
Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 1 of 15

Actor Model Concurrency in Erlang
Processes and their interaction

Walter Cazzola

Dipartimento di Informatica
Università degli Studi di Milano

e-mail: cazzola@di.unimi.it
twitter: @w_cazzola

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 2 of 15

Actor Model Concurrency
Traditional (Shared-State) Concurrency

Threads are the traditional way of offering concurrency
– the execution of the program is split up into concurrently running

tasks;
– such tasks operate on shared memory

Several problems
– race conditions with update loss

T1 (withdraw(10)) T2 (withdraw(10)) balance
if (balance - amount >= 0) 15§

if (balance - amount >= 0) 15§

balance -= amount; 5§

balance -= amount; -5§

– deadlocks
P1 P2

lock(A) lock(B)

lock(B) lock(A)

Erlang (and also Scala via the Akka library) takes a different
approach to concurrency: the Actor Model.

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 3 of 15

Actor Model Concurrency
Overview

Each object is an actor.
– it has a mailbox and a behavior;
– actors communicate through messages buffered in a mailbox.

Computation is data-driven, upon receiving a message an actor
– can send a number of messages to other actors;
– can create a number of actors; and
– can assume a different behavior for dealing with the next message

in its mailbox.

Note that,
– all communications are performed asynchronously;

– the sender does not wait for a message to be received upon sending
it;

– no guarantees about the receiving order but they will eventually be
delivered.

– there is no shared state between actors
– information about internal state are requested/provided by messages;
– also internal state manipulation happens through messages.

– actors run concurrently and are implemented as lightweight user-
space threads

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 4 of 15

Actor Model Concurrency
Transaction Overview

1 2 · · · n n+1

XTask

X

1 m r r+1 1

W Y

new task

new message new actor

new behavior

mailbox

actor
new

behavior



Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 1 of 15

Actor Model Concurrency in Erlang
Processes and their interaction

Walter Cazzola

Dipartimento di Informatica
Università degli Studi di Milano

e-mail: cazzola@di.unimi.it
twitter: @w_cazzola

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 2 of 15

Actor Model Concurrency
Traditional (Shared-State) Concurrency

Threads are the traditional way of offering concurrency
– the execution of the program is split up into concurrently running

tasks;
– such tasks operate on shared memory

Several problems
– race conditions with update loss

T1 (withdraw(10)) T2 (withdraw(10)) balance
if (balance - amount >= 0) 15§

if (balance - amount >= 0) 15§

balance -= amount; 5§

balance -= amount; -5§

– deadlocks
P1 P2

lock(A) lock(B)

lock(B) lock(A)

Erlang (and also Scala via the Akka library) takes a different
approach to concurrency: the Actor Model.

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 3 of 15

Actor Model Concurrency
Overview

Each object is an actor.
– it has a mailbox and a behavior;
– actors communicate through messages buffered in a mailbox.

Computation is data-driven, upon receiving a message an actor
– can send a number of messages to other actors;
– can create a number of actors; and
– can assume a different behavior for dealing with the next message

in its mailbox.

Note that,
– all communications are performed asynchronously;

– the sender does not wait for a message to be received upon sending
it;

– no guarantees about the receiving order but they will eventually be
delivered.

– there is no shared state between actors
– information about internal state are requested/provided by messages;
– also internal state manipulation happens through messages.

– actors run concurrently and are implemented as lightweight user-
space threads

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 4 of 15

Actor Model Concurrency
Transaction Overview

1 2 · · · n n+1

XTask

X

1 m r r+1 1

W Y

new task

new message new actor

new behavior

mailbox

actor
new

behavior



Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 1 of 15

Actor Model Concurrency in Erlang
Processes and their interaction

Walter Cazzola

Dipartimento di Informatica
Università degli Studi di Milano

e-mail: cazzola@di.unimi.it
twitter: @w_cazzola

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 2 of 15

Actor Model Concurrency
Traditional (Shared-State) Concurrency

Threads are the traditional way of offering concurrency
– the execution of the program is split up into concurrently running

tasks;
– such tasks operate on shared memory

Several problems
– race conditions with update loss

T1 (withdraw(10)) T2 (withdraw(10)) balance
if (balance - amount >= 0) 15§

if (balance - amount >= 0) 15§

balance -= amount; 5§

balance -= amount; -5§

– deadlocks
P1 P2

lock(A) lock(B)

lock(B) lock(A)

Erlang (and also Scala via the Akka library) takes a different
approach to concurrency: the Actor Model.

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 3 of 15

Actor Model Concurrency
Overview

Each object is an actor.
– it has a mailbox and a behavior;
– actors communicate through messages buffered in a mailbox.

