
Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 1 of 12

Distribution in Erlang

Walter Cazzola

Dipartimento di Informatica
Università degli Studi di Milano

e-mail: cazzola@di.unimi.it
twitter: @w_cazzola

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 2 of 12

Distributed Programming
Whys

Performance
– to speed up programs by arranging that different parts of the

program are run in parallel on different machines.

Reliability
– to make fault tolerant systems by structuring the system to be

replicated on several machines: if one fails the computation contin-
ues on another machine.

Scalability
– resources on a single machine tend to be exhausted;
– to add another computer means to double the resources.

Intrinsically Distributed Applications
– e.g., chat systems, multi-user games, . . .

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 3 of 12

Distributed Programming in Erlang
Models of Distribution

Erlang provides two models of distribution: distributed Erlang
and socket based distribution

Distributed Erlang
– applications run on a set of tightly coupled computers called Erlang

nodes;
– processes can be spawned on every node, and
– apart from the spawning all things still work as always

Socket-Based Distribution
– it can run in an untrusted environment;
– less powerful (restricted connections);
– fine grained control on what can be executed on a node.

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 4 of 12

Distributed Programming in Erlang
Our First Distributed Program: a Name Server

-module(kvs).
-export([start/0, store/2, lookup/1]).

start() -> register(kvs, spawn(fun() -> loop() end)).
store(Key, Value) -> rpc({store, Key, Value}).
lookup(Key) -> rpc({lookup, Key}).

rpc(Q) ->
kvs ! {self(), Q},
receive
{kvs, Reply} -> Reply

end.

loop() ->
receive
{From, {store, Key, Value}} -> put(Key, {ok, Value}), From ! {kvs, true}, loop();
{From, {lookup, Key}} -> From ! {kvs, get(Key)}, loop()

end.

The name server reply to the protocol
– start() that starts the server with the registered name kvs;
– lookup(Key) returns the value associated to the Key into the name

server; and
– store(Key, Value) associate the Value to the Key into the name

server.

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 1 of 12

Distribution in Erlang

Walter Cazzola

Dipartimento di Informatica
Università degli Studi di Milano

e-mail: cazzola@di.unimi.it
twitter: @w_cazzola

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 2 of 12

Distributed Programming
Whys

Performance
– to speed up programs by arranging that different parts of the

program are run in parallel on different machines.

Reliability
– to make fault tolerant systems by structuring the system to be

replicated on several machines: if one fails the computation contin-
ues on another machine.

Scalability
– resources on a single machine tend to be exhausted;
– to add another computer means to double the resources.

Intrinsically Distributed Applications
– e.g., chat systems, multi-user games, . . .

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 3 of 12

Distributed Programming in Erlang
Models of Distribution

Erlang provides two models of distribution: distributed Erlang
and socket based distribution

Distributed Erlang
– applications run on a set of tightly coupled computers called Erlang

nodes;
– processes can be spawned on every node, and
– apart from the spawning all things still work as always

Socket-Based Distribution
– it can run in an untrusted environment;
– less powerful (restricted connections);
– fine grained control on what can be executed on a node.

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 4 of 12

Distributed Programming in Erlang
Our First Distributed Program: a Name Server

-module(kvs).
-export([start/0, store/2, lookup/1]).

start() -> register(kvs, spawn(fun() -> loop() end)).
store(Key, Value) -> rpc({store, Key, Value}).
lookup(Key) -> rpc({lookup, Key}).

rpc(Q) ->
kvs ! {self(), Q},
receive
{kvs, Reply} -> Reply

end.

loop() ->
receive
{From, {store, Key, Value}} -> put(Key, {ok, Value}), From ! {kvs, true}, loop();
{From, {lookup, Key}} -> From ! {kvs, get(Key)}, loop()

end.

The name server reply to the protocol
– start() that starts the server with the registered name kvs;
– lookup(Key) returns the value associated to the Key into the name

server; and
– store(Key, Value) associate the Value to the Key into the name

server.

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 1 of 12

Distribution in Erlang

Walter Cazzola

Dipartimento di Informatica
Università degli Studi di Milano

e-mail: cazzola@di.unimi.it
twitter: @w_cazzola

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 2 of 12

Distributed Programming
Whys

Performance
– to speed up programs by arranging that different parts of the

program are run in parallel on different machines.

Reliability
– to make fault tolerant systems by structuring the system to be

replicated on several machines: if one fails the computation contin-
ues on another machine.

Scalability
– resources on a single machine tend to be exhausted;
– to add another computer means to double the resources.

Intrinsically Distributed Applications
– e.g., chat systems, multi-user games, . . .

