Actor Model
Conaurrency
in Erlana

Walter Cazzola

Actor Model Concurrency in Erlana
Processes and their interaction

Walter Cazzola

Dipartimento di Informatica
Universita deali Studi di Milano
e-mail: cazzola@di.unimi.it
twitter: @w_cazzola

Slide | of IS

Actor Model Concurrency
Traditional (Shared-State) Concurrency

Actor Model
Crsry Threads are the traditional way of offering concurrency
in Erlana
e @ — the execution of the proaram is split up into concurrently runnina
tasks;

— such tasks operate on shared memory

shared-state
Several proelems

— race conditions with update Oss

T (withdraw(16)) | T, (withdraw(10)) | Balance
if (balance - amount >= 0) 5€
if (balance - amount >= 0) 5€
balance -= amount; s5€
balance -= amount; -S€
— deadlocks
P P2
lock(A) lock(B)

lock(B) lock(A)

Erlana (and also Scala via the Akka lierary) taskes a different
approach to concurrency: the Actor Model.

Slide 22 of IS

Actor Model Concurtrency

Overview

Actor Model Each oBject is an actor.
Concurrency . R - o
in Erana — it has 8 maileox and a Behavior;

Welter Cazzola — actors communicate throuch messaces Bubfered in 8 maileox.

Computation is data-driven, upon receiving a message an actor
sheredstate — can send 3 NnuUmBer Of messaaes to Other actors;
— ean create a numeer of actors; and
— @an assume a different Behavior for desling with the next messace
N its mailzox
Note that,
— all communications are performed asynchronously;

— the sender does Not wait £Or a messaae 10O Be received upon sending
It;

— NO Guarantees agout the receiving order put they will eventually ge
delivered

— there is NnO shared state retween actors

— information agout internal state are requested/provided py (ESSEERS;
— also internal state manipulation happens throuagh messaces

— actors run concurrently and are implemented as lightweiaht user=
space threads

Slide 3 of IS

Actor Model Concurrency
Transaction Overview

Actor Model
Concurrency
in Erlang mailBox

| 2

Watter Cazzola

new
shared-state actor eZhaviog
¢
\
Tosk === M «
new task
’ T M
P 7 N+
’
, 1
& 1
4

’ 1
1

new message / | New actor
» Y
| m r rH |
Wi, M

Slide 4+ of IS

Concurrency in Erlang
Overview

Actor Model
Concurrency
in Erlana

\Walter Cazzola

Three rasic elements form the foundation for concurrency
— a BuUit-in function (spawn()) tO create new actors;

conaurrency

— an operator (1) to send a messaae to another actor; and

— 3 mechanism to pattern-match messaae from the actor’s mailzox

Slide S of IS

Concurrency in Erlang
Spawning New Processes.

Actor Model
Concurrency
in Erlang

Watter Cazzola

pid <0.36.0>

pid <0.36.0>

pid <0.37.0>

Pid = spawn(demo, loop, [3,al)

Slide £ of IS

Concurrency in Erlang
My First Erlana Process.

Actor Model -module(processes_demo) .

Concurrency
in Erlana -export([start/2, loop/2]1).

., start(N,A) -> spawn (processes_demo, loop, [N,A]).

loop(0,A) -> io:format("~p(~p) ~p~n", [A, self(), stopsl);
loop(N,A) -> io:format("~p(~p) ~p~n", [A, self(), N]), loop(N-1,A).

1> processes_demo:start(7,a),processes_demo:start(5,b),processes_demo:start(3,c).
a(<0.73.0>) 7

b(<0.74.0>)
a(<0.73.0>)
c(<0.75.0>)
b(<0.74.0>)
<0.75.0>
a(<0.73.0>)
c(<0.75.0>)
b(<0.74.0>)
a(<0.73.0>)
c(<0.75.0>)
b(<0.74.0>)
a(<0.73.0>)
c(<0.75.0>)
b(<0.74.0>)
a(<0.73.0>)
b(<0.74.0>)
a(<0.73.0>)
a(<0.73.0>)

A wWow

NFOWNRFRARWNWG

returns the PID of the process.

Slide 7 of IS

Concurrency in Erlang

Sending a8 Messace.

Actor Model Every actor is characterized By:

Concurrency .) o
in Erlana — an address which identifies the actor and

Watter C . .
srter Cozzole — 3 maileox where the delivered messages But not cleared yet are
stored;

Messages are sorted on arrival time (not on sending time).

To send a message to an actor:
— has to know the address (pid) of the target actor;

— to send its address (pid) to the taraet with the messace if a reply
is Nnecessary; and

— to use the send (1) primitive.

Exp; | Expa
— Exp; must identify an actor;

— Expy any valid Erlana expression; the result of the send expression
is the one of Expy;

— the sendinag never fails also when the target actor doesn’t'exist or
is unreachagle;

— the sending operation never Block the sender.

Slide 8 of IS

Concurrency in Erlana

R eceiving a8 Messace.

Actor Model The receiving operation uses pattern matching.
Concurrency
in Erlana

receive
Any -> do_something(Any)
end

— the actor pick out of the mailrox the oldest messaae matching Any;
— It is Blocked waiting for a messaae when the Queue is empty.

\Walter Cazzola

receive
{Pid, something} -> do_something(Pid)
end

— the actor tries to pick out the oldest messaae that matches
{Pid, something};
— if it fails the actor is Blocked waiting £or such a8 messace

receive

receive
Patterny [when GuardSeqy] -> Body; ;

Patternp [when GuardSegqn]l -> Bodyp
[after Expry -> Bodyy]
end

— rules definition and evaluation is Quite similar to the functions;

— when No pattern matches the mailgox the actor waits instead of
raising an exception,

— 10 avoid waiting forever the clause after can Be used, after Expry,
ms the actor is woke up.

