Walter Cazzola

Home Page
ADAPT Lab.
Curriculum Vitae
Research Topic

Didactics

Publications

Funded Projects

Research Projects

Related Events

Exam of Programming Languages
27 January 2016

Disclaimer. Note that to have a running solution for an exercise is not enough: you need a well-
cooked solution that proves your ability to use what explained during the classes. All the exercises have
the same value: 11; Exercise are valued separately and it is necessary to get at least 6 points each
exercise to pass the exams, i.e., 18 achieved with only 2 exercises means to fail the exam.

Exercise OCaML: Hooray! It's Primell!

To verify that @ number is prime is considered a trivial task for a computer scientist. This is true when
the number to check is pretty small (let's say if it is below or equal to 10000) but when the number to
check grows larger the naive approach (namely trial division) tends to become slower and slower up to
be intractable.

Fortunately in the years, several mathematicians proposed different algorithms to check the primality of
big numbers. Just to cite a few Lucas-Lehmer and Fermat's Little Theorem.

The Lucas—Lehmer test works as follows. Let MP = 2P-1 be the Mersenne number to test with p an
odd prime. The primality of p can be efficiently checked with a simple algorithm like trial division since

p is exponentially smaller than MP. Define a sequence { s; } for all i=0 by

! if 2 = 0;
t R 2 .
-~,2_1 — 2 otherwise.

Then MP is prime if and only if sp., = 0 (mod MP). The number s,., (mod MP) is called the Lucas-
Lehmer residue of p.

Fermat's little theorem states that if p is prime and 0<a<p, then aPl=1 (mod p). If we want to
test whether p is prime, then we can pick random 4&'s in the interval and see whether the equality
holds. If the equality does not hold for a value of &, then p is not prime. If the equality does hold for
many values of &, then we can say that p is probably prime.

As you can notice, neither the Lucas-Lehmer's primality test nor the Fermat's Little Theorem provide a
certain for all numbers. But in an case we can use them to define the number as probably prime or
surely not prime.

The exercise consists of implementing a module Primality with (at least) 4 functions:
trialdivision, lucaslehmer, littlefermat and is_prime. Each of them is a predicate over
an integer number (the one that should be tested as prime). Thje first three functions should
implement the described algorithms. The last one is testing the primality of the input by applying one
of the other algorithms according to the following rules:

e if the input is smaller or equal to 10000 it will use the trial division algorithm.

e if the input is between 10001 and 524287 (extremes included) it will use the Lucas-Lehmar's
algorithm (no check if the input is a Marsenne number).

e it will use the Fermat's little theorem otherwise (please use a reasonable (both in size and
values) set of values for a).

Note that the given interfaces must be respected and your module should be compliant with the
following main and its execution. Note that the last value takes more or less ten minutes to be
validated.

open Primality ;;

let main () =
let rec test_primes = function
| hd::tl -> Printf.printf "%10d :- %$b\n" hd (is_prime hd);
flush stdout; test_primes tl
| 11 -> Printf.printf "\n"
in test primes [25; 127; 8191; 131071;
524286; 524287; 524288; 2147483647] ;;

let() = main() ;;

[18:08]cazzola@hymir:~/ocaml>main

Trial-Division's Primality Test 25 :- false
Trial-Division's Primality Test 127 :- true
Trial-Division's Primality Test 8191 :- true

Lucas-Lehmer's Primality Test 131071 :- true
Lucas-Lehmer's Primality Test 524286 :- false
Lucas-Lehmer's Primality Test 524287 :- true
Little Fermat's Primality Test 524288 :- false
Little Fermat's Primality Test 2147483647 :- true

Exercise Erlang: You Are Hot!