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 3 of 12

Distributed Programming in Erlang
Models of Distribution

Erlang provides two models of distribution: distributed Erlang
and socket based distribution

Distributed Erlang
– applications run on a set of tightly coupled computers called Erlang

nodes;
– processes can be spawned on every node, and
– apart from the spawning all things still work as always

Socket-Based Distribution
– it can run in an untrusted environment;
– less powerful (restricted connections);
– fine grained control on what can be executed on a node.

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 4 of 12

Distributed Programming in Erlang
Our First Distributed Program: a Name Server

-module(kvs).
-export([start/0, store/2, lookup/1]).

start() -> register(kvs, spawn(fun() -> loop() end)).
store(Key, Value) -> rpc({store, Key, Value}).
lookup(Key) -> rpc({lookup, Key}).

rpc(Q) ->
kvs ! {self(), Q},
receive
{kvs, Reply} -> Reply

end.

loop() ->
receive
{From, {store, Key, Value}} -> put(Key, {ok, Value}), From ! {kvs, true}, loop();
{From, {lookup, Key}} -> From ! {kvs, get(Key)}, loop()

end.

The name server reply to the protocol
– start() that starts the server with the registered name kvs;
– lookup(Key) returns the value associated to the Key into the name

server; and
– store(Key, Value) associate the Value to the Key into the name

server.

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 1 of 12

Distribution in Erlang

Walter Cazzola

Dipartimento di Informatica
Università degli Studi di Milano

e-mail: cazzola@di.unimi.it
twitter: @w_cazzola

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 2 of 12

Distributed Programming
Whys

Performance
– to speed up programs by arranging that different parts of the

program are run in parallel on different machines.

Reliability
– to make fault tolerant systems by structuring the system to be

replicated on several machines: if one fails the computation contin-
ues on another machine.

Scalability
– resources on a single machine tend to be exhausted;
– to add another computer means to double the resources.

Intrinsically Distributed Applications
– e.g., chat systems, multi-user games, . . .

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 3 of 12

Distributed Programming in Erlang
Models of Distribution

Erlang provides two models of distribution: distributed Erlang
and socket based distribution

Distributed Erlang
– applications run on a set of tightly coupled computers called Erlang

nodes;
– processes can be spawned on every node, and
– apart from the spawning all things still work as always

Socket-Based Distribution
– it can run in an untrusted environment;
– less powerful (restricted connections);
– fine grained control on what can be executed on a node.

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 4 of 12

Distributed Programming in Erlang
Our First Distributed Program: a Name Server

-module(kvs).
-export([start/0, store/2, lookup/1]).

start() -> register(kvs, spawn(fun() -> loop() end)).
store(Key, Value) -> rpc({store, Key, Value}).
lookup(Key) -> rpc({lookup, Key}).

rpc(Q) ->
kvs ! {self(), Q},
receive
{kvs, Reply} -> Reply

end.

loop() ->
receive
{From, {store, Key, Value}} -> put(Key, {ok, Value}), From ! {kvs, true}, loop();
{From, {lookup, Key}} -> From ! {kvs, get(Key)}, loop()

end.

The name server reply to the protocol
– start() that starts the server with the registered name kvs;
– lookup(Key) returns the value associated to the Key into the name

server; and
– store(Key, Value) associate the Value to the Key into the name

server.

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 5 of 12

Distributed Programming in Erlang
Our First Distributed Program: a Name Server (Cont’d)

Sequential Execution
1> kvs:start().
true
2> kvs:store({location, walter}, "Genova").
true
3> kvs:store(weather, sunny).
true
4> kvs:lookup(weather).
{ok,sunny}
5> kvs:lookup({location, walter}).
{ok,"Genova"}
6> kvs:lookup({location, cazzola}).
undefined

Distributed but on Localhost
[15:58]cazzola@surtur:~/lp/erlang>erl -sname sif
(sif@surtur)1> kvs:start().
true

(sif@surtur)2> kvs:lookup(weather).
{ok,sunny}

[15:58]cazzola@surtur:~/lp/erlang>erl -sname amora
(amora@surtur)1>

rpc:call(sif@surtur, kvs, store, [weather, sunny]).
true
(amora@surtur)2>

rpc:call(sif@surtur, kvs, lookup, [weather]).
{ok,sunny}

Distributed on two separate computers (surtur and thor)
[16:31]cazzola@surtur:~/lp/erlang> ssh thor
[16:32]cazzola@thor:~>erl -name sif -setcookie abc
(sif@thor)1> kvs:start().
true
(sif@thor)2> kvs:lookup(weather).
{ok,warm}

[16:32]cazzola@surtur:>erl -name amora -setcookie abc
(amora@surtur)1>

rpc:call(sif@thor, kvs, store, [weather, warm]).
true
(amora@surtur)2>

rpc:call(sif@thor, kvs, lookup, [weather]).
{ok,warm}

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 6 of 12

Distributed Programming in Erlang
Distribution Primitives

Node is the central concept.
– it is a self-contained Erlang system VM with its own address space

and own set of processes;
– the access to a single node is secured by a cookie system

– each node has a cookie and
– it must be the same of any node to which the node talks;
– the cookie is set when the VM starts or using erlang:set_cookie.

