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The Basic idea is t0 model everything as a «mathematical function».

néredustion There are only two linauistic constructs:
— aBstraction, used to define the function;

— application, used to call it.

No state concept
— this means No assianwents are allowed

— variagles are just names.

Ea,in f(x) = x+ 1 the name f is irrelevant,
— the function g(x) = x + 1 represents the same function;

— it can re referred as x — x + 1.
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Overview

Functional

Procratmmin What is functional proaramming?

Watter Cazzola R . R
— Functions are first class (ogjects).

— That is, everythina you can do with "data" can Be done with functions
Irvbroduction themselves (such as passina a function to another function).

Recursion is used as a primary control structure.
— In some languaaes, No other “loop" construct exists.
— There is 8 £ocus on list processina.

— Lists are often used with recursion on sug-lists as a sugstitute for
loops

— "Pure" functional lancuaces eschew side-effects.

— This excludes assianments to track the proaram state
— TThis discouraaes the use of statements in favor of expression evalua—
tions

Whys

— All these characteristics make for more rapidly developed, Shefter,
and less Bua—prone code.

— A |lot easier to prove formal properties of functional languaces
and proarams than of imperative languages and proarams.
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Functional Proaramming
A\-Caleulus LChurch and Kleene ~I19301

Functional

s A\-expressions are made Of constantts, variaeles, X, . and paren-
thesis

| i# x is a variagle or a constant then x is a8 A-expression,

Watter Cazzola

2. i xis a variakle and M is a A\-expression then \x.M is a8 \-expression;
A-coleulus 3. if M, N are \-expressions then (MN) is a A\-expression.

Agstraction < Application
A-caleulus provides only two Rasic operations: aestraction and
application

— Ax.x + 1 is an example of arstraction that defines the successor;

— (Ax.x+1)7 is an example of application that calculates the successor
of 7,

— application is left-associative, ie., MNP = (MN)P

Binding, Free and Bound Variagles
— in Ax.xy x is 8 Bound variaele whereas y is ungound (free)
— in Ax.\y.xy (for short Axy.xy) Both variagles are gound;

— in (Ax.M)y, all the occurrences of x in M are replaced Ry y (denGted
as M[x/y]) and Brinas to M[x/y] as a resutt

—ea,(Axx+1)7 - x+1[x/7] - 7+1 -8
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ML [Milner et al. ~9701

Functional
Proarammina

Watter Cazzola

ML is a8 @eneral-purpose functional proaramming lanauace de-
veloped By R.orin Milner et al. in the T0ies.

— ML is the acronyw for metalanauace, since it is an agstraction on
polymorphic A\-calculus.
bt Features of ML include:

— 3 call-By-value evaluation strateay, first-cass functions, parametric
POIyMOrPhismw,

— static typinG, type inference, alcerraic data types, pattern matching,
and exception handling.
ML uses eager evaluation, which means that all surexpressions
are always evaluated.

— lazy evaluation can re achieved throuah the use of closures.

We will use OCaML (http://caml.inria.fr.
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ML Functions

Functional

P ML derives directly from \-caleulus:

Wiatter Cazzola — functions are defined independently of their name

let succ = fun x -> x+1;;
let succ x = x+1;;

functions can re aliased

let succ’ = succ;;
#unctions — aalls are simply the application of the arauments to the function
succ 2;;

(fun x -> x+1) 2;;

[DING! ]cazzola@surtur:~/1p/ml>ocaml
Objective Caml version 4.12.0

# let succ = fun x -> x+1;;
val succ : int -> int = <fun>
# succ 7;;
- :tint =38
# succ -1;;
Error: This expression has type int -> int
but an expression was expected of type int
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ML/OCaML [Leroy et al. ~1980]1

Jfunctional OCaML is an implementation of ML with extra functionality
(oBject-orientation, modules, imperative statements,...).

OCaML comes with
— an interpreter (ocaml) and

Watter Cazzola

— a compiler (ocamlo).

Introduction

let main() = print_string("Hello World in ML Style!!!\n");;
main();;

[12:28] cazzola@surtur:~/1p/ml>ocamlc -o helloworld helloworld.ml
[12:28] cazzola@surtur:~/1p/ml>1s
helloworld* helloworld.cmi helloworld.cmo helloworld.ml
[12:28] cazzola@surtur:~/1p/ml>helloworld
Hello World in ML Style!!!
[12:28] cazzola@surtur:~/1p/ml>rlwrap ocaml

Objective Caml version 4.12.0

# let main() = print_string("Hello World in ML Style!!!\n
val main : unit -> unit = <fun>

# main();;

Hello World in ML Style!!!

