
Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 1 of 14

Errors in Concurrency

Walter Cazzola

Dipartimento di Informatica
Università degli Studi di Milano

e-mail: cazzola@di.unimi.it
twitter: @w_cazzola

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 2 of 14

Errors in Concurrent Programs
Error Handling on Exit

When two processes are related
– the errors of one affect the behavior of the other process;
– the BIF link function helps to monitor.

A is linked to B

A B

7B dies

A B

{’EXIT’, B, Why}

an exit signal is sent to A
A

If A is linked to B
– when B dies an exit signal is sent to A;
– the signal is a message like {’EXIT’, Pid, _}.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 3 of 14

Errors in Concurrent Programs
Error Handling on Exit

-module(dies).
-export([on_exit/2]).

on_exit(Pid, Fun) ->
spawn(fun() ->

process_flag(trap_exit, true),
link(Pid),
receive
{’EXIT’, Pid, Why} -> Fun(Why)

end
end).

1> F = fun() -> receive X -> list_to_atom(X) end end.
#Fun<erl_eval.20.67289768>
2> Pid = spawn(F).
<0.35.0>
3> dies:on_exit(Pid, fun(Why) -> io:format("~p died with:~p~n",[Pid, Why]) end).
<0.37.0>
4> Pid ! hello.
<0.35.0> died with:{badarg,[{erlang,list_to_atom,[hello]}]}

=ERROR REPORT==== 9-Nov-2011::17:50:20 ===
Error in process <0.35.0> with exit value: badarg,[{erlang,list_to_atom,[hello]}]}
hello

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 4 of 14

Errors in Concurrent Programs
Details of Error Handling

Links
– defines an error propagation path between two processes;
– if a process dies an exit signal is sent to the other process;
– the set of processes linked to a given process is called link set.

Exit Signals
– they are generated by a process when it dies;
– signals are broadcast to all processes in the link set of the dying

process;
– the exit signal contains an argument explaining why the process died

(exit(Reason) or implicitly set).
– when a process «naturally dies» the exit reason is normal;
– exit signals can be explicitly sent via exit(Pid, X): the sender does

not die («fake death»).

System Processes
– a non system process that receives a exit signal dies too;
– a system process receives the signal as a normal message in its

mailbox;
– process_flag(trap_exit, true) transform a process into a system

process.

Kevin Manca

Kevin Manca

Kevin Manca



Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 1 of 14

Errors in Concurrency

Walter Cazzola

Dipartimento di Informatica
Università degli Studi di Milano

e-mail: cazzola@di.unimi.it
twitter: @w_cazzola

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 2 of 14

Errors in Concurrent Programs
Error Handling on Exit

When two processes are related
– the errors of one affect the behavior of the other process;
– the BIF link function helps to monitor.

A is linked to B

A B

7B dies

A B

{’EXIT’, B, Why}

an exit signal is sent to A
A

If A is linked to B
– when B dies an exit signal is sent to A;
– the signal is a message like {’EXIT’, Pid, _}.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 3 of 14

Errors in Concurrent Programs
Error Handling on Exit

-module(dies).
-export([on_exit/2]).

on_exit(Pid, Fun) ->
spawn(fun() ->

process_flag(trap_exit, true),
link(Pid),
receive
{’EXIT’, Pid, Why} -> Fun(Why)

end
end).

1> F = fun() -> receive X -> list_to_atom(X) end end.
#Fun<erl_eval.20.67289768>
2> Pid = spawn(F).
<0.35.0>
3> dies:on_exit(Pid, fun(Why) -> io:format("~p died with:~p~n",[Pid, Why]) end).
<0.37.0>
4> Pid ! hello.
<0.35.0> died with:{badarg,[{erlang,list_to_atom,[hello]}]}

=ERROR REPORT==== 9-Nov-2011::17:50:20 ===
Error in process <0.35.0> with exit value: badarg,[{erlang,list_to_atom,[hello]}]}
hello

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 4 of 14

Errors in Concurrent Programs
Details of Error Handling

Links
– defines an error propagation path between two processes;
– if a process dies an exit signal is sent to the other process;
– the set of processes linked to a given process is called link set.