Computation is data-driven, upon receiving a message an actor
– can send a number of messages to other actors;
– can create a number of actors; and
– can assume a different behavior for dealing with the next message

in its mailbox.

Note that,
– all communications are performed asynchronously;

– the sender does not wait for a message to be received upon sending
it;

– no guarantees about the receiving order but they will eventually be
delivered.

– there is no shared state between actors
– information about internal state are requested/provided by messages;
– also internal state manipulation happens through messages.

– actors run concurrently and are implemented as lightweight user-
space threads

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 4 of 15

Actor Model Concurrency
Transaction Overview

1 2 · · · n n+1

XTask

X

1 m r r+1 1

W Y

new task

new message new actor

new behavior

mailbox

actor
new

behavior



Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 1 of 15

Actor Model Concurrency in Erlang
Processes and their interaction

Walter Cazzola

Dipartimento di Informatica
Università degli Studi di Milano

e-mail: cazzola@di.unimi.it
twitter: @w_cazzola

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 2 of 15

Actor Model Concurrency
Traditional (Shared-State) Concurrency

Threads are the traditional way of offering concurrency
– the execution of the program is split up into concurrently running

tasks;
– such tasks operate on shared memory

Several problems
– race conditions with update loss

T1 (withdraw(10)) T2 (withdraw(10)) balance
if (balance - amount >= 0) 15§

if (balance - amount >= 0) 15§

balance -= amount; 5§

balance -= amount; -5§

– deadlocks
P1 P2

lock(A) lock(B)

lock(B) lock(A)

Erlang (and also Scala via the Akka library) takes a different
approach to concurrency: the Actor Model.

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 3 of 15

Actor Model Concurrency
Overview

Each object is an actor.
– it has a mailbox and a behavior;
– actors communicate through messages buffered in a mailbox.

Computation is data-driven, upon receiving a message an actor
– can send a number of messages to other actors;
– can create a number of actors; and
– can assume a different behavior for dealing with the next message

in its mailbox.

Note that,
– all communications are performed asynchronously;

– the sender does not wait for a message to be received upon sending
it;

– no guarantees about the receiving order but they will eventually be
delivered.

– there is no shared state between actors
– information about internal state are requested/provided by messages;
– also internal state manipulation happens through messages.

– actors run concurrently and are implemented as lightweight user-
space threads

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 4 of 15

Actor Model Concurrency
Transaction Overview

1 2 · · · n n+1

XTask

X

1 m r r+1 1

W Y

new task

new message new actor

new behavior

mailbox

actor
new

behavior



Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 5 of 15

Concurrency in Erlang
Overview

Three basic elements form the foundation for concurrency
– a built-in function (spawn()) to create new actors;
– an operator (!) to send a message to another actor; and
– a mechanism to pattern-match message from the actor’s mailbox.

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 6 of 15

Concurrency in Erlang
Spawning New Processes.

Pid = spawn(demo, loop, [3,a])

pid <0.36.0>

pid <0.37.0>

pid <0.36.0>

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 7 of 15

Concurrency in Erlang
My First Erlang Process.

-module(processes_demo).
-export([start/2, loop/2]).

start(N,A) -> spawn (processes_demo, loop, [N,A]).

loop(0,A) -> io:format("~p(~p) ~p~n", [A, self(), stops]);
loop(N,A) -> io:format("~p(~p) ~p~n", [A, self(), N]), loop(N-1,A).

1> processes_demo:start(7,a),processes_demo:start(5,b),processes_demo:start(3,c).
a(<0.73.0>) 7
b(<0.74.0>) 5
a(<0.73.0>) 6
c(<0.75.0>) 3
b(<0.74.0>) 4
<0.75.0>
a(<0.73.0>) 5
c(<0.75.0>) 2
b(<0.74.0>) 3
a(<0.73.0>) 4
c(<0.75.0>) 1
b(<0.74.0>) 2
a(<0.73.0>) 3
c(<0.75.0>) stops
b(<0.74.0>) 1
a(<0.73.0>) 2
b(<0.74.0>) stops
a(<0.73.0>) 1
a(<0.73.0>) stops

self() returns the PID of the process.

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 8 of 15

Concurrency in Erlang
Sending a Message.

Every actor is characterized by:
– an address which identifies the actor and
– a mailbox where the delivered messages but not cleared yet are

stored;

Messages are sorted on arrival time (not on sending time).
To send a message to an actor:

– has to know the address (pid) of the target actor;
– to send its address (pid) to the target with the message if a reply

is necessary; and
– to use the send (!) primitive.

Exp1 ! Exp2

– Exp1 must identify an actor;
– Exp2 any valid Erlang expression; the result of the send expression

is the one of Exp2 ;
– the sending never fails also when the target actor doesn’t exist or

is unreachable;
– the sending operation never block the sender.



Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 5 of 15

Concurrency in Erlang
Overview

Three basic elements form the foundation for concurrency
– a built-in function (spawn()) to create new actors;
– an operator (!) to send a message to another actor; and
– a mechanism to pattern-match message from the actor’s mailbox.

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 6 of 15

Concurrency in Erlang
Spawning New Processes.

Pid = spawn(demo, loop, [3,a])

pid <0.36.0>

pid <0.37.0>

pid <0.36.0>

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 7 of 15

Concurrency in Erlang
My First Erlang Process.

-module(processes_demo).
-export([start/2, loop/2]).

start(N,A) -> spawn (processes_demo, loop, [N,A]).

loop(0,A) -> io:format("~p(~p) ~p~n", [A, self(), stops]);
loop(N,A) -> io:format("~p(~p) ~p~n", [A, self(), N]), loop(N-1,A).

1> processes_demo:start(7,a),processes_demo:start(5,b),processes_demo:start(3,c).
a(<0.73.0>) 7
b(<0.74.0>) 5
a(<0.73.0>) 6
c(<0.75.0>) 3
b(<0.74.0>) 4
<0.75.0>
a(<0.73.0>) 5
c(<0.75.0>) 2
b(<0.74.0>) 3
a(<0.73.0>) 4
c(<0.75.0>) 1
b(<0.74.0>) 2
a(<0.73.0>) 3
c(<0.75.0>) stops
b(<0.74.0>) 1
a(<0.73.0>) 2
b(<0.74.0>) stops
a(<0.73.0>) 1
a(<0.73.0>) stops

self() returns the PID of the process.

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 8 of 15

Concurrency in Erlang
Sending a Message.

Every actor is characterized by:
– an address which identifies the actor and
– a mailbox where the delivered messages but not cleared yet are

stored;

Messages are sorted on arrival time (not on sending time).
To send a message to an actor:

– has to know the address (pid) of the target actor;
– to send its address (pid) to the target with the message if a reply

is necessary; and
– to use the send (!) primitive.

Exp1 ! Exp2

– Exp1 must identify an actor;
– Exp2 any valid Erlang expression; the result of the send expression

is the one of Exp2 ;
– the sending never fails also when the target actor doesn’t exist or

is unreachable;
– the sending operation never block the sender.



Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 5 of 15

Concurrency in Erlang
Overview

Three basic elements form the foundation for concurrency
– a built-in function (spawn()) to create new actors;
– an operator (!) to send a message to another actor; and
– a mechanism to pattern-match message from the actor’s mailbox.

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 6 of 15

Concurrency in Erlang
Spawning New Processes.

Pid = spawn(demo, loop, [3,a])

pid <0.36.0>

pid <0.37.0>

pid <0.36.0>

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 7 of 15

Concurrency in Erlang
My First Erlang Process.

-module(processes_demo).
-export([start/2, loop/2]).

start(N,A) -> spawn (processes_demo, loop, [N,A]).

loop(0,A) -> io:format("~p(~p) ~p~n", [A, self(), stops]);
loop(N,A) -> io:format("~p(~p) ~p~n", [A, self(), N]), loop(N-1,A).

1> processes_demo:start(7,a),processes_demo:start(5,b),processes_demo:start(3,c).
a(<0.73.0>) 7
b(<0.74.0>) 5
a(<0.73.0>) 6
c(<0.75.0>) 3
b(<0.74.0>) 4
<0.75.0>
a(<0.73.0>) 5
c(<0.75.0>) 2
b(<0.74.0>) 3
a(<0.73.0>) 4
c(<0.75.0>) 1
b(<0.74.0>) 2
a(<0.73.0>) 3
c(<0.75.0>) stops
b(<0.74.0>) 1
a(<0.73.0>) 2
b(<0.74.0>) stops
a(<0.73.0>) 1
a(<0.73.0>) stops

self() returns the PID of the process.

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 8 of 15

Concurrency in Erlang
Sending a Message.

Every actor is characterized by:
– an address which identifies the actor and
– a mailbox where the delivered messages but not cleared yet are

stored;

Messages are sorted on arrival time (not on sending time).
To send a message to an actor:

– has to know the address (pid) of the target actor;
– to send its address (pid) to the target with the message if a reply

is necessary; and
– to use the send (!) primitive.

Exp1 ! Exp2

– Exp1 must identify an actor;
– Exp2 any valid Erlang expression; the result of the send expression

is the one of Exp2 ;
– the sending never fails also when the target actor doesn’t exist or

is unreachable;
– the sending operation never block the sender.



Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 5 of 15

Concurrency in Erlang
Overview

Three basic elements form the foundation for concurrency
– a built-in function (spawn()) to create new actors;
– an operator (!) to send a message to another actor; and
– a mechanism to pattern-match message from the actor’s mailbox.

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 6 of 15

Concurrency in Erlang
Spawning New Processes.

Pid = spawn(demo, loop, [3,a])

pid <0.36.0>

pid <0.37.0>

pid <0.36.0>

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 7 of 15

Concurrency in Erlang
My First Erlang Process.

-module(processes_demo).
-export([start/2, loop/2]).

start(N,A) -> spawn (processes_demo, loop, [N,A]).

loop(0,A) -> io:format("~p(~p) ~p~n", [A, self(), stops]);
loop(N,A) -> io:format("~p(~p) ~p~n", [A, self(), N]), loop(N-1,A).

1> processes_demo:start(7,a),processes_demo:start(5,b),processes_demo:start(3,c).
a(<0.73.0>) 7
b(<0.74.0>) 5
a(<0.73.0>) 6
c(<0.75.0>) 3
b(<0.74.0>) 4
<0.75.0>
a(<0.73.0>) 5
c(<0.75.0>) 2
b(<0.74.0>) 3
a(<0.73.0>) 4
c(<0.75.0>) 1
b(<0.74.0>) 2
a(<0.73.0>) 3
c(<0.75.0>) stops
b(<0.74.0>) 1
a(<0.73.0>) 2
b(<0.74.0>) stops
a(<0.73.0>) 1
a(<0.73.0>) stops

self() returns the PID of the process.

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 8 of 15

Concurrency in Erlang
Sending a Message.

Every actor is characterized by:
– an address which identifies the actor and
– a mailbox where the delivered messages but not cleared yet are

stored;

Messages are sorted on arrival time (not on sending time).
To send a message to an actor:

– has to know the address (pid) of the target actor;
– to send its address (pid) to the target with the message if a reply

is necessary; and
– to use the send (!) primitive.

Exp1 ! Exp2

– Exp1 must identify an actor;
– Exp2 any valid Erlang expression; the result of the send expression

is the one of Exp2 ;
– the sending never fails also when the target actor doesn’t exist or

is unreachable;
– the sending operation never block the sender.



Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 9 of 15

Concurrency in Erlang
Receiving a Message.

The receiving operation uses pattern matching.
receive
Any -> do_something(Any)

end

– the actor pick out of the mailbox the oldest message matching Any;
– it is blocked waiting for a message when the queue is empty.

receive
{Pid, something} -> do_something(Pid)

end

– the actor tries to pick out the oldest message that matches
{Pid, something};

– if it fails the actor is blocked waiting for such a message
receive
Pattern1 [when GuardSeq1] -> Body1 ;

...
Patternn [when GuardSeqn] -> Bodyn

[after Exprt -> Bodyt]
end

– rules definition and evaluation is quite similar to the functions;
– when no pattern matches the mailbox the actor waits instead of

raising an exception;
– to avoid waiting forever the clause after can be used, after Exprt

ms the actor is woke up.

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 10 of 15

Concurrency in Erlang
Converting Some Temperatures.

-module(converter).
-export([t_converter/0]).

t_converter() ->
receive
{toF, C} -> io:format("~p °C is ~p °F~n", [C, 32+C*9/5]), t_converter();
{toC, F} -> io:format("~p °F is ~p °C~n", [F, (F-32)*5/9]), t_converter();
{stop} -> io:format("Stopping!~n");
Other -> io:format("Unknown: ~p~n", [Other]), t_converter()

end.

1> Pid = spawn(converter, t_converter, []).
<0.39.0>
2> Pid ! {toC, 32}.
32 °F is 0.0 °C
{toC,32}
3> Pid ! {toF, 100}.
100 °C is 212.0 °F
{toF,100}
4> Pid ! {stop}.
Stopping!
{stop}
5> Pid ! {toF, 100}. % once stopped a message to such a process is silently ignored
{toF,100}

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 11 of 15

Concurrency in Erlang
Calculating Some Areas.

-module(area_server).
-export([loop/0]).

loop() ->
receive

{rectangle, Width, Ht} ->
io:format("Area of rectangle is ~p~n",[Width * Ht]),
loop();

{circle, R} ->
io:format("Area of circle is ~p~n", [3.14159 * R * R]),
loop();

Other ->
io:format("I don’t know how to react to the message ~p~n",[Other]),
loop()

end.