Beyond the well-known Celsius and Fahrenheit, there are other six temperature scales: Kelvin, Rankine,
Delisle, Newton, Réaumur, and Rgmer. For your convenience, the conversion formulas from Celsius
degrees (°C) are:

Fahrenheit [°F] = [°C] x 9/5 + 32
Kelvin [K] = [°C] + 273.15

Rankine [°R] = ([°C] + 273.15) x 9/5
Delisle [°De] = (100 — [°C]) x 3/2
Newton [°N] = [°C] x 33/100
Réaumur [°Ré] = [°C] x 4/5

Rgmer [°Rg] = [°C] x 21/40 + 7.5

To pass from one scale to another and vice versa is pretty simple but it would be interesting to have a
distributed service that transform a temperature in any scale to another scale. Basically its structure
should be compliant with this schema:

Where the nodes on the second row are those that from a given temperature scale translate the value
to the Celsius scale and pass the result to the appropriate actor on the first row that translates it to the
target scale. Each actor translates from or to a single scale; they all interact with the Celsius scale.
Note that each actor has a different behavior but this doesn't mean that you have to implement so
many different actors: be smart. Data go from the client to one actor in the second row then to one in
the first row; the result follows the same route backward.

The exercise consists of implementing the whole structure in the module tempsys with a function
startsys/0 that bootstraps the whole system. The client is implemented in the module client that
provides a single function convert/5. First and third parameters are always the atoms from and to
respectively; the second and fourth arguments represent the source and target scale respectively as an
atom representing the scale's symbol without the degree symbol.

The following is an example of the expected behavior:

[15:07]cazzola@hymir:~/erlang>erl

1> tempsys:startsys().

2> client:convert(from, 'Re', to, 'De', 25).

25°Re are equivalent to 103.125°De

3> client:convert(from, 'K', to, 'N', -25).

-25°K are equivalent to -98.38949999999998°N

4> client:convert(from, 'C', to, 'F', 3.5).

3.5°C are equivalent to 38.3°F

5> Conv = fun(X) -> client:convert(from, X, to, 'C', 32) end.
6> lists:map(Conv, ['C','De', 'F', 'K', 'N', 'R', 'Re', 'R0']).
32°C are equivalent to 32°C

32°De are equivalent to 78.66666666666667°C

32°F are equivalent to 0.0°C

32°K are equivalent to -241.14999999999998°C

32°N are equivalent to 96.96969696969697°C

32°R are equivalent to -255.3722222222222°C

32°Re are equivalent to 40.0°C

32°Ro are equivalent to 46.666666666666664°C

7> Conv2 = fun(X) -> client:convert(from, 'C', to, X, 32) end.
8> lists:map(Conv2, ['C','De', 'F', 'K', 'N', 'R', 'Re', 'RO']).
32°C are equivalent to 32°C

32°C are equivalent to 102.0°De

32°C are equivalent to 89.6°F

32°C are equivalent to 305.15°K

32°C are equivalent to 10.56°N

32°C are equivalent to 549.27°R

32°C are equivalent to 25.6°Re
32°C are equivalent to 24.3°Ro

All the solutions not conform to the specification will be considered wrong.

LoglLang.

LoglLang is a trivial DSL that permits to play with log files. The permitted operations on log files are:

e remove «filename», that remove the file associated to the given filename

e rename «filename.old» «filename.new», that changes the name to the file according with the
passed data

e merge «filel» «file2» «file3», that copies the content of «filel» and «file2» in «file3»

e backup «filel» «file2», that copies the content of «filel» in «file2»

All the filenames are enclosed in quotes; quotes are not part of the filename.

The operations are grouped in tasks: task «task name» { «operations» }.Operations inside a
task and the tasks are separated by a newline.

The exercise consists of implementing a DSL by using parser combinator techniques that can parse and
execute LonglLang scripts. Note that the operations must really affect the files and that these can fail
due to many reasons, e.g., file missing. The interpreter should report on the failure or success of each
single command as grouped in the script.

The following is an example of loglang script with the expected behavior (yielded using this set of
logs).

task TaskOne {
remove "application.debug.old"
rename "application.debug" "application.debug.old"

task TaskTwo {
backup "access.error" "security.logs"
backup "system.error" "system.logs"

}

task TaskThree {
merge "security.logs" "system.logs" "security+system.logs"

}

[18:13]cazzola@surtur:~/1lp/scala>scala LogLangEvaluator test.ll
Task TaskOne

[opl] true
[op2] false
Task TaskTwo
[opl] true
[op2] true
Task TaskThree
[opl] true

Last Modified: Tue, 16 Feb 2016 16:37:15 ADAPT Lab. *‘