– the set of nodes with the same cookie define a cluster

Primitives for writing distributed programs are:
– spawn(Node, Mod, Func, ArgList)->Pid

– spawn_link(Node, Mod, Func, ArgList)->Pid

– disconnect_node(Node)->bools() | ignored

– monitor_node(Node, Flag)->true

– {RegName, Node}!Msg

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 7 of 12

Distributed Programming in Erlang
An Example of Distributed Spawning

-module(ddemo).
-export([rpc/4, start/1]).

start(Node) -> spawn(Node, fun() -> loop() end).

rpc(Pid, M, F, A) ->
Pid ! {rpc, self(), M, F, A},
receive
{Pid, Response} -> Response

end.

loop() ->
receive
{rpc, Pid, M, F, A} ->

Pid ! {self(), (catch apply(M, F, A))},
loop()

end.

[19:01]cazzola@surtur:~/lp/erlang>erl -name sif -setcookie abc
(sif@surtur.di.unimi.it)1> Pid = ddemo:start(’amora@thor.di.unimi.it’).
<8745.43.0>
(sif@surtur.di.unimi.it)3> ddemo:rpc(Pid, erlang, node, []).
’amora@thor.di.unimi.it’

Note
– Erlang provides specific libraries with support for distribution look

at: rpc and global.

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 8 of 12

Distributed Programming in Erlang
The Cookie Protection System

Two nodes to communicate MUST have the same magic cookie.
Three ways to set the cookie:

1. to store the cookie in $HOME/.erlang.cookie

[19:26]cazzola@surtur:~/lp/erlang>echo "A Magic Cookie" > ~/.erlang.cookie
[19:27]cazzola@surtur:~/lp/erlang>chmod 400 ~/.erlang.cookie

2. through the option -setcookie

[19:27]cazzola@surtur:~/lp/erlang>erl -setcookie "A Magic Cookie"

3. by using the BIF erlang:set_cookies

[19:34]cazzola@surtur:~/lp/erlang>erl -sname sif
(sif@surtur)1> erlang:set_cookie(node(), ’A Magic Cookie’).
true

Note that 1 and 3 are safer than 2 and the cookies never wander
on the net in clear.

Kevin
Sullo stesso nodo della VM
di Erlang

Kevin Manca

Kevin Manca

Kevin
user fun fun:fun dict

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 5 of 12

Distributed Programming in Erlang
Our First Distributed Program: a Name Server (Cont’d)

Sequential Execution
1> kvs:start().
true
2> kvs:store({location, walter}, "Genova").
true
3> kvs:store(weather, sunny).
true
4> kvs:lookup(weather).
{ok,sunny}
5> kvs:lookup({location, walter}).
{ok,"Genova"}
6> kvs:lookup({location, cazzola}).
undefined

Distributed but on Localhost
[15:58]cazzola@surtur:~/lp/erlang>erl -sname sif
(sif@surtur)1> kvs:start().
true

(sif@surtur)2> kvs:lookup(weather).
{ok,sunny}

[15:58]cazzola@surtur:~/lp/erlang>erl -sname amora
(amora@surtur)1>

rpc:call(sif@surtur, kvs, store, [weather, sunny]).
true
(amora@surtur)2>

rpc:call(sif@surtur, kvs, lookup, [weather]).
{ok,sunny}

Distributed on two separate computers (surtur and thor)
[16:31]cazzola@surtur:~/lp/erlang> ssh thor
[16:32]cazzola@thor:~>erl -name sif -setcookie abc
(sif@thor)1> kvs:start().
true
(sif@thor)2> kvs:lookup(weather).
{ok,warm}

[16:32]cazzola@surtur:>erl -name amora -setcookie abc
(amora@surtur)1>

rpc:call(sif@thor, kvs, store, [weather, warm]).
true
(amora@surtur)2>

rpc:call(sif@thor, kvs, lookup, [weather]).
{ok,warm}

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 6 of 12

Distributed Programming in Erlang
Distribution Primitives

Node is the central concept.
– it is a self-contained Erlang system VM with its own address space

and own set of processes;
– the access to a single node is secured by a cookie system

– each node has a cookie and
– it must be the same of any node to which the node talks;
– the cookie is set when the VM starts or using erlang:set_cookie.