Exit Signals
– they are generated by a process when it dies;
– signals are broadcast to all processes in the link set of the dying

process;
– the exit signal contains an argument explaining why the process died

(exit(Reason) or implicitly set).
– when a process «naturally dies» the exit reason is normal;
– exit signals can be explicitly sent via exit(Pid, X): the sender does

not die («fake death»).

System Processes
– a non system process that receives a exit signal dies too;
– a system process receives the signal as a normal message in its

mailbox;
– process_flag(trap_exit, true) transform a process into a system

process.

Kevin Manca

Kevin Manca

Kevin Manca



Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 1 of 14

Errors in Concurrency

Walter Cazzola

Dipartimento di Informatica
Università degli Studi di Milano

e-mail: cazzola@di.unimi.it
twitter: @w_cazzola

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 2 of 14

Errors in Concurrent Programs
Error Handling on Exit

When two processes are related
– the errors of one affect the behavior of the other process;
– the BIF link function helps to monitor.

A is linked to B

A B

7B dies

A B

{’EXIT’, B, Why}

an exit signal is sent to A
A

If A is linked to B
– when B dies an exit signal is sent to A;
– the signal is a message like {’EXIT’, Pid, _}.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 3 of 14

Errors in Concurrent Programs
Error Handling on Exit

-module(dies).
-export([on_exit/2]).

on_exit(Pid, Fun) ->
spawn(fun() ->

process_flag(trap_exit, true),
link(Pid),
receive
{’EXIT’, Pid, Why} -> Fun(Why)

end
end).

1> F = fun() -> receive X -> list_to_atom(X) end end.
#Fun<erl_eval.20.67289768>
2> Pid = spawn(F).
<0.35.0>
3> dies:on_exit(Pid, fun(Why) -> io:format("~p died with:~p~n",[Pid, Why]) end).
<0.37.0>
4> Pid ! hello.
<0.35.0> died with:{badarg,[{erlang,list_to_atom,[hello]}]}

=ERROR REPORT==== 9-Nov-2011::17:50:20 ===
Error in process <0.35.0> with exit value: badarg,[{erlang,list_to_atom,[hello]}]}
hello

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 4 of 14

Errors in Concurrent Programs
Details of Error Handling

Links
– defines an error propagation path between two processes;
– if a process dies an exit signal is sent to the other process;
– the set of processes linked to a given process is called link set.

Exit Signals
– they are generated by a process when it dies;
– signals are broadcast to all processes in the link set of the dying

process;
– the exit signal contains an argument explaining why the process died

(exit(Reason) or implicitly set).
– when a process «naturally dies» the exit reason is normal;
– exit signals can be explicitly sent via exit(Pid, X): the sender does

not die («fake death»).

System Processes
– a non system process that receives a exit signal dies too;
– a system process receives the signal as a normal message in its

mailbox;
– process_flag(trap_exit, true) transform a process into a system

process.

Kevin Manca

Kevin Manca

Kevin Manca



Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 1 of 14

Errors in Concurrency

Walter Cazzola

Dipartimento di Informatica
Università degli Studi di Milano

e-mail: cazzola@di.unimi.it
twitter: @w_cazzola

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 2 of 14

Errors in Concurrent Programs
Error Handling on Exit

When two processes are related
– the errors of one affect the behavior of the other process;
– the BIF link function helps to monitor.

A is linked to B

A B

7B dies

A B

{’EXIT’, B, Why}

an exit signal is sent to A
A

If A is linked to B
– when B dies an exit signal is sent to A;
– the signal is a message like {’EXIT’, Pid, _}.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 3 of 14

Errors in Concurrent Programs
Error Handling on Exit

-module(dies).
-export([on_exit/2]).

on_exit(Pid, Fun) ->
spawn(fun() ->

process_flag(trap_exit, true),
link(Pid),
receive
{’EXIT’, Pid, Why} -> Fun(Why)

end
end).

