59]cazzola@surtur:~/lp/ml>time trfibo 50
fibo(50) :- 12586269025
0.000u 0.005s 0:00.00 0.0% 0+0k 0+0io 0pf+0w
[16:59]cazzola@surtur:~/lp/ml>
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The Towers of Hanoi
Definition (Édouard Lucas, 1883)

Problem Description

There are 3 available pegs and several holed disks that should be

stacked on the pegs. The diameter of the disks differs from disk

to disk each disk can be stacked only on a larger disk.

The goal of the game is to move all the disks, one by one, from

the first peg to the last one without ever violate the rules.
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The Towers of Hanoi
The Recursive Algorithm

3-Disks Algorithm

n-Disks Algorithm

Base: n=1, move the disk from the source (S) to the

target (T);

Step: move n-1 disks from S to the first free peg (F),

move the last disk to the target peg (T), finally

move the n-1 disks from F to T.
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The Towers of Hanoi
ML/OCaML Implementation

type peg = string*string*string ;;
type pegs = {mutable src: peg; mutable trg: peg; mutable aux:peg} ;;

let nth(x,y,z) n = match n with 1 -> x | 2 -> y | 3 -> z ;;
let set_nth(x,y,z) w n = match n with 1 -> (w,y,z) | 2 -> (x,w,z) | 3 -> (x,y,w) ;;

let set_nth_peg ps p n =
match n with 1 -> ps.src <- p| 2 -> ps.trg <- p | 3 -> ps.aux <- p ;;

let nth_peg ps n = match n with 1 -> ps.src | 2 -> ps.trg | 3 -> ps.aux ;;

let top(x,y,z) =
match x,y,z with "0","0","0" -> 3 | "0","0", _ -> 2 | "0", _, _ -> 1 | _, _, _ -> 0 ;;

let p:pegs={src=("1","2","3"); trg=("0","0","0"); aux=("0","0","0")} in
let rec display ps n =
if n <4 then (print_endline(" "^nth ps.src n^" "^nth ps.trg n^"

"^nth ps.aux n);display ps (n+1);)
and move ps source target =
let s=(top (nth_peg ps source))+1 and t= top (nth_peg ps target) in (
set_nth_peg ps (set_nth (nth_peg ps target) (nth (nth_peg ps source) s) t) target;
set_nth_peg ps (set_nth (nth_peg ps source) "0" s) source;
display ps 1;)

and move_disks ps disks source target aux =
if disks <=1 then (
print_endline("moving from "^string_of_int(source)^" to "^string_of_int(target));
move ps source target;)

else (
move_disks ps (disks-1) source aux target;
print_endline("moving from "^string_of_int(source)^" to "^string_of_int(target));
move ps source target;
move_disks ps (disks-1) aux target source;

);
in (print_endline("Start!!!");display p 1; move_disks p 3 1 3 2;) ;;
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The Towers of Hanoi
3-Disks Run

[16:21]cazzola@surtur:~/lp/ml>ocamlc -o hanoi2 hanoi2.ml
[16:21]cazzola@surtur:~/lp/ml>hanoi2
Start!!! moving from 1 to 2 moving from 1 to 3 moving from 2 to 3
1 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 1 0 0 0 2
3 0 0 3 2 1 0 2 3 1 0 3

moving from 1 to 3 moving from 3 to 2 moving from 2 to 1 moving from 1 to 3
0 0 0 0 0 0 0 0 0 0 0 1
2 0 0 0 1 0 0 0 0 0 0 2
3 0 1 3 2 0 1 2 3 0 0 3

[16:21]cazzola@surtur:~/lp/ml>

Functional

Programming

Walter Cazzola

FP

Introduction

ń-calculus

ML/OCaML

Introduction

functions

scope

high-order

functions

Pattern Matching

recursion

tail recursion

Hanoi’s Towers

References

Slide 23 of 23

References

▶ Davide Ancona, Giovanni Lagorio, and Elena Zucca.

Linguaggi di Programmazione.

Città Studi Edizioni, 2007.

▶ Greg Michaelson.

An Introduction to Functional Programming through λ-Calculus.

Addison-Wesley, 1989.

▶ Larry c. Paulson.

ML for the Working Programmer.

Cambridge University Press, 1996.


	FP
	Introduction
	λ-calculus

	ML/OCaML
	Introduction
	functions
	scope
	high-order functions
	Pattern Matching
	recursion
	tail recursion
	Hanoi's Towers

	References