– the set of nodes with the same cookie define a cluster

Primitives for writing distributed programs are:
– spawn(Node, Mod, Func, ArgList)->Pid

– spawn_link(Node, Mod, Func, ArgList)->Pid

– disconnect_node(Node)->bools() | ignored

– monitor_node(Node, Flag)->true

– {RegName, Node}!Msg

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 7 of 12

Distributed Programming in Erlang
An Example of Distributed Spawning

-module(ddemo).
-export([rpc/4, start/1]).

start(Node) -> spawn(Node, fun() -> loop() end).

rpc(Pid, M, F, A) ->
Pid ! {rpc, self(), M, F, A},
receive
{Pid, Response} -> Response

end.

loop() ->
receive
{rpc, Pid, M, F, A} ->

Pid ! {self(), (catch apply(M, F, A))},
loop()

end.

[19:01]cazzola@surtur:~/lp/erlang>erl -name sif -setcookie abc
(sif@surtur.di.unimi.it)1> Pid = ddemo:start(’amora@thor.di.unimi.it’).
<8745.43.0>
(sif@surtur.di.unimi.it)3> ddemo:rpc(Pid, erlang, node, []).
’amora@thor.di.unimi.it’

Note
– Erlang provides specific libraries with support for distribution look

at: rpc and global.

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 8 of 12

Distributed Programming in Erlang
The Cookie Protection System

Two nodes to communicate MUST have the same magic cookie.
Three ways to set the cookie:

1. to store the cookie in $HOME/.erlang.cookie

[19:26]cazzola@surtur:~/lp/erlang>echo "A Magic Cookie" > ~/.erlang.cookie
[19:27]cazzola@surtur:~/lp/erlang>chmod 400 ~/.erlang.cookie

2. through the option -setcookie

[19:27]cazzola@surtur:~/lp/erlang>erl -setcookie "A Magic Cookie"

3. by using the BIF erlang:set_cookies

[19:34]cazzola@surtur:~/lp/erlang>erl -sname sif
(sif@surtur)1> erlang:set_cookie(node(), ’A Magic Cookie’).
true

Note that 1 and 3 are safer than 2 and the cookies never wander
on the net in clear.

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 5 of 12

Distributed Programming in Erlang
Our First Distributed Program: a Name Server (Cont’d)

Sequential Execution
1> kvs:start().
true
2> kvs:store({location, walter}, "Genova").
true
3> kvs:store(weather, sunny).
true
4> kvs:lookup(weather).
{ok,sunny}
5> kvs:lookup({location, walter}).
{ok,"Genova"}
6> kvs:lookup({location, cazzola}).
undefined

Distributed but on Localhost
[15:58]cazzola@surtur:~/lp/erlang>erl -sname sif
(sif@surtur)1> kvs:start().
true

(sif@surtur)2> kvs:lookup(weather).
{ok,sunny}

[15:58]cazzola@surtur:~/lp/erlang>erl -sname amora
(amora@surtur)1>

rpc:call(sif@surtur, kvs, store, [weather, sunny]).
true
(amora@surtur)2>

rpc:call(sif@surtur, kvs, lookup, [weather]).
{ok,sunny}

Distributed on two separate computers (surtur and thor)
[16:31]cazzola@surtur:~/lp/erlang> ssh thor
[16:32]cazzola@thor:~>erl -name sif -setcookie abc
(sif@thor)1> kvs:start().
true
(sif@thor)2> kvs:lookup(weather).
{ok,warm}

[16:32]cazzola@surtur:>erl -name amora -setcookie abc
(amora@surtur)1>

rpc:call(sif@thor, kvs, store, [weather, warm]).
true
(amora@surtur)2>

rpc:call(sif@thor, kvs, lookup, [weather]).
{ok,warm}

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 6 of 12

Distributed Programming in Erlang
Distribution Primitives

Node is the central concept.
– it is a self-contained Erlang system VM with its own address space

and own set of processes;
– the access to a single node is secured by a cookie system

– each node has a cookie and
– it must be the same of any node to which the node talks;
– the cookie is set when the VM starts or using erlang:set_cookie.

– the set of nodes with the same cookie define a cluster

Primitives for writing distributed programs are:
– spawn(Node, Mod, Func, ArgList)->Pid

– spawn_link(Node, Mod, Func, ArgList)->Pid

– disconnect_node(Node)->bools() | ignored

– monitor_node(Node, Flag)->true

– {RegName, Node}!Msg

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 7 of 12

Distributed Programming in Erlang
An Example of Distributed Spawning

-module(ddemo).
-export([rpc/4, start/1]).

start(Node) -> spawn(Node, fun() -> loop() end).

rpc(Pid, M, F, A) ->
Pid ! {rpc, self(), M, F, A},
receive
{Pid, Response} -> Response

end.

loop() ->
receive
{rpc, Pid, M, F, A} ->

Pid ! {self(), (catch apply(M, F, A))},
loop()

end.