- : unit = ()

# "D

[12:29]cazzola@surtur:~/1p/ml>
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Functional Proaramming
Name Scope

Functional

Proaramming SCOP]'\G
Watter Cazzola — 3 new RINdiNG tO a8 Name hides the old BiNd;
— statie Binding is used in function definition (closure).

[17:01]cazzola@surtur:~/1p/ml>ocaml
Objective Caml version 4.12.0

# let f x = 5;5;

val f : ’a -> int = <fun>
#let f x =7;;

val f : ’a -> int = <fun>

#f 1;;

- & int

# let y

val y :

# let addy = fun x -> x+y;;
val addy : int -> int = <fun>
# addy 8;;

- 1 int = 13

# let y=10;;

val y : int = 10

# addy 8;;

- & int = 13

# (fun x -> x+y) 8;;

- : int = 18
[17:57]cazzola@surtur:~/1p/ml>
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High-Order Functions

Functional

Pl In ML functions are first class citizens
\Watter Cazzola — e, they can Be used as values;
— when passed to a function this is an high-order function

let compose f g x = f (g x);;
let compose (f, g) x = f (g x);;

[15:30] cazzola@surtur:~/1p/ml>ocaml

# let compose f g x = f (g x);;
val compose : (’'a -> 'b) -> ('c -> 'a) -> 'c -> b
# let compose’ (f,g) x = f (g x)

hich-order val compose’ : ('a -> 'b) * ('c -> 'a) -> 'c ->'b

functions
# let succ = fun x -> x +1;;

val succ : int -> int = <fun>

# let plusl = compose succ;;

val plusl : ('_a -> int) -> ’'_a -> int = <fun>
# let plusl’ = compose’ succ;;

Error: This expression has type int -> int
but an expression was expected of type (’a ->

# let plus2 = plusl succ;;

val plus2 : int -> int = <fun>

# let plus2’= compose’(succ, succ);;
val plus2’ : int -> int = <fun>

# plus2 7;;

- tint =9

# plus2’ 7;;

- tint =9
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A function is called recursive when it is defined throuah itself.

Examwple: Factorial.

—SI=S %4 ¥ 3H2LH|
— Note that: S! =5 % 4 4l = 4 % 3l and so on.
Potentially a recursive computation

From the mathematical definition:

recursion

| it n=0,
n¥(N-D!  otherwise.

When n=0 is the rase Of the recursive computation (axiom)
whereas the second step is the inductive step.
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Functions « Pattern Matching

RASEAs Functions can Be defined ry pattern matchina.

Proaramming

Walter Cazzola match expression with

| pattern when boolean expression -> expression
| pattern when boolean expression -> expression

Patterns can contain
— constants, tuples, records, variant constructors and variagle names;
— a catchall pattern denoted _ that matches any value; and

— sug-patterns containing atternatives, denoted pat;|pato.

B  \When s pattern matches
— the corresponding expression is returned.

— the (optional) when clause is a8 guard on the matching; it filters out
undesired matchings.

let invert x =
match x with
| true -> false
| false -> true ;;

let invert’ = function
true -> false | false -> true ;;
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SHill, 8 function is recursive when its execution implies another
invocation to itself.

— directly, ie. in the function Body there is an explicit call to itself;

Watter Cazzola

— indirectly, ie. the function calls another function that calls the func-
tion itself (Mmutual recursion).

let rec fact(n) = if n<=1 then 1 else nxfact(n-1);;

let main() =
print_endline("fact( 5) : - "~string_of_int(fact(5)));
print_endline("fact( 7) : - "“string_of_int(fact(7)));
print_endline("fact( 15) : - "~string_of_int(fact(15)));
print_endline("the largest admissible integer is ;- "“string_of_int(max_int));
recursion print_endline("fact( 25) : - "~string_of_int(fact(25)));;
main();;

[11:31]cazzola@surtur:~/1p/ml>ocamlc -o fact fact.ml
[11:31]cazzola@surtur:~/1lp/ml>fact

fact( 5) : - 120

fact( 7) : - 5040

fact( 15) : - 1307674368000

the largest admissible integer is ;- 4611686018427387903
fact( 25) : - -2188836759280812032
[11:31]cazzola@surtur:~/1p/ml>
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R ecursion
Exeoution: What's Happen?