1> Pid = spawn(fun area_server:loop/0).
<0.34.0>
2> Pid ! {rectangle, 30, 40}.
Area of rectangle is 1200
{rectangle,30,40}
4> Pid ! {circle, 40}.
Area of circle is 5026.544
{circle,40}
5> Pid ! {triangle,22,44}.
I don’t know what the area of a {triangle,22,44} is
{triangle,22,44}

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 12 of 15

Concurrency in Erlang
Actor Scheduling in Erlang.

Actors are not processes and are not dealt by the operating
system

– the BEAM uses a preemptive scheduler;
– when an actor run for a too long period of time or when it enters

a receive statement with no message available, the actor is halted
and placed on a scheduling queue;

Actors and the rest of the system
– OS processes and actors have different schedulers and long running

Erlang applications do not interfere with the execution of the OS
processes (no one will become unresponsive)

– the BEAM supports symmetric multiprocessing (SMP)
– i.e., it can run processes in parallel on multiple CPUs
– but it cannot run lightweight processes (actors) in parallel on multiple

CPUs.



Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 9 of 15

Concurrency in Erlang
Receiving a Message.

The receiving operation uses pattern matching.
receive
Any -> do_something(Any)

end

– the actor pick out of the mailbox the oldest message matching Any;
– it is blocked waiting for a message when the queue is empty.

receive
{Pid, something} -> do_something(Pid)

end

– the actor tries to pick out the oldest message that matches
{Pid, something};

– if it fails the actor is blocked waiting for such a message
receive
Pattern1 [when GuardSeq1] -> Body1 ;

...
Patternn [when GuardSeqn] -> Bodyn

[after Exprt -> Bodyt]
end

– rules definition and evaluation is quite similar to the functions;
– when no pattern matches the mailbox the actor waits instead of

raising an exception;
– to avoid waiting forever the clause after can be used, after Exprt

ms the actor is woke up.

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 10 of 15

Concurrency in Erlang
Converting Some Temperatures.

-module(converter).
-export([t_converter/0]).

t_converter() ->
receive
{toF, C} -> io:format("~p °C is ~p °F~n", [C, 32+C*9/5]), t_converter();
{toC, F} -> io:format("~p °F is ~p °C~n", [F, (F-32)*5/9]), t_converter();
{stop} -> io:format("Stopping!~n");
Other -> io:format("Unknown: ~p~n", [Other]), t_converter()

end.

1> Pid = spawn(converter, t_converter, []).
<0.39.0>
2> Pid ! {toC, 32}.
32 °F is 0.0 °C
{toC,32}
3> Pid ! {toF, 100}.
100 °C is 212.0 °F
{toF,100}
4> Pid ! {stop}.
Stopping!
{stop}
5> Pid ! {toF, 100}. % once stopped a message to such a process is silently ignored
{toF,100}

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 11 of 15

Concurrency in Erlang
Calculating Some Areas.

-module(area_server).
-export([loop/0]).

loop() ->
receive

{rectangle, Width, Ht} ->
io:format("Area of rectangle is ~p~n",[Width * Ht]),
loop();

{circle, R} ->
io:format("Area of circle is ~p~n", [3.14159 * R * R]),
loop();

Other ->
io:format("I don’t know how to react to the message ~p~n",[Other]),
loop()

end.

1> Pid = spawn(fun area_server:loop/0).
<0.34.0>
2> Pid ! {rectangle, 30, 40}.
Area of rectangle is 1200
{rectangle,30,40}
4> Pid ! {circle, 40}.
Area of circle is 5026.544
{circle,40}
5> Pid ! {triangle,22,44}.
I don’t know what the area of a {triangle,22,44} is
{triangle,22,44}

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 12 of 15

Concurrency in Erlang
Actor Scheduling in Erlang.

Actors are not processes and are not dealt by the operating
system

– the BEAM uses a preemptive scheduler;
– when an actor run for a too long period of time or when it enters

a receive statement with no message available, the actor is halted
and placed on a scheduling queue;

Actors and the rest of the system
– OS processes and actors have different schedulers and long running

Erlang applications do not interfere with the execution of the OS
processes (no one will become unresponsive)

– the BEAM supports symmetric multiprocessing (SMP)
– i.e., it can run processes in parallel on multiple CPUs
– but it cannot run lightweight processes (actors) in parallel on multiple

CPUs.



Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 9 of 15

Concurrency in Erlang
Receiving a Message.

The receiving operation uses pattern matching.
receive
Any -> do_something(Any)

end

– the actor pick out of the mailbox the oldest message matching Any;
– it is blocked waiting for a message when the queue is empty.

receive
{Pid, something} -> do_something(Pid)

end

– the actor tries to pick out the oldest message that matches
{Pid, something};

– if it fails the actor is blocked waiting for such a message
receive
Pattern1 [when GuardSeq1] -> Body1 ;

...
Patternn [when GuardSeqn] -> Bodyn

[after Exprt -> Bodyt]
end

– rules definition and evaluation is quite similar to the functions;
– when no pattern matches the mailbox the actor waits instead of

raising an exception;
– to avoid waiting forever the clause after can be used, after Exprt

ms the actor is woke up.