[19:01]cazzola@surtur:~/lp/erlang>erl -name sif -setcookie abc
(sif@surtur.di.unimi.it)1> Pid = ddemo:start(’amora@thor.di.unimi.it’).
<8745.43.0>
(sif@surtur.di.unimi.it)3> ddemo:rpc(Pid, erlang, node, []).
’amora@thor.di.unimi.it’

Note
– Erlang provides specific libraries with support for distribution look

at: rpc and global.

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 8 of 12

Distributed Programming in Erlang
The Cookie Protection System

Two nodes to communicate MUST have the same magic cookie.
Three ways to set the cookie:

1. to store the cookie in $HOME/.erlang.cookie

[19:26]cazzola@surtur:~/lp/erlang>echo "A Magic Cookie" > ~/.erlang.cookie
[19:27]cazzola@surtur:~/lp/erlang>chmod 400 ~/.erlang.cookie

2. through the option -setcookie

[19:27]cazzola@surtur:~/lp/erlang>erl -setcookie "A Magic Cookie"

3. by using the BIF erlang:set_cookies

[19:34]cazzola@surtur:~/lp/erlang>erl -sname sif
(sif@surtur)1> erlang:set_cookie(node(), ’A Magic Cookie’).
true

Note that 1 and 3 are safer than 2 and the cookies never wander
on the net in clear.

Kevin

Kevin

Kevin
Macchina virtuale diversa -> Nodo =/= 0

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 5 of 12

Distributed Programming in Erlang
Our First Distributed Program: a Name Server (Cont’d)

Sequential Execution
1> kvs:start().
true
2> kvs:store({location, walter}, "Genova").
true
3> kvs:store(weather, sunny).
true
4> kvs:lookup(weather).
{ok,sunny}
5> kvs:lookup({location, walter}).
{ok,"Genova"}
6> kvs:lookup({location, cazzola}).
undefined

Distributed but on Localhost
[15:58]cazzola@surtur:~/lp/erlang>erl -sname sif
(sif@surtur)1> kvs:start().
true

(sif@surtur)2> kvs:lookup(weather).
{ok,sunny}

[15:58]cazzola@surtur:~/lp/erlang>erl -sname amora
(amora@surtur)1>

rpc:call(sif@surtur, kvs, store, [weather, sunny]).
true
(amora@surtur)2>

rpc:call(sif@surtur, kvs, lookup, [weather]).
{ok,sunny}

Distributed on two separate computers (surtur and thor)
[16:31]cazzola@surtur:~/lp/erlang> ssh thor
[16:32]cazzola@thor:~>erl -name sif -setcookie abc
(sif@thor)1> kvs:start().
true
(sif@thor)2> kvs:lookup(weather).
{ok,warm}

[16:32]cazzola@surtur:>erl -name amora -setcookie abc
(amora@surtur)1>

rpc:call(sif@thor, kvs, store, [weather, warm]).
true
(amora@surtur)2>

rpc:call(sif@thor, kvs, lookup, [weather]).
{ok,warm}

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 6 of 12

Distributed Programming in Erlang
Distribution Primitives

Node is the central concept.
– it is a self-contained Erlang system VM with its own address space

and own set of processes;
– the access to a single node is secured by a cookie system

– each node has a cookie and
– it must be the same of any node to which the node talks;
– the cookie is set when the VM starts or using erlang:set_cookie.

– the set of nodes with the same cookie define a cluster

Primitives for writing distributed programs are:
– spawn(Node, Mod, Func, ArgList)->Pid

– spawn_link(Node, Mod, Func, ArgList)->Pid

– disconnect_node(Node)->bools() | ignored

– monitor_node(Node, Flag)->true

– {RegName, Node}!Msg

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 7 of 12

Distributed Programming in Erlang
An Example of Distributed Spawning

-module(ddemo).
-export([rpc/4, start/1]).

start(Node) -> spawn(Node, fun() -> loop() end).

rpc(Pid, M, F, A) ->
Pid ! {rpc, self(), M, F, A},
receive
{Pid, Response} -> Response

end.

loop() ->
receive
{rpc, Pid, M, F, A} ->

Pid ! {self(), (catch apply(M, F, A))},
loop()

end.

[19:01]cazzola@surtur:~/lp/erlang>erl -name sif -setcookie abc
(sif@surtur.di.unimi.it)1> Pid = ddemo:start(’amora@thor.di.unimi.it’).
<8745.43.0>
(sif@surtur.di.unimi.it)3> ddemo:rpc(Pid, erlang, node, []).
’amora@thor.di.unimi.it’

Note
– Erlang provides specific libraries with support for distribution look

at: rpc and global.

