
+, -, * and / have the usual meaning except they work on natural numbers, so they can't
return neither a negative number (an exception should be raised) nor a real number (the
division returns the result trunked to the integral part)
the implementation for +, -, * and / can't use any traditional arithmetic operator
convert and eval connect your natural numbers with the integers provided by OCaML, i.e.,
the former converts an integer into your internal representation and the later does the vice
versa.
probably you will have to implement more operators (e.g., something to compare your numbers
could be useful to implement the other operators)

Exam of Programming Languages
29 January 2015

Disclaimer. Note that to have a running solution for an exercise is not enough: you need a well-
cooked solution that proves your ability to use what explained during the classes. All the exercises have
the same value: 11; Exercise are valued separately and it is necessary to get at least 6 points each
exercise to pass the exams, i.e., 18 achieved with only 2 exercises means to fail the exam.

Exercise OCaML/ML: Playing with Numbers.

Number theory taught us that the natural numbers can be expressed through a symbol and the
successive operator as in 0, succ(0), succ(succ(0)), ...

After that consideration it is possible to build an abstract data type implementing the natural numbers
algebra with its basic operations (+, -, * and /) without using any pre-implemented arithmetic.

The exercise consists of implementing such an abstract data type as a module compliant to the
following interface

module type NaturalI =
 sig
 type natural
 exception NegativeNumber
 exception DivisionByZero

 val (+) : natural -> natural -> natural
 val (-) : natural -> natural -> natural
 val (*) : natural -> natural -> natural
 val (/) : natural -> natural -> natural

 val eval : natural -> int
 val convert : int -> natural
 end;;

Please note that

To be an acceptable solution your module should compile as follows:

[10:37]cazzola@surtur:~/lp/ocaml>ocamlc -c NaturalI.mli
[10:37]cazzola@surtur:~/lp/ocaml>ocamlc -c «file».ml (* This is your file *)
[10:37]cazzola@surtur:~/lp/ocaml>ocamlc -o main «file».cmo main.ml

where the main.ml file is:

open Natural.N ;;

let main () =
 Printf.printf " 7 + 18 :- %3d\n" (eval ((convert 7) + (convert 18))) ;
 Printf.printf "125 + 252 :- %3d\n" (eval ((convert 125) + (convert 252))) ;
 Printf.printf " 25 - 18 :- %3d\n" (eval ((convert 25) - (convert 18))) ;
 try
 Printf.printf " 18 - 25 :- %3d\n" (eval ((convert 18) - (convert 25)))
 with NegativeNumber -> Printf.printf "Exception: NegativeNumber\n" ;
 Printf.printf " 5 * 3 :- %3d\n" (eval ((convert 5) * (convert 3))) ;
 Printf.printf " 25 * 7 :- %3d\n" (eval ((convert 25) * (convert 7))) ;
 Printf.printf "125 / 25 :- %3d\n" (eval ((convert 125) / (convert 25))) ;
 Printf.printf "125 / 23 :- %3d\n" (eval ((convert 125) / (convert 23))) ;
 try
 Printf.printf " 1 / 0 :- %3d\n" (eval ((convert 1) / (convert 0)))
 with DivisionByZero -> Printf.printf "Exception: DivisionByZero\n" ;
 Printf.printf " 1 / 2 :- %3d\n" (eval ((convert 1) / (convert 2))) ;
 Printf.printf " 0 / 100 :- %3d\n" (eval ((convert 0) / (convert 100))) ;;

Walter Cazzola

 Home Page
 ADAPT Lab.
 Curriculum Vitae
 Research Topic

Didactics

 LP 2014-15
 PA 2014-15
 TSP 2014-15

 PhD: ADT Curricula

 LP 2013-14
 PA 2013-14
 TSP 2013-15

 Thesis Proposals

 How to Change Degree Program

Publications

Funded Projects

Research Projects

Related Events

the values are the numbers from 1 to m,
the total number of permutations is mⁿ and
the output should be lexicographically ordered

let() = main() ;;

The following is the expected behavior:

[10:42]cazzola@surtur:~/lp/ocaml>main
 7 + 18 :- 25
125 + 252 :- 377
 25 - 18 :- 7
Exception: NegativeNumber
 5 * 3 :- 15
 25 * 7 :- 175
125 / 25 :- 5
125 / 23 :- 5
Exception: DivisionByZero
 1 / 2 :- 0
 0 / 100 :- 0

Exercise Erlang: Distributed Combinatorics.