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 10 of 15

Concurrency in Erlang
Converting Some Temperatures.

-module(converter).
-export([t_converter/0]).

t_converter() ->
receive
{toF, C} -> io:format("~p °C is ~p °F~n", [C, 32+C*9/5]), t_converter();
{toC, F} -> io:format("~p °F is ~p °C~n", [F, (F-32)*5/9]), t_converter();
{stop} -> io:format("Stopping!~n");
Other -> io:format("Unknown: ~p~n", [Other]), t_converter()

end.

1> Pid = spawn(converter, t_converter, []).
<0.39.0>
2> Pid ! {toC, 32}.
32 °F is 0.0 °C
{toC,32}
3> Pid ! {toF, 100}.
100 °C is 212.0 °F
{toF,100}
4> Pid ! {stop}.
Stopping!
{stop}
5> Pid ! {toF, 100}. % once stopped a message to such a process is silently ignored
{toF,100}

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 11 of 15

Concurrency in Erlang
Calculating Some Areas.

-module(area_server).
-export([loop/0]).

loop() ->
receive

{rectangle, Width, Ht} ->
io:format("Area of rectangle is ~p~n",[Width * Ht]),
loop();

{circle, R} ->
io:format("Area of circle is ~p~n", [3.14159 * R * R]),
loop();

Other ->
io:format("I don’t know how to react to the message ~p~n",[Other]),
loop()

end.

1> Pid = spawn(fun area_server:loop/0).
<0.34.0>
2> Pid ! {rectangle, 30, 40}.
Area of rectangle is 1200
{rectangle,30,40}
4> Pid ! {circle, 40}.
Area of circle is 5026.544
{circle,40}
5> Pid ! {triangle,22,44}.
I don’t know what the area of a {triangle,22,44} is
{triangle,22,44}

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 12 of 15

Concurrency in Erlang
Actor Scheduling in Erlang.

Actors are not processes and are not dealt by the operating
system

– the BEAM uses a preemptive scheduler;
– when an actor run for a too long period of time or when it enters

a receive statement with no message available, the actor is halted
and placed on a scheduling queue;

Actors and the rest of the system
– OS processes and actors have different schedulers and long running

Erlang applications do not interfere with the execution of the OS
processes (no one will become unresponsive)

– the BEAM supports symmetric multiprocessing (SMP)
– i.e., it can run processes in parallel on multiple CPUs
– but it cannot run lightweight processes (actors) in parallel on multiple

CPUs.



Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 9 of 15

Concurrency in Erlang
Receiving a Message.

The receiving operation uses pattern matching.
receive
Any -> do_something(Any)

end

– the actor pick out of the mailbox the oldest message matching Any;
– it is blocked waiting for a message when the queue is empty.

receive
{Pid, something} -> do_something(Pid)

end

– the actor tries to pick out the oldest message that matches
{Pid, something};

– if it fails the actor is blocked waiting for such a message
receive
Pattern1 [when GuardSeq1] -> Body1 ;

...
Patternn [when GuardSeqn] -> Bodyn

[after Exprt -> Bodyt]
end

– rules definition and evaluation is quite similar to the functions;
– when no pattern matches the mailbox the actor waits instead of

raising an exception;
– to avoid waiting forever the clause after can be used, after Exprt

ms the actor is woke up.

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 10 of 15

Concurrency in Erlang
Converting Some Temperatures.

-module(converter).
-export([t_converter/0]).

t_converter() ->
receive
{toF, C} -> io:format("~p °C is ~p °F~n", [C, 32+C*9/5]), t_converter();
{toC, F} -> io:format("~p °F is ~p °C~n", [F, (F-32)*5/9]), t_converter();
{stop} -> io:format("Stopping!~n");
Other -> io:format("Unknown: ~p~n", [Other]), t_converter()

end.

1> Pid = spawn(converter, t_converter, []).
<0.39.0>
2> Pid ! {toC, 32}.
32 °F is 0.0 °C
{toC,32}
3> Pid ! {toF, 100}.
100 °C is 212.0 °F
{toF,100}
4> Pid ! {stop}.
Stopping!
{stop}
5> Pid ! {toF, 100}. % once stopped a message to such a process is silently ignored
{toF,100}

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 11 of 15

Concurrency in Erlang
Calculating Some Areas.