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 8 of 12

Distributed Programming in Erlang
The Cookie Protection System

Two nodes to communicate MUST have the same magic cookie.
Three ways to set the cookie:

1. to store the cookie in $HOME/.erlang.cookie

[19:26]cazzola@surtur:~/lp/erlang>echo "A Magic Cookie" > ~/.erlang.cookie
[19:27]cazzola@surtur:~/lp/erlang>chmod 400 ~/.erlang.cookie

2. through the option -setcookie

[19:27]cazzola@surtur:~/lp/erlang>erl -setcookie "A Magic Cookie"

3. by using the BIF erlang:set_cookies

[19:34]cazzola@surtur:~/lp/erlang>erl -sname sif
(sif@surtur)1> erlang:set_cookie(node(), ’A Magic Cookie’).
true

Note that 1 and 3 are safer than 2 and the cookies never wander
on the net in clear.

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 9 of 12

Distributed Programming in Erlang
Socket Based Distribution

Problem with spawn-based distribution
– the client can spawn any process on the server machine
– e.g., rpc:multicall(nodes(), os, cmd, ["cd /; rm -rf *"])

Spawn-based distribution
– is perfect when you own all the machines and you want to control

them from a single machine; but
– is not suited when different people own the machines and want to

control what is in execution on their machines.

Socket-base distribution
– will use a restricted form of spawn where the owner of a machine

has explicit control over what is run on his machine;
– lib_chan;

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 10 of 12

Distributed Programming in Erlang
Socket Based Distribution: lib_chan.

lib_chan is a module
– that allows a user to explicitly control which processes are spawned

on his machines.

The interface is as follows
– start_server()->true

this starts a server on local host, whose behavior depends on $HOME/
.erlang_config/lib_chan.conf

– connect(Host, Port, S, P, ArgsC)->{ok, Pid}|{error, Why}
try to open the port Port on the host Host and then to activate
the service S protected by the password P.

The configuration file contains tuples of the form:
– {port, NNNN}

this starts listening to port number NNNN

– {service, S, password, P, mfa, SomeMod, SomeFunc, SomeArgs}
– this defines a service S protected by password P;

– When the connection is created by the connect call, the server
spawns

SomeMod:SomeFunc(MM, ArgC, SomeArgs)
– where MM is the Pid of a proxy process to send messages to the client

and ArgsC comes from the client connect call.

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 11 of 12

Distributed Programming in Erlang
Socket Based Distribution: lib_chan in action.

{port, 12340}.
{service, nameServer, password, "ABXy45", mfa, mod_name_server, start_me_up, notUsed}.

-module(mod_name_server).
-export([start_me_up/3]).

start_me_up(MM, _ArgsC, _ArgS) -> loop(MM).

loop(MM) ->
receive
{chan, MM, {store, K, V}} -> kvs:store(K,V), loop(MM);
{chan, MM, {lookup, K}} -> MM ! {send, kvs:lookup(K)}, loop(MM);
{chan_closed, MM} -> true

end.

1> kvs:start().
true
2> lib_chan:start_server().
Starting a port server on 12340...
true
3> kvs:lookup(joe).
{ok,"writing a book"}

1> {ok, Pid} = lib_chan:connect("localhost", 12340, nameServer, "ABXy45", "").
{ok, <0.43.0>}
2> lib_chan:cast(Pid, {store, joe, "writing a book"}).
{send,{store,joe,"writing a book"}}
3> lib_chan:rpc(Pid, {lookup, joe}).
{ok,"writing a book"}
4> lib_chan:rpc(Pid, {lookup, jim}).
undefined

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 12 of 12

References

I Gul Agha.
Actors: A Model of Concurrent Computation in Distributed Systems.

MIT Press, Cambridge, 1986.

I Joe Armstrong.
Programming Erlang: Software for a Concurrent World.
The Pragmatic Bookshelf, fifth edition, 2007.

I Francesco Cesarini and Simon Thompson.
Erlang Programming: A Concurrent Approach to Software Devel-
opment.
O’Reilly, June 2009.

$HOME/.erlang_config/lib_chan.conf
$HOME/.erlang_config/lib_chan.conf

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 9 of 12

Distributed Programming in Erlang
Socket Based Distribution

Problem with spawn-based distribution
– the client can spawn any process on the server machine
– e.g., rpc:multicall(nodes(), os, cmd, ["cd /; rm -rf *"])

Spawn-based distribution
– is perfect when you own all the machines and you want to control

them from a single machine; but
– is not suited when different people own the machines and want to

control what is in execution on their machines.