1> F = fun() -> receive X -> list_to_atom(X) end end.
#Fun<erl_eval.20.67289768>
2> Pid = spawn(F).
<0.35.0>
3> dies:on_exit(Pid, fun(Why) -> io:format("~p died with:~p~n",[Pid, Why]) end).
<0.37.0>
4> Pid ! hello.
<0.35.0> died with:{badarg,[{erlang,list_to_atom,[hello]}]}

=ERROR REPORT==== 9-Nov-2011::17:50:20 ===
Error in process <0.35.0> with exit value: badarg,[{erlang,list_to_atom,[hello]}]}
hello

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 4 of 14

Errors in Concurrent Programs
Details of Error Handling

Links
– defines an error propagation path between two processes;
– if a process dies an exit signal is sent to the other process;
– the set of processes linked to a given process is called link set.

Exit Signals
– they are generated by a process when it dies;
– signals are broadcast to all processes in the link set of the dying

process;
– the exit signal contains an argument explaining why the process died

(exit(Reason) or implicitly set).
– when a process «naturally dies» the exit reason is normal;
– exit signals can be explicitly sent via exit(Pid, X): the sender does

not die («fake death»).

System Processes
– a non system process that receives a exit signal dies too;
– a system process receives the signal as a normal message in its

mailbox;
– process_flag(trap_exit, true) transform a process into a system

process.

Kevin Manca

Kevin Manca

Kevin Manca



Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 5 of 14

Errors in Concurrent Programs
Details of Error Handling (Cont’d)

Receiver’s Behavior
trap_exit Exit Signal Action

true kill dies & broadcasts it to its link set
true X adds {’EXIT’, Pid, X} to the mailbox
false normal continues & the signal vanishes
false kill dies & broadcasts it to its link set
false X dies & broadcasts it to its link set

Alternatives
– I don’t care if a process I create crashes.

Pid = spawn(fun() ->... end)

– I want to die if a process I create crashes.
Pid = spawn_link(fun() ->... end)

– I want to handle errors if a process I create crashes
process_flag(trap_exits, true),
Pid = spawn_link(fun() ->... end).

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 6 of 14

Errors in Concurrent Programs
Going into Details of Error Handling

-module(edemo1).
-export([start/2]).

start(Bool, M) ->
A = spawn(fun() -> a() end),
B = spawn(fun() -> b(A, Bool) end),
C = spawn(fun() -> c(B, M) end),
sleep(1000), status(b, B), status(c, C).

a() -> process_flag(trap_exit, true), wait(a).
b(A, Bool) -> process_flag(trap_exit, Bool), link(A), wait(b).
c(B, M) -> link(B),
case M of
{die, Reason} -> exit(Reason);
{divide, N} -> 1/N, wait(c);
normal -> true

end.

This starts 3 processes: A, B and C
– A will trap exits and watch for exits from B;
– B will trap exits if Bool is true and
– C will die with exit reason M.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 7 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

wait(Prog) ->
receive
Any ->

io:format("Process ~p received ~p~n", [Prog, Any]),
wait(Prog)

end.

sleep(T) ->
receive
after T -> true
end.

status(Name, Pid) ->
case erlang:is_process_alive(Pid) of
true -> io:format("process ~p (~p) is alive~n", [Name, Pid]);
false -> io:format("process ~p (~p) is dead~n", [Name, Pid])

end.

This starts 3 processes: A, B and C
– wait/1 just prints any message it receives;
– sleep/1 awakes the invoking process after a period of time;
– status/2 prints the aliveness of the invoing process.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 8 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

1> edemo1:start(false, {die,normal}).
process b (<0.48.0>) is alive
process c (<0.49.0>) is dead
ok

A is linked to B B is linked to C

A B C

7exit(normal)

A is linked to B

A B

– B is not a system process;
– when C dies with normal signal, B doesn’t die.

Kevin

Kevin
Privileged (System process)

Kevin

Kevin Manca



Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 5 of 14

Errors in Concurrent Programs
Details of Error Handling (Cont’d)

Receiver’s Behavior
trap_exit Exit Signal Action

true kill dies & broadcasts it to its link set
true X adds {’EXIT’, Pid, X} to the mailbox
false normal continues & the signal vanishes
false kill dies & broadcasts it to its link set
false X dies & broadcasts it to its link set

Alternatives
– I don’t care if a process I create crashes.