-module(area_server).
-export([loop/0]).

loop() ->
receive

{rectangle, Width, Ht} ->
io:format("Area of rectangle is ~p~n",[Width * Ht]),
loop();

{circle, R} ->
io:format("Area of circle is ~p~n", [3.14159 * R * R]),
loop();

Other ->
io:format("I don’t know how to react to the message ~p~n",[Other]),
loop()

end.

1> Pid = spawn(fun area_server:loop/0).
<0.34.0>
2> Pid ! {rectangle, 30, 40}.
Area of rectangle is 1200
{rectangle,30,40}
4> Pid ! {circle, 40}.
Area of circle is 5026.544
{circle,40}
5> Pid ! {triangle,22,44}.
I don’t know what the area of a {triangle,22,44} is
{triangle,22,44}

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 12 of 15

Concurrency in Erlang
Actor Scheduling in Erlang.

Actors are not processes and are not dealt by the operating
system

– the BEAM uses a preemptive scheduler;
– when an actor run for a too long period of time or when it enters

a receive statement with no message available, the actor is halted
and placed on a scheduling queue;

Actors and the rest of the system
– OS processes and actors have different schedulers and long running

Erlang applications do not interfere with the execution of the OS
processes (no one will become unresponsive)

– the BEAM supports symmetric multiprocessing (SMP)
– i.e., it can run processes in parallel on multiple CPUs
– but it cannot run lightweight processes (actors) in parallel on multiple

CPUs.



Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 13 of 15

Concurrency in Erlang
Timing the Spawning Process.

-module(processes).
-export([max/1]).

max(N) ->
Max = erlang:system_info(process_limit),
io:format("Maximum allowed processes:~p~n",[Max]),
statistics(runtime), statistics(wall_clock),
L = for(1, N, fun() -> spawn(fun() -> wait() end) end),
{_, Time1} = statistics(runtime), {_, Time2} = statistics(wall_clock),
lists:foreach(fun(Pid) -> Pid ! die end, L),
U1 = Time1 * 1000 / N, U2 = Time2 * 1000 / N,
io:format("Process spawn time = ~p (~p) microseconds~n", [U1, U2]).

wait() -> receive die -> void end.

for(N, N, F) -> [F()];
for(I, N, F) -> [F()|for(I+1, N, F)].

1> processes:max(20000).
Maximum allowed processes:32768
Process spawn time = 2.5 (3.4) microseconds
ok
2> processes:max(40000).
Maximum allowed processes:32768

=ERROR REPORT==== 8-Nov-2011::14:24:32 ===
Too many processes
...
[16:48]cazzola@surtur:~/lp/erlang>erl +P 100000
1> processes:max(50000).
Maximum allowed processes:100000
Process spawn time = 3.2 (3.74) microseconds
ok

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 14 of 15

Concurrency in Erlang
Giving a Name to the Actors.

Erlang provides a mechanism to render public the pid of a process
to all the other processes.

– register(an_atom, Pid)

– unregister(an_atom)

– whereis(an_atom)->Pid|undefined

– registered()

Once registered
– it is possible to send a message to it directly (name!msg).

-module(clock).
-export([start/2, stop/0]).

start(Time, Fun) -> register(clock, spawn(fun() -> tick(Time, Fun) end)).
stop() -> clock ! stop.

tick(Time, Fun) ->
receive
stop -> void

after
Time -> Fun(), tick(Time, Fun)

end.

5> clock:start(5000, fun() -> io:format("TICK ~p~n",[erlang:now()]) end).
true
TICK 1320,769016,673190
TICK 1320,769021,678451
TICK 1320,769026,679120
7> clock:stop().
stop

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 15 of 15

References

I Gul Agha.
Actors: A Model of Concurrent Computation in Distributed Systems.

MIT Press, Cambridge, 1986.

I Joe Armstrong.
Programming Erlang: Software for a Concurrent World.
The Pragmatic Bookshelf, fifth edition, 2007.

I Francesco Cesarini and Simon J. Thompson.
Erlang Programming: A Concurrent Approach to Software Devel-
opment.
O’Reilly, June 2009.



Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 13 of 15

Concurrency in Erlang
Timing the Spawning Process.

-module(processes).
-export([max/1]).

max(N) ->
Max = erlang:system_info(process_limit),
io:format("Maximum allowed processes:~p~n",[Max]),
statistics(runtime), statistics(wall_clock),
L = for(1, N, fun() -> spawn(fun() -> wait() end) end),
{_, Time1} = statistics(runtime), {_, Time2} = statistics(wall_clock),
lists:foreach(fun(Pid) -> Pid ! die end, L),
U1 = Time1 * 1000 / N, U2 = Time2 * 1000 / N,
io:format("Process spawn time = ~p (~p) microseconds~n", [U1, U2]).

wait() -> receive die -> void end.

for(N, N, F) -> [F()];
for(I, N, F) -> [F()|for(I+1, N, F)].