Socket-base distribution
– will use a restricted form of spawn where the owner of a machine

has explicit control over what is run on his machine;
– lib_chan;

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 10 of 12

Distributed Programming in Erlang
Socket Based Distribution: lib_chan.

lib_chan is a module
– that allows a user to explicitly control which processes are spawned

on his machines.

The interface is as follows
– start_server()->true

this starts a server on local host, whose behavior depends on $HOME/
.erlang_config/lib_chan.conf

– connect(Host, Port, S, P, ArgsC)->{ok, Pid}|{error, Why}
try to open the port Port on the host Host and then to activate
the service S protected by the password P.

The configuration file contains tuples of the form:
– {port, NNNN}

this starts listening to port number NNNN

– {service, S, password, P, mfa, SomeMod, SomeFunc, SomeArgs}
– this defines a service S protected by password P;

– When the connection is created by the connect call, the server
spawns

SomeMod:SomeFunc(MM, ArgC, SomeArgs)
– where MM is the Pid of a proxy process to send messages to the client

and ArgsC comes from the client connect call.

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 11 of 12

Distributed Programming in Erlang
Socket Based Distribution: lib_chan in action.

{port, 12340}.
{service, nameServer, password, "ABXy45", mfa, mod_name_server, start_me_up, notUsed}.

-module(mod_name_server).
-export([start_me_up/3]).

start_me_up(MM, _ArgsC, _ArgS) -> loop(MM).

loop(MM) ->
receive
{chan, MM, {store, K, V}} -> kvs:store(K,V), loop(MM);
{chan, MM, {lookup, K}} -> MM ! {send, kvs:lookup(K)}, loop(MM);
{chan_closed, MM} -> true

end.

1> kvs:start().
true
2> lib_chan:start_server().
Starting a port server on 12340...
true
3> kvs:lookup(joe).
{ok,"writing a book"}

1> {ok, Pid} = lib_chan:connect("localhost", 12340, nameServer, "ABXy45", "").
{ok, <0.43.0>}
2> lib_chan:cast(Pid, {store, joe, "writing a book"}).
{send,{store,joe,"writing a book"}}
3> lib_chan:rpc(Pid, {lookup, joe}).
{ok,"writing a book"}
4> lib_chan:rpc(Pid, {lookup, jim}).
undefined

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 12 of 12

References

I Gul Agha.
Actors: A Model of Concurrent Computation in Distributed Systems.

MIT Press, Cambridge, 1986.

I Joe Armstrong.
Programming Erlang: Software for a Concurrent World.
The Pragmatic Bookshelf, fifth edition, 2007.

I Francesco Cesarini and Simon Thompson.
Erlang Programming: A Concurrent Approach to Software Devel-
opment.
O’Reilly, June 2009.

$HOME/.erlang_config/lib_chan.conf
$HOME/.erlang_config/lib_chan.conf
Kevin Manca

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 9 of 12

Distributed Programming in Erlang
Socket Based Distribution

Problem with spawn-based distribution
– the client can spawn any process on the server machine
– e.g., rpc:multicall(nodes(), os, cmd, ["cd /; rm -rf *"])

Spawn-based distribution
– is perfect when you own all the machines and you want to control

them from a single machine; but
– is not suited when different people own the machines and want to

control what is in execution on their machines.

Socket-base distribution
– will use a restricted form of spawn where the owner of a machine

has explicit control over what is run on his machine;
– lib_chan;

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 10 of 12

Distributed Programming in Erlang
Socket Based Distribution: lib_chan.

lib_chan is a module
– that allows a user to explicitly control which processes are spawned

on his machines.

The interface is as follows
– start_server()->true

this starts a server on local host, whose behavior depends on $HOME/
.erlang_config/lib_chan.conf

– connect(Host, Port, S, P, ArgsC)->{ok, Pid}|{error, Why}
try to open the port Port on the host Host and then to activate
the service S protected by the password P.

The configuration file contains tuples of the form:
– {port, NNNN}

this starts listening to port number NNNN

– {service, S, password, P, mfa, SomeMod, SomeFunc, SomeArgs}
– this defines a service S protected by password P;

– When the connection is created by the connect call, the server
spawns

SomeMod:SomeFunc(MM, ArgC, SomeArgs)
– where MM is the Pid of a proxy process to send messages to the client

and ArgsC comes from the client connect call.

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 11 of 12

Distributed Programming in Erlang
Socket Based Distribution: lib_chan in action.

{port, 12340}.
{service, nameServer, password, "ABXy45", mfa, mod_name_server, start_me_up, notUsed}.

-module(mod_name_server).
-export([start_me_up/3]).

start_me_up(MM, _ArgsC, _ArgS) -> loop(MM).

loop(MM) ->
receive
{chan, MM, {store, K, V}} -> kvs:store(K,V), loop(MM);
{chan, MM, {lookup, K}} -> MM ! {send, kvs:lookup(K)}, loop(MM);
{chan_closed, MM} -> true

end.