Pid = spawn(fun() ->... end)

– I want to die if a process I create crashes.
Pid = spawn_link(fun() ->... end)

– I want to handle errors if a process I create crashes
process_flag(trap_exits, true),
Pid = spawn_link(fun() ->... end).

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 6 of 14

Errors in Concurrent Programs
Going into Details of Error Handling

-module(edemo1).
-export([start/2]).

start(Bool, M) ->
A = spawn(fun() -> a() end),
B = spawn(fun() -> b(A, Bool) end),
C = spawn(fun() -> c(B, M) end),
sleep(1000), status(b, B), status(c, C).

a() -> process_flag(trap_exit, true), wait(a).
b(A, Bool) -> process_flag(trap_exit, Bool), link(A), wait(b).
c(B, M) -> link(B),
case M of
{die, Reason} -> exit(Reason);
{divide, N} -> 1/N, wait(c);
normal -> true

end.

This starts 3 processes: A, B and C
– A will trap exits and watch for exits from B;
– B will trap exits if Bool is true and
– C will die with exit reason M.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 7 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

wait(Prog) ->
receive
Any ->

io:format("Process ~p received ~p~n", [Prog, Any]),
wait(Prog)

end.

sleep(T) ->
receive
after T -> true
end.

status(Name, Pid) ->
case erlang:is_process_alive(Pid) of
true -> io:format("process ~p (~p) is alive~n", [Name, Pid]);
false -> io:format("process ~p (~p) is dead~n", [Name, Pid])

end.

This starts 3 processes: A, B and C
– wait/1 just prints any message it receives;
– sleep/1 awakes the invoking process after a period of time;
– status/2 prints the aliveness of the invoing process.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 8 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

1> edemo1:start(false, {die,normal}).
process b (<0.48.0>) is alive
process c (<0.49.0>) is dead
ok

A is linked to B B is linked to C

A B C

7exit(normal)

A is linked to B

A B

– B is not a system process;
– when C dies with normal signal, B doesn’t die.

Kevin

Kevin
Privileged (System process)

Kevin

Kevin Manca



Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 5 of 14

Errors in Concurrent Programs
Details of Error Handling (Cont’d)

Receiver’s Behavior
trap_exit Exit Signal Action

true kill dies & broadcasts it to its link set
true X adds {’EXIT’, Pid, X} to the mailbox
false normal continues & the signal vanishes
false kill dies & broadcasts it to its link set
false X dies & broadcasts it to its link set

Alternatives
– I don’t care if a process I create crashes.

Pid = spawn(fun() ->... end)

– I want to die if a process I create crashes.
Pid = spawn_link(fun() ->... end)

– I want to handle errors if a process I create crashes
process_flag(trap_exits, true),
Pid = spawn_link(fun() ->... end).

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 6 of 14

Errors in Concurrent Programs
Going into Details of Error Handling

-module(edemo1).
-export([start/2]).

start(Bool, M) ->
A = spawn(fun() -> a() end),
B = spawn(fun() -> b(A, Bool) end),
C = spawn(fun() -> c(B, M) end),
sleep(1000), status(b, B), status(c, C).

a() -> process_flag(trap_exit, true), wait(a).
b(A, Bool) -> process_flag(trap_exit, Bool), link(A), wait(b).
c(B, M) -> link(B),
case M of
{die, Reason} -> exit(Reason);
{divide, N} -> 1/N, wait(c);
normal -> true

end.

This starts 3 processes: A, B and C
– A will trap exits and watch for exits from B;
– B will trap exits if Bool is true and
– C will die with exit reason M.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 7 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

wait(Prog) ->
receive
Any ->

io:format("Process ~p received ~p~n", [Prog, Any]),
wait(Prog)

end.

sleep(T) ->
receive
after T -> true
end.

status(Name, Pid) ->
case erlang:is_process_alive(Pid) of
true -> io:format("process ~p (~p) is alive~n", [Name, Pid]);
false -> io:format("process ~p (~p) is dead~n", [Name, Pid])

end.