Functional
Proarsmming [11:45]cazzola@surtur:~/1p/ml>ocaml K runs fact(4):
Objective Caml version 4.12.0
# let rec fact(n) =
n<=1
1 — nis areater than |;
DAREE(-)55 — it caloulates 4¥fact(3), it returns
val fact : int -> int = <fun> 20
# fact 4;;

- odnt =24 K runs fact(3):
[11:46]cazzola@surtur: /lp/ml>

\Watter Cezzola — a3 new frame with N = 4 is pushed on

the stack;

— anew £rame with N = 3 is pushed on
the stack;

— nis greater than [;
— it caleulates 3¥*Lact(2)2, it returns b
K runs fact(2):

— anew frame with N =2 is pushed on
the stack;

recursion

— nis areater than |,
— it caleulates 23fact(Dl, it returns 2
K runs fact(1):

— 3 new frame with N = | is pushed ©on
the stack;

— nis equal to |
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Leonardo Pisano, known as Figonacai, in 202 in his Book “Lirer
Araci" faced the (Quite unrealistic) proglem of determining:

“how Mmany pairs Of rakgits can Be produced £from a
sinGle pair i£ each pair Regets a new pair each month
and every Nnew pair Becomes productive from the second
Mmonth on, supposing that No pair dies»

recursion

10 introduce a sequence whose i—th memeer is the sum Of the
2 previous elements in the sequence. The sequence will Be soon
kNnownN as the Fironaccl numeers.
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Side Notes on the Execution.
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At any invocations the run—time environment creates an acti-
vation record or frame used to store the current values of:

— local variagles, parameters and the location for the return value.

To have a frame for any invocation permits to:
— trace the execution flow;
— store the current state and restore it after the execution

— avoid interferences on the local calculated values.

recursion

Without any stopping rule, the inductive step will Be applied "for-
ever".

— Actually, the inductive step is applied until the memory resegved By
the virtual machine is £ull.
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Case Study: Fironacci Numeers (Cont'd)

Functional Fironaccl numeers are recursively defined:

Proarammina

Watter Caz20l O it n=0,
) =<1 i# n=l or n=2,
£n-D + H(nN-2) otherwise.
The implementation comes forth £rom the definition:

open List;;
let rec fibo(n) = if n<=1 then n else fibo(n-1) + fibo(n-2);;

let main() =
let in’s = [5; 7; 15; 25; 30] in
for i=0 to List.length in’'s -1 do
recursion print_endline(
"fibo("~string_of_int(nth in’s i)"~") :- "~string_of_int(fibo(nth in’s i)));
done; ;
main();;

[16:08] cazzola@surtur:~/1p/ml>ocamlc -o fibo fibo.ml
[16:14]cazzola@surtur:~/1p/ml>fibo

fibo(5) :- 5

fibo(7) :- 13

fibo(15) :- 610

fibo(25) 75025

fibo(30) :- 832040

[16:14] cazzola@surtur:~/1p/ml>
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R ecursion Easier ¢+ More Eleaant
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The recursive solution is more intuitive:

| let rec fibo(n) = if n<=1 then n else fibo(n-1) + fibo(n-2);;

The iterative solution is more cryptic:

let fibo(n) =
let fib’ = ref 0 and fib’’= ref 1 and fib = ref 1 in
if n<=1 then n

else
recursion (for i=2 to n do
fib := !fib’ + !fib’'’;
1= Ifib’"’;
fib'’ := Ifib;
done;
'fib);;

But ...
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The Towers of Hanoi
Definition (E douard Lucas, 1883)
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Proelem Description

There are 3 availakle peas and several holed disks that should Be
stacked on the peas. The diameter of the disks differs from disk
10 disk each disk can re stacked only on a laraer disk.