With the expression permutation of m possible values took n by n with repetitions we refer to
a tuple of n elements extracted from the m available (considering that the extracted value is not
removed from the extractable set of values). Particularly interesting is the problem of generating all the
possible permutations where the generated tuple set contains all and only the possible permutations.
With a sequential language it is a pretty easy exercises even if it can get slow on the increasing of n
and m.

This exercise consists in implementing a distributed version of the permutations generator whose
master/slave architecture is composed of one master and n slaves. We have a slave (module
generator) for each element of the tuple and if you consider the permutation set as a table each
slave is in charge of generating a column of the table. All slaves are identical. The master (module
combinator) will spawn the slaves, collects the data and coalesce the collected data in the
permutations tuple. The only function the master exports is start that receives the n and m
information and then starts the whole computation.

Note that

The following is an example of the expected behavior:

[17:53]cazzola@surtur:~/lp/erlang>erl
3> combinator:start(3,3).
true
1, 1, 1
1, 1, 2
1, 1, 3
1, 2, 1
1, 2, 2
1, 2, 3
1, 3, 1
1, 3, 2
1, 3, 3
2, 1, 1
2, 1, 2
2, 1, 3
2, 2, 1
2, 2, 2
2, 2, 3
2, 3, 1
2, 3, 2
2, 3, 3
3, 1, 1
3, 1, 2
3, 1, 3
3, 2, 1
3, 2, 2
3, 2, 3
3, 3, 1
3, 3, 2
3, 3, 3
4> combinator:start(3,2).
1, 1, 1
1, 1, 2
1, 2, 1
1, 2, 2
2, 1, 1
2, 1, 2

1. is plain text using a character set such as ASCII or Unicode,
2. consists of records (one record per line),
3. with the records divided into fields separated by commas, any character can be part of a field

including the comma in that case the whole field is quoted
4. where every record has the same sequence of fields,
5. often the first record has the special role of header and describes the various data

each column of the table has a fixed size large as the largest element in the field plus two white
spaces
each column is separated from the next by a "|" symbol
data inside columns are left-aligned
a "|" symbol opens and closes every row of the table
the header is printed as any other row of the file apart that it is separated from the rest of the
table by an horizontal row made by "-" symbols.
an horizontal row made by "-" symbols opens and closes the table
the horizontal rows have all the same lenght given by the size of each column plus the column
separators.

2, 2, 1
2, 2, 2
5> combinator:start(2,3).
1, 1
1, 2
1, 3
2, 1
2, 2
2, 3
3, 1
3, 2
3, 3
6> combinator:start(2,2)
1, 1
1, 2
2, 1
2, 2

All the solutions not conform to the specification will be considered wrong.

Tables' Pretty Printing.

A comma-separated values (CSV) file stores tabular data (numbers and text) in plain-text form. Plain
text means that the file is a sequence of characters, with no data that has to be interpreted as binary
numbers. A CSV file consists of any number of records, separated by line breaks of some kind; each
record consists of fields, separated by a comma. All records have an identical sequence of fields.

CSV is not a single, well-defined format. Rather, in practice the term CSV refers to any file that

Basically the data contained in a CSV file are tables.

The exercise consists of writing a program that uses parser combinators to parse and translate a pool
of CSV files. The content of each CSV file must be pretty printed as an ASCII table with the following
characteristics:

The following is an example of expected behavior (the test files are books.csv and languages.csv)

[20:31]cazzola@surtur:~/lp/scala>scala CSVParserCLI books.csv languages.csv

| Author 1 | Author 2 | Title | Year | Publisher |

J. Hickey		Introduction to OCaML	2007	Cambridge Press
J. Armstrong		Programming Erlang	2011	Pragmatic Bookshelf
D. Wampler	A. Payne	Programming Scala	2009	O'Really
M. Lutz		Learning Python	2007	O'Reilly
M. Pilgrim		Dive into Python 3	2009	Apress*
R. Laddad		AspectJ in Action	2003	Manning

| Language | Inventors | Year | Version |

Python	Guido Van Rossum	1989	3.4.2
Java	J. Gosling, M. Sheridan & P. Naughton	1995	8.0
Erlang	J. Armstrong, R. Virding & M. Williams	1986	5.10.4
Scala	Martin Odersky	2001	2.11.2
OCaML	X. Leroy, J. Vouillon, D. Doligez & D. Rémy	1996	4.02.1
AspectJ	Gregor Kiczales	2001	1.8
Fortran	John W. Backus	1957	2008

Last Modified: Wed, 04 Feb 2015 17:24:37 ADAPT Lab.