This starts 3 processes: A, B and C
– wait/1 just prints any message it receives;
– sleep/1 awakes the invoking process after a period of time;
– status/2 prints the aliveness of the invoing process.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 8 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

1> edemo1:start(false, {die,normal}).
process b (<0.48.0>) is alive
process c (<0.49.0>) is dead
ok

A is linked to B B is linked to C

A B C

7exit(normal)

A is linked to B

A B

– B is not a system process;
– when C dies with normal signal, B doesn’t die.

Kevin

Kevin
Privileged (System process)

Kevin

Kevin Manca



Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 5 of 14

Errors in Concurrent Programs
Details of Error Handling (Cont’d)

Receiver’s Behavior
trap_exit Exit Signal Action

true kill dies & broadcasts it to its link set
true X adds {’EXIT’, Pid, X} to the mailbox
false normal continues & the signal vanishes
false kill dies & broadcasts it to its link set
false X dies & broadcasts it to its link set

Alternatives
– I don’t care if a process I create crashes.

Pid = spawn(fun() ->... end)

– I want to die if a process I create crashes.
Pid = spawn_link(fun() ->... end)

– I want to handle errors if a process I create crashes
process_flag(trap_exits, true),
Pid = spawn_link(fun() ->... end).

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 6 of 14

Errors in Concurrent Programs
Going into Details of Error Handling

-module(edemo1).
-export([start/2]).

start(Bool, M) ->
A = spawn(fun() -> a() end),
B = spawn(fun() -> b(A, Bool) end),
C = spawn(fun() -> c(B, M) end),
sleep(1000), status(b, B), status(c, C).

a() -> process_flag(trap_exit, true), wait(a).
b(A, Bool) -> process_flag(trap_exit, Bool), link(A), wait(b).
c(B, M) -> link(B),
case M of
{die, Reason} -> exit(Reason);
{divide, N} -> 1/N, wait(c);
normal -> true

end.

This starts 3 processes: A, B and C
– A will trap exits and watch for exits from B;
– B will trap exits if Bool is true and
– C will die with exit reason M.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 7 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

wait(Prog) ->
receive
Any ->

io:format("Process ~p received ~p~n", [Prog, Any]),
wait(Prog)

end.

sleep(T) ->
receive
after T -> true
end.

status(Name, Pid) ->
case erlang:is_process_alive(Pid) of
true -> io:format("process ~p (~p) is alive~n", [Name, Pid]);
false -> io:format("process ~p (~p) is dead~n", [Name, Pid])

end.

This starts 3 processes: A, B and C
– wait/1 just prints any message it receives;
– sleep/1 awakes the invoking process after a period of time;
– status/2 prints the aliveness of the invoing process.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 8 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

1> edemo1:start(false, {die,normal}).
process b (<0.48.0>) is alive
process c (<0.49.0>) is dead
ok

A is linked to B B is linked to C

A B C

7exit(normal)

A is linked to B

A B

– B is not a system process;
– when C dies with normal signal, B doesn’t die.

Kevin

Kevin
Privileged (System process)

Kevin

Kevin Manca



Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 9 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

1> edemo1:start(false, {die, abc}).
Process a received {’EXIT’,<0.40.0>,abc}
process b (<0.40.0>) is dead
process c (<0.41.0>) is dead
ok

A is linked to B B is linked to C

A B C

7exit(abc)

A is linked to B

A B

7exit(abc)

– B is not a system process;
– when C evaluates exit(abc), process B dies;
– when B exits rebroadcasts the unmodified exit signal to its link set
– A traps the exit signal and convert it to the error message

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 10 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

6> edemo1:start(false, {divide,0}).
Process a received {’EXIT’,<0.56.0>,{badarith,[{edemo1,c,2}]}}

=ERROR REPORT==== 11-Nov-2011::18:03:29 ===
Error in process <0.57.0> with exit value: {badarith,[{edemo1,c,2}]}

process b (<0.56.0>) is dead
process c (<0.57.0>) is dead
ok

A is linked to B B is linked to C

A B C

7{badarith, . . . }

A is linked to B

A B

7{badarith, . . . }

– B is not a system process;
– when C tries to divide by zero an error occurs and C dies with a