Slide 9 of IS

Concurrency in Erlang
Converting Some Temperatures.

Actor Model
Concurrency

in Erlanc -module(converter).

-export([t_converter/0]).

Watter Cazzola
t_converter() ->

receive
{toF, C} -> io:format("~p °C is ~p °F~ [C, 32+Cx9/5]), t_converter();
{toC, F} -> io:format("~p °F is ~p °C~ [F, (F-32)%5/9]), t_converter()
{stop} -> io:format("Stoppin: Dk
Other -> io:format("Unknown: ~p~n", [Other]), t_converter(

end.

recelve 1> Pid = spawn(converter, t_converter, []).

4 <0.39.0>
2> Pid ! {toC, 32}.
32 °F is 0.0 °C
{toC,32}
3> Pid ! {toF, 100}.
100 °C is 212.0 °F
{toF,100}
4> Pid ! {stop}.
Stopping!
{stop}
5> Pid ! {toF, 100}.
{toF,100}

Slide IO o IS

Concurrency in Erlana

Caleulating Some Areas.

Actor Model
c -module(area_server)
oneurrency

i S -export([loop/0]).

Watter Cazzola Loop() '?
receive

{rectangle, Width, Ht} ->
io:format("Area of rectangle is ~p~n",[Width x Ht]),
loop();
{circle, R} ->
io:format("Area of circle is ~p~n", [3.14159 * R * R]),
loop();
Other ->
io:format("I don’t know how to react to the message ~p~n",[Other]),
receive loop()

heduling

1> Pid = spawn(fun area_server:loop/0).
<0.34.0>

2> Pid ! {rectangle, 30, 40}.

Area of rectangle is 1200

{rectangle, 30,40}

4> Pid ! {circle, 40}.

Area of circle is 5026.544

{circle, 40}

5> Pid ! {triangle,22,44}.

I don’t know what the area of a {triangle,22,44} is
{triangle, 22,44}

Slide Il of I5

Concurrency in Erlana
Actor Scheduling in Exrlana.

Actor Model
Concurrency
in Erlana

faci=geazzen Actors are not processes and are not dealt By the operating
system

— the BEAM uses a preemptive scheduler

— when an actor run £or a too Iong period of time or when it enters
3 receive statement with NO messace availakle, the actor is halted
and placed on a schedulinGg Queue;

e, Actors and the rest of the system

— OS processes and actors have different schedulers and lonag running
Erlana applications do not interfere with the execution of the OS
processes (N0 one will Become unresponsive)

— the BEAM supports symmetric multiprocessing (SMP)

— ie, it ean run processes in parallel on multiple CPUs
— But it cannot run lichtweiaht processes (actors) in parallel onawultiple
CPUs

Slide 122 of IS

Concurrency in Erlang
Timina the Spawning Process.

Actor Model
Concurrency
in Erlana

-module(processes) .
-export([max/1]) .

max(N) ->
Max = erlang:system info(process_limit),
io:format("Maximum allowed processes:~p~n",[Max]),
statistics(runtime), statistics(wall_clock),
L = for(1, N, fun() -> spawn(fun() -> wait() end) end),
{_, Timel} = statistics(runtime), {_, Time2} = statistics(wall_clock),
lists:foreach(fun(Pid) -> Pid ! die end, L),
1 = Timel * 1000 / N, U2 = Time2 * 1000 / N,
io:format("Process spawn time = ~p (~p) microseconds~n", [Ul, U2]).

Walter Cazzola

wait() -> receive die -> void end.

for(N, N, F) -> [F()I;

for(I, N, F) -> [F()|for(I+1, N, F)].
schedulina

1> processes:max(20000) .

Maximum allowed processes:32768

Process spawn time = 2.5 (3.4) microseconds

ok

2> processes:max(40000) .

Maximum allowed processes:32768

=ERROR REPORT: 8-Nov-2011::14:24:32
Too many processes

[16:48] cazzola@surtur:~/1p/erlang>erl +P 100000
1> processes:max(50000) .

Maximum allowed processes:100000

Process spawn time = 3.2 (3.74) microseconds

ok

Slide I3 of IS

Concurrency in Erlang

Giving a Name to the Actors.

A e Erlana provides a mechanism to render puglic the pid Of a process
Coneurrency to all the other processes.
in Erlana .

— register(an_atom, Pid)

— unregister(an_atom)

— whereis(an_atom) ->Pid|undefined

— registered()
Once recistered

— it is possiele t0 send a messace to it directly (name!msg).

Watter Cazzola

-module(clock) .

-export([start/2, stop/0]).

start(Time, Fun) -> register(clock, spawn(fun() -> tick(Time, Fun) end)).
stop() -> clock ! stop.

named actors

tick(Time, Fun) ->
receive
stop -> void
after
Time -> Fun(), tick(Time, Fun)
end.

5> clock:start(5000, fun() -> io:format("TICK ~p~n",[erlang:now()]) end).
true
TICK 1320,769016,673190

TICK 1320,7696021,678451
TICK 1320,769026,679120
7> clock:stop().

stop

Slide 4+ of IS

References

Actor Model
Concurrency
in Erlana

Watter Cazzola

> Gul Agha.
Actors: A Model of Concurrent Computation in Distrieuted Systems.

MIT Press, Cameridae, [986.

> Joe Armstrona.
Proaramming Erlana: Software for a Concurrent \World.
The Praamatic Bookshel$, fifth edition, 2007

References

> Francesco Cesarini and Simon J. Thompson.

Erlana Proarammina: A Concurrent Approach to Software Devel-
opmentt.

OReilly, June 2009.

Slide IS of IS

	Concurrency
	shared-state

	Erlang
	concurrency
	spawn
	send
	receive
	scheduling
	named actors

	References