Hanoi's Towers

The qoal of the @ame is to move all the disks, one By one, from
the first peg to the last one without ever violate the rules.
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Tail Recursion

FUREiER The iterative implementation is more efficient:

Proaramming
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[18:22] cazzola@surtur:~/1p/ml>time time_ifibo 50
fibo(50) :- 12586269025
0.000u 0.006s 0:00.00 0.0% 0+0k 0+0io Opf+Ow

[18:22]cazzola@surtur:~/ml/lp>time time_rfibo 50
fibo(50) :- 12586269025

1605.211u 1.688s 26:48.62 99.8% 0+0k 0+0io Opf+Ow
[18:49]cazzola@surtur:~/1p/ml>

The overhead is mainly due to the creation of the frame erut
this also affects the occupied memory.

This can Be avoided with a tail recursive solution:

tall recursion let rec trfiboaux n m fib_m’ fib_m =

if (n=m) then fib_m
else (trfiboaux n (m+1) fib_m (fib_m’+fib_m));;

let fibo n = if n<=1 then 1 else trfiboaux n 1 0 1;;

[16:59] cazzola@surtur:~/1p/ml>time trfibo 50
fibo(50) :- 12586269025

0.000u 0.005s 0:00.00 0.0% 0+0k 0+0io Opf+Ow
[16:59]cazzola@surtur:~/1p/ml>
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v |1 oo L L
» L |1 oLl 1 1L
» L L1 »1 |+

o LL | o] | =

Honols Towers N-Disks Algorithm

Base: n=I, move the disk from the source (S) to the
target (M),

Step: move Nl disks from S to the first free pea (P,
move the last disk to the taraet pea (T, Finally
move the n-l disks from F to T
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The Towers of Hanoi
sks Run

The Towers of Hanoi

ML/OCaML Implementation

type peg = string*stringxstring ;;

type pegs = {mutable src: peg; mutable trg: peg; mutable aux:peg} ;; el

Proaramming

Functional
Proaramming
let nth(x,y,z) n = match nwith 1 ->x | 2 ->y | 3 -> 2z ;;

let set_nth(x,y,z) w n = match n with 1 -> (w,y,z) | 2 -> (x,w,z) | 3 -> (x,y,w) ;; Watter Cazzola

Watter Cazzola

let set_nth_peg ps p n =
match n with 1 -> ps.src <- p| 2 -> ps.trg <- p | 3 -> ps.aux <- p ;;

let nth_peg ps n = match n with 1 -> ps.src | 2 -> ps.trg | 3 -> ps.aux ;; [16:21]cazzola@surtur:~/lp/ml>ocamlc -o hanoi2 hanoi2.ml
let top(x,y,z) = [16:21] cazzola@surtur:~/1p/ml>hanoi2
match x,y,z with "0","e","@" ->3 | "0","®", - ->2 | "0", ., - ->1 | _, ., _ ->0 ;; Start!!! moving from 1 to 2 moving from 1 to 3 moving from 2 to 3
wqn wou nam ugn ngu ngw wgn mgu nguyY 4 0 (] 0 (] 0 0 0 0 0 0
let p:pegs={src=("1","2","3"); trg=("0","0","0"); aux=("0","0","0")} in 0 0 0 1 0 0 2
let rec display ps n =
if n <4 th int_endline(" "Anth o~ wAnth ps.trg nA" 1 0 2 1 e 3
Lon en ?prln =(Cne| nth ps.srcn nth ps.trg n moving from 1 to 3 moving from 3 to 2 moving from 2 to 1 moving from 1 to 3
"~nth ps.aux n);display ps (n+l1);) 0 0 0 0 0 0 0 1
and move ps source target =
let s=(top (nth ))+1 and t= top (nth target) in ( 0 e 0 e 0 2
et s=(top (nth_peg ps source and t= top (nth_peg ps target) in 1 3 2 0 1 2 o : 5

set_nth_peg ps (set_nth (nth_peg ps target) (nth (nth_peg ps source) s) t) target; [16:21] cazzola@surtur:~/lp/ml>
set_nth_peg ps (set_nth (nth_peg ps source) "0" s) source;
display ps 1;)
and move_disks ps disks source target aux =
if disks <=1 then (
print_endline("moving from "~string_of_int(source)”" to "~string_of_int(target));
move ps source target;)
else (
move_disks ps (disks-1) source aux target;
print_endline("moving from "~string_of_int(source)~" to "~string_of_int(target));
move ps source target;
move_disks ps (disks-1) aux target source;
)i
in (print_endline("Start!!!");display p 1; move_disks p 3 1 3 2;) ;; Siide 22 of 23

Hanoi's Towers Hanoi's Towers
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