{badarith, ...} error;
– B receives this and dies and the error is propagated to A.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 11 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

1> edemo1:start(false, {die, kill}).
Process a received {’EXIT’,<0.60.0>,killed}
process b (<0.60.0>) is dead
process c (<0.61.0>) is dead
ok

A is linked to B B is linked to C

A B C

7exit(kill)

A is linked to B

A B

7exit(killed)

– B is not a system process;
– the exit reason kill causes B to die, and the error is propagated to

its link set.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 12 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

8> edemo1:start(true, {divide,0}).
Process b received {’EXIT’,<0.65.0>,{badarith,[{edemo1,c,2}]}}

=ERROR REPORT==== 11-Nov-2011::18:16:47 ===
Error in process <0.65.0> with exit value: {badarith,[{edemo1,c,2}]}

process b (<0.64.0>) is alive
process c (<0.65.0>) is dead
ok

A is linked to B B is linked to C

A B C

7{badarith, . . . }

A is linked to B

A B

– B is a system process;
– in all cases, B traps the error;
– the error is never propagated to A.



Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 9 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

1> edemo1:start(false, {die, abc}).
Process a received {’EXIT’,<0.40.0>,abc}
process b (<0.40.0>) is dead
process c (<0.41.0>) is dead
ok

A is linked to B B is linked to C

A B C

7exit(abc)

A is linked to B

A B

7exit(abc)

– B is not a system process;
– when C evaluates exit(abc), process B dies;
– when B exits rebroadcasts the unmodified exit signal to its link set
– A traps the exit signal and convert it to the error message

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 10 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

6> edemo1:start(false, {divide,0}).
Process a received {’EXIT’,<0.56.0>,{badarith,[{edemo1,c,2}]}}

=ERROR REPORT==== 11-Nov-2011::18:03:29 ===
Error in process <0.57.0> with exit value: {badarith,[{edemo1,c,2}]}

process b (<0.56.0>) is dead
process c (<0.57.0>) is dead
ok

A is linked to B B is linked to C

A B C

7{badarith, . . . }

A is linked to B

A B

7{badarith, . . . }

– B is not a system process;
– when C tries to divide by zero an error occurs and C dies with a

{badarith, ...} error;
– B receives this and dies and the error is propagated to A.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 11 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

1> edemo1:start(false, {die, kill}).
Process a received {’EXIT’,<0.60.0>,killed}
process b (<0.60.0>) is dead
process c (<0.61.0>) is dead
ok

A is linked to B B is linked to C

A B C

7exit(kill)

A is linked to B

A B

7exit(killed)

– B is not a system process;
– the exit reason kill causes B to die, and the error is propagated to

its link set.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 12 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

8> edemo1:start(true, {divide,0}).
Process b received {’EXIT’,<0.65.0>,{badarith,[{edemo1,c,2}]}}

=ERROR REPORT==== 11-Nov-2011::18:16:47 ===
Error in process <0.65.0> with exit value: {badarith,[{edemo1,c,2}]}

process b (<0.64.0>) is alive
process c (<0.65.0>) is dead
ok

A is linked to B B is linked to C

A B C

7{badarith, . . . }

A is linked to B

A B

– B is a system process;
– in all cases, B traps the error;
– the error is never propagated to A.



Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 9 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

1> edemo1:start(false, {die, abc}).
Process a received {’EXIT’,<0.40.0>,abc}
process b (<0.40.0>) is dead
process c (<0.41.0>) is dead
ok

A is linked to B B is linked to C

A B C

7exit(abc)

A is linked to B

A B

7exit(abc)

– B is not a system process;
– when C evaluates exit(abc), process B dies;
– when B exits rebroadcasts the unmodified exit signal to its link set
– A traps the exit signal and convert it to the error message

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 10 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

6> edemo1:start(false, {divide,0}).
Process a received {’EXIT’,<0.56.0>,{badarith,[{edemo1,c,2}]}}