1> processes:max(20000).
Maximum allowed processes:32768
Process spawn time = 2.5 (3.4) microseconds
ok
2> processes:max(40000).
Maximum allowed processes:32768

=ERROR REPORT==== 8-Nov-2011::14:24:32 ===
Too many processes
...
[16:48]cazzola@surtur:~/lp/erlang>erl +P 100000
1> processes:max(50000).
Maximum allowed processes:100000
Process spawn time = 3.2 (3.74) microseconds
ok

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 14 of 15

Concurrency in Erlang
Giving a Name to the Actors.

Erlang provides a mechanism to render public the pid of a process
to all the other processes.

– register(an_atom, Pid)

– unregister(an_atom)

– whereis(an_atom)->Pid|undefined

– registered()

Once registered
– it is possible to send a message to it directly (name!msg).

-module(clock).
-export([start/2, stop/0]).

start(Time, Fun) -> register(clock, spawn(fun() -> tick(Time, Fun) end)).
stop() -> clock ! stop.

tick(Time, Fun) ->
receive
stop -> void

after
Time -> Fun(), tick(Time, Fun)

end.

5> clock:start(5000, fun() -> io:format("TICK ~p~n",[erlang:now()]) end).
true
TICK 1320,769016,673190
TICK 1320,769021,678451
TICK 1320,769026,679120
7> clock:stop().
stop

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 15 of 15

References

I Gul Agha.
Actors: A Model of Concurrent Computation in Distributed Systems.

MIT Press, Cambridge, 1986.

I Joe Armstrong.
Programming Erlang: Software for a Concurrent World.
The Pragmatic Bookshelf, fifth edition, 2007.

I Francesco Cesarini and Simon J. Thompson.
Erlang Programming: A Concurrent Approach to Software Devel-
opment.
O’Reilly, June 2009.



Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 13 of 15

Concurrency in Erlang
Timing the Spawning Process.

-module(processes).
-export([max/1]).

max(N) ->
Max = erlang:system_info(process_limit),
io:format("Maximum allowed processes:~p~n",[Max]),
statistics(runtime), statistics(wall_clock),
L = for(1, N, fun() -> spawn(fun() -> wait() end) end),
{_, Time1} = statistics(runtime), {_, Time2} = statistics(wall_clock),
lists:foreach(fun(Pid) -> Pid ! die end, L),
U1 = Time1 * 1000 / N, U2 = Time2 * 1000 / N,
io:format("Process spawn time = ~p (~p) microseconds~n", [U1, U2]).

wait() -> receive die -> void end.

for(N, N, F) -> [F()];
for(I, N, F) -> [F()|for(I+1, N, F)].

1> processes:max(20000).
Maximum allowed processes:32768
Process spawn time = 2.5 (3.4) microseconds
ok
2> processes:max(40000).
Maximum allowed processes:32768

=ERROR REPORT==== 8-Nov-2011::14:24:32 ===
Too many processes
...
[16:48]cazzola@surtur:~/lp/erlang>erl +P 100000
1> processes:max(50000).
Maximum allowed processes:100000
Process spawn time = 3.2 (3.74) microseconds
ok

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 14 of 15

Concurrency in Erlang
Giving a Name to the Actors.

Erlang provides a mechanism to render public the pid of a process
to all the other processes.

– register(an_atom, Pid)

– unregister(an_atom)

– whereis(an_atom)->Pid|undefined

– registered()

Once registered
– it is possible to send a message to it directly (name!msg).

-module(clock).
-export([start/2, stop/0]).

start(Time, Fun) -> register(clock, spawn(fun() -> tick(Time, Fun) end)).
stop() -> clock ! stop.

tick(Time, Fun) ->
receive
stop -> void

after
Time -> Fun(), tick(Time, Fun)

end.

5> clock:start(5000, fun() -> io:format("TICK ~p~n",[erlang:now()]) end).
true
TICK 1320,769016,673190
TICK 1320,769021,678451
TICK 1320,769026,679120
7> clock:stop().
stop

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 15 of 15

References

I Gul Agha.
Actors: A Model of Concurrent Computation in Distributed Systems.

MIT Press, Cambridge, 1986.

I Joe Armstrong.
Programming Erlang: Software for a Concurrent World.
The Pragmatic Bookshelf, fifth edition, 2007.

I Francesco Cesarini and Simon J. Thompson.
Erlang Programming: A Concurrent Approach to Software Devel-
opment.
O’Reilly, June 2009.


	Concurrency
	shared-state

	Erlang
	concurrency
	spawn
	send
	receive
	scheduling
	named actors

	References