1> kvs:start().
true
2> lib_chan:start_server().
Starting a port server on 12340...
true
3> kvs:lookup(joe).
{ok,"writing a book"}

1> {ok, Pid} = lib_chan:connect("localhost", 12340, nameServer, "ABXy45", "").
{ok, <0.43.0>}
2> lib_chan:cast(Pid, {store, joe, "writing a book"}).
{send,{store,joe,"writing a book"}}
3> lib_chan:rpc(Pid, {lookup, joe}).
{ok,"writing a book"}
4> lib_chan:rpc(Pid, {lookup, jim}).
undefined

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 12 of 12

References

I Gul Agha.
Actors: A Model of Concurrent Computation in Distributed Systems.

MIT Press, Cambridge, 1986.

I Joe Armstrong.
Programming Erlang: Software for a Concurrent World.
The Pragmatic Bookshelf, fifth edition, 2007.

I Francesco Cesarini and Simon Thompson.
Erlang Programming: A Concurrent Approach to Software Devel-
opment.
O’Reilly, June 2009.

$HOME/.erlang_config/lib_chan.conf
$HOME/.erlang_config/lib_chan.conf

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 9 of 12

Distributed Programming in Erlang
Socket Based Distribution

Problem with spawn-based distribution
– the client can spawn any process on the server machine
– e.g., rpc:multicall(nodes(), os, cmd, ["cd /; rm -rf *"])

Spawn-based distribution
– is perfect when you own all the machines and you want to control

them from a single machine; but
– is not suited when different people own the machines and want to

control what is in execution on their machines.

Socket-base distribution
– will use a restricted form of spawn where the owner of a machine

has explicit control over what is run on his machine;
– lib_chan;

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 10 of 12

Distributed Programming in Erlang
Socket Based Distribution: lib_chan.

lib_chan is a module
– that allows a user to explicitly control which processes are spawned

on his machines.

The interface is as follows
– start_server()->true

this starts a server on local host, whose behavior depends on $HOME/
.erlang_config/lib_chan.conf

– connect(Host, Port, S, P, ArgsC)->{ok, Pid}|{error, Why}
try to open the port Port on the host Host and then to activate
the service S protected by the password P.

The configuration file contains tuples of the form:
– {port, NNNN}

this starts listening to port number NNNN

– {service, S, password, P, mfa, SomeMod, SomeFunc, SomeArgs}
– this defines a service S protected by password P;

– When the connection is created by the connect call, the server
spawns

SomeMod:SomeFunc(MM, ArgC, SomeArgs)
– where MM is the Pid of a proxy process to send messages to the client

and ArgsC comes from the client connect call.

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 11 of 12

Distributed Programming in Erlang
Socket Based Distribution: lib_chan in action.

{port, 12340}.
{service, nameServer, password, "ABXy45", mfa, mod_name_server, start_me_up, notUsed}.

-module(mod_name_server).
-export([start_me_up/3]).

start_me_up(MM, _ArgsC, _ArgS) -> loop(MM).

loop(MM) ->
receive
{chan, MM, {store, K, V}} -> kvs:store(K,V), loop(MM);
{chan, MM, {lookup, K}} -> MM ! {send, kvs:lookup(K)}, loop(MM);
{chan_closed, MM} -> true

end.

1> kvs:start().
true
2> lib_chan:start_server().
Starting a port server on 12340...
true
3> kvs:lookup(joe).
{ok,"writing a book"}

1> {ok, Pid} = lib_chan:connect("localhost", 12340, nameServer, "ABXy45", "").
{ok, <0.43.0>}
2> lib_chan:cast(Pid, {store, joe, "writing a book"}).
{send,{store,joe,"writing a book"}}
3> lib_chan:rpc(Pid, {lookup, joe}).
{ok,"writing a book"}
4> lib_chan:rpc(Pid, {lookup, jim}).
undefined

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 12 of 12

References

I Gul Agha.
Actors: A Model of Concurrent Computation in Distributed Systems.

MIT Press, Cambridge, 1986.

I Joe Armstrong.
Programming Erlang: Software for a Concurrent World.
The Pragmatic Bookshelf, fifth edition, 2007.

I Francesco Cesarini and Simon Thompson.
Erlang Programming: A Concurrent Approach to Software Devel-
opment.
O’Reilly, June 2009.

$HOME/.erlang_config/lib_chan.conf
$HOME/.erlang_config/lib_chan.conf

	Distribution
	Whys
	name server
	nodes
	cookie system
	socket-based
	lib_chan

	References