=ERROR REPORT==== 11-Nov-2011::18:03:29 ===
Error in process <0.57.0> with exit value: {badarith,[{edemo1,c,2}]}

process b (<0.56.0>) is dead
process c (<0.57.0>) is dead
ok

A is linked to B B is linked to C

A B C

7{badarith, . . . }

A is linked to B

A B

7{badarith, . . . }

– B is not a system process;
– when C tries to divide by zero an error occurs and C dies with a

{badarith, ...} error;
– B receives this and dies and the error is propagated to A.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 11 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

1> edemo1:start(false, {die, kill}).
Process a received {’EXIT’,<0.60.0>,killed}
process b (<0.60.0>) is dead
process c (<0.61.0>) is dead
ok

A is linked to B B is linked to C

A B C

7exit(kill)

A is linked to B

A B

7exit(killed)

– B is not a system process;
– the exit reason kill causes B to die, and the error is propagated to

its link set.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 12 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

8> edemo1:start(true, {divide,0}).
Process b received {’EXIT’,<0.65.0>,{badarith,[{edemo1,c,2}]}}

=ERROR REPORT==== 11-Nov-2011::18:16:47 ===
Error in process <0.65.0> with exit value: {badarith,[{edemo1,c,2}]}

process b (<0.64.0>) is alive
process c (<0.65.0>) is dead
ok

A is linked to B B is linked to C

A B C

7{badarith, . . . }

A is linked to B

A B

– B is a system process;
– in all cases, B traps the error;
– the error is never propagated to A.



Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 9 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

1> edemo1:start(false, {die, abc}).
Process a received {’EXIT’,<0.40.0>,abc}
process b (<0.40.0>) is dead
process c (<0.41.0>) is dead
ok

A is linked to B B is linked to C

A B C

7exit(abc)

A is linked to B

A B

7exit(abc)

– B is not a system process;
– when C evaluates exit(abc), process B dies;
– when B exits rebroadcasts the unmodified exit signal to its link set
– A traps the exit signal and convert it to the error message

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 10 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

6> edemo1:start(false, {divide,0}).
Process a received {’EXIT’,<0.56.0>,{badarith,[{edemo1,c,2}]}}

=ERROR REPORT==== 11-Nov-2011::18:03:29 ===
Error in process <0.57.0> with exit value: {badarith,[{edemo1,c,2}]}

process b (<0.56.0>) is dead
process c (<0.57.0>) is dead
ok

A is linked to B B is linked to C

A B C

7{badarith, . . . }

A is linked to B

A B

7{badarith, . . . }

– B is not a system process;
– when C tries to divide by zero an error occurs and C dies with a

{badarith, ...} error;
– B receives this and dies and the error is propagated to A.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 11 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

1> edemo1:start(false, {die, kill}).
Process a received {’EXIT’,<0.60.0>,killed}
process b (<0.60.0>) is dead
process c (<0.61.0>) is dead
ok

A is linked to B B is linked to C

A B C

7exit(kill)

A is linked to B

A B

7exit(killed)

– B is not a system process;
– the exit reason kill causes B to die, and the error is propagated to

its link set.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 12 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

8> edemo1:start(true, {divide,0}).
Process b received {’EXIT’,<0.65.0>,{badarith,[{edemo1,c,2}]}}

=ERROR REPORT==== 11-Nov-2011::18:16:47 ===
Error in process <0.65.0> with exit value: {badarith,[{edemo1,c,2}]}

process b (<0.64.0>) is alive
process c (<0.65.0>) is dead
ok

A is linked to B B is linked to C

A B C

7{badarith, . . . }

A is linked to B

A B

– B is a system process;
– in all cases, B traps the error;
– the error is never propagated to A.



Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 9 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

1> edemo1:start(false, {die, abc}).
Process a received {’EXIT’,<0.40.0>,abc}
process b (<0.40.0>) is dead
process c (<0.41.0>) is dead
ok

A is linked to B B is linked to C

A B C

7exit(abc)

A is linked to B

A B

7exit(abc)

– B is not a system process;
– when C evaluates exit(abc), process B dies;
– when B exits rebroadcasts the unmodified exit signal to its link set
– A traps the exit signal and convert it to the error message

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 10 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

6> edemo1:start(false, {divide,0}).
Process a received {’EXIT’,<0.56.0>,{badarith,[{edemo1,c,2}]}}

=ERROR REPORT==== 11-Nov-2011::18:03:29 ===
Error in process <0.57.0> with exit value: {badarith,[{edemo1,c,2}]}

process b (<0.56.0>) is dead
process c (<0.57.0>) is dead
ok

A is linked to B B is linked to C

A B C

7{badarith, . . . }

A is linked to B

A B

7{badarith, . . . }

– B is not a system process;
– when C tries to divide by zero an error occurs and C dies with a

{badarith, ...} error;
– B receives this and dies and the error is propagated to A.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 11 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

1> edemo1:start(false, {die, kill}).
Process a received {’EXIT’,<0.60.0>,killed}
process b (<0.60.0>) is dead
process c (<0.61.0>) is dead
ok

A is linked to B B is linked to C

A B C

7exit(kill)

A is linked to B

A B

7exit(killed)

– B is not a system process;
– the exit reason kill causes B to die, and the error is propagated to

its link set.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 12 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

8> edemo1:start(true, {divide,0}).
Process b received {’EXIT’,<0.65.0>,{badarith,[{edemo1,c,2}]}}

=ERROR REPORT==== 11-Nov-2011::18:16:47 ===
Error in process <0.65.0> with exit value: {badarith,[{edemo1,c,2}]}

process b (<0.64.0>) is alive
process c (<0.65.0>) is dead
ok

A is linked to B B is linked to C

A B C

7{badarith, . . . }

A is linked to B

A B

– B is a system process;
– in all cases, B traps the error;
– the error is never propagated to A.



Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 13 of 14

Errors in Concurrent Programs
Monitors: Unidirectional Links

Links are symmetric
– i.e., if A dies, B will sent an exit signal and vice versa;
– to prevent a process from dying, we have to make it a system

process that is not alway desirable.

A monitor is an asymmetric link
– if A monitors B and B dies A will be sent an exit signal but
– if A dies B will not be sent a signal.

A can create a monitor for B calling erlang:monitor(process, B)

– if B dies with exit reason Reason a ’DOWN’ message

{’DOWN’, Ref, process, B, Reason}

is sent to A (Ref is the reference to the monitor).
– the monitor is unidirectional:

– to repeat the above call will create several, independent monitors and
each one will send a ’DOWN’ message when B terminates.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 14 of 14

References

I Gul Agha.
Actors: A Model of Concurrent Computation in Distributed Systems.

MIT Press, Cambridge, 1986.

I Joe Armstrong.
Programming Erlang: Software for a Concurrent World.
The Pragmatic Bookshelf, fifth edition, 2007.

I Francesco Cesarini and Simon J. Thompson.
Erlang Programming: A Concurrent Approach to Software Devel-
opment.
O’Reilly, June 2009.



Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 13 of 14

Errors in Concurrent Programs
Monitors: Unidirectional Links

Links are symmetric
– i.e., if A dies, B will sent an exit signal and vice versa;
– to prevent a process from dying, we have to make it a system

process that is not alway desirable.

A monitor is an asymmetric link
– if A monitors B and B dies A will be sent an exit signal but
– if A dies B will not be sent a signal.

A can create a monitor for B calling erlang:monitor(process, B)

– if B dies with exit reason Reason a ’DOWN’ message

{’DOWN’, Ref, process, B, Reason}

is sent to A (Ref is the reference to the monitor).
– the monitor is unidirectional:

– to repeat the above call will create several, independent monitors and
each one will send a ’DOWN’ message when B terminates.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 14 of 14

References

I Gul Agha.
Actors: A Model of Concurrent Computation in Distributed Systems.

MIT Press, Cambridge, 1986.

I Joe Armstrong.
Programming Erlang: Software for a Concurrent World.
The Pragmatic Bookshelf, fifth edition, 2007.

I Francesco Cesarini and Simon J. Thompson.
Erlang Programming: A Concurrent Approach to Software Devel-
opment.
O’Reilly, June 2009.


	Error Handling
	links
	monitors

	References

