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Actor Model Concurrency
Traditional (Shared-State) Concurrency

Threads are the traditional way of offering concurrency
– the execution of the program is split up into concurrently running

tasks;
– such tasks operate on shared memory

Several problems
– race conditions with update loss

T1 (withdraw(10)) T2 (withdraw(10)) balance
if (balance - amount >= 0) 15§

if (balance - amount >= 0) 15§

balance -= amount; 5§

balance -= amount; -5§

– deadlocks
P1 P2

lock(A) lock(B)

lock(B) lock(A)

Erlang (and also Scala via the Akka library) takes a different
approach to concurrency: the Actor Model.
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Actor Model Concurrency
Overview

Each object is an actor.
– it has a mailbox and a behavior;
– actors communicate through messages buffered in a mailbox.

Computation is data-driven, upon receiving a message an actor
– can send a number of messages to other actors;
– can create a number of actors; and
– can assume a different behavior for dealing with the next message

in its mailbox.

Note that,
– all communications are performed asynchronously;

– the sender does not wait for a message to be received upon sending
it;

– no guarantees about the receiving order but they will eventually be
delivered.

– there is no shared state between actors
– information about internal state are requested/provided by messages;
– also internal state manipulation happens through messages.

– actors run concurrently and are implemented as lightweight user-
space threads
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Actor Model Concurrency
Transaction Overview
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Concurrency in Erlang
Overview

Three basic elements form the foundation for concurrency
– a built-in function (spawn()) to create new actors;
– an operator (!) to send a message to another actor; and
– a mechanism to pattern-match message from the actor’s mailbox.
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Concurrency in Erlang
Spawning New Processes.

Pid = spawn(demo, loop, [3,a])

pid <0.36.0>

pid <0.37.0>

pid <0.36.0>
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Concurrency in Erlang
My First Erlang Process.

-module(processes_demo).
-export([start/2, loop/2]).

start(N,A) -> spawn (processes_demo, loop, [N,A]).

loop(0,A) -> io:format("~p(~p) ~p~n", [A, self(), stops]);
loop(N,A) -> io:format("~p(~p) ~p~n", [A, self(), N]), loop(N-1,A).

1> processes_demo:start(7,a),processes_demo:start(5,b),processes_demo:start(3,c).
a(<0.73.0>) 7
b(<0.74.0>) 5
a(<0.73.0>) 6
c(<0.75.0>) 3
b(<0.74.0>) 4
<0.75.0>
a(<0.73.0>) 5
c(<0.75.0>) 2
b(<0.74.0>) 3
a(<0.73.0>) 4
c(<0.75.0>) 1
b(<0.74.0>) 2
a(<0.73.0>) 3
c(<0.75.0>) stops
b(<0.74.0>) 1
a(<0.73.0>) 2
b(<0.74.0>) stops
a(<0.73.0>) 1
a(<0.73.0>) stops

self() returns the PID of the process.
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Concurrency in Erlang
Sending a Message.

Every actor is characterized by:
– an address which identifies the actor and
– a mailbox where the delivered messages but not cleared yet are

stored;

Messages are sorted on arrival time (not on sending time).
To send a message to an actor:

– has to know the address (pid) of the target actor;
– to send its address (pid) to the target with the message if a reply

is necessary; and
– to use the send (!) primitive.

Exp1 ! Exp2

– Exp1 must identify an actor;
– Exp2 any valid Erlang expression; the result of the send expression

is the one of Exp2 ;
– the sending never fails also when the target actor doesn’t exist or

is unreachable;
– the sending operation never block the sender.
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Concurrency in Erlang
Receiving a Message.

The receiving operation uses pattern matching.
receive
Any -> do_something(Any)

end

– the actor pick out of the mailbox the oldest message matching Any;
– it is blocked waiting for a message when the queue is empty.

receive
{Pid, something} -> do_something(Pid)

end

– the actor tries to pick out the oldest message that matches
{Pid, something};

– if it fails the actor is blocked waiting for such a message
receive
Pattern1 [when GuardSeq1] -> Body1 ;

...
Patternn [when GuardSeqn] -> Bodyn

[after Exprt -> Bodyt]
end

– rules definition and evaluation is quite similar to the functions;
– when no pattern matches the mailbox the actor waits instead of

raising an exception;
– to avoid waiting forever the clause after can be used, after Exprt

ms the actor is woke up.
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Concurrency in Erlang
Converting Some Temperatures.

-module(converter).
-export([t_converter/0]).

t_converter() ->
receive
{toF, C} -> io:format("~p °C is ~p °F~n", [C, 32+C*9/5]), t_converter();
{toC, F} -> io:format("~p °F is ~p °C~n", [F, (F-32)*5/9]), t_converter();
{stop} -> io:format("Stopping!~n");
Other -> io:format("Unknown: ~p~n", [Other]), t_converter()

end.

1> Pid = spawn(converter, t_converter, []).
<0.39.0>
2> Pid ! {toC, 32}.
32 °F is 0.0 °C
{toC,32}
3> Pid ! {toF, 100}.
100 °C is 212.0 °F
{toF,100}
4> Pid ! {stop}.
Stopping!
{stop}
5> Pid ! {toF, 100}. % once stopped a message to such a process is silently ignored
{toF,100}
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Concurrency in Erlang
Calculating Some Areas.

-module(area_server).
-export([loop/0]).

loop() ->
receive

{rectangle, Width, Ht} ->
io:format("Area of rectangle is ~p~n",[Width * Ht]),
loop();

{circle, R} ->
io:format("Area of circle is ~p~n", [3.14159 * R * R]),
loop();

Other ->
io:format("I don’t know how to react to the message ~p~n",[Other]),
loop()

end.

1> Pid = spawn(fun area_server:loop/0).
<0.34.0>
2> Pid ! {rectangle, 30, 40}.
Area of rectangle is 1200
{rectangle,30,40}
4> Pid ! {circle, 40}.
Area of circle is 5026.544
{circle,40}
5> Pid ! {triangle,22,44}.
I don’t know what the area of a {triangle,22,44} is
{triangle,22,44}
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Concurrency in Erlang
Actor Scheduling in Erlang.

Actors are not processes and are not dealt by the operating
system

– the BEAM uses a preemptive scheduler;
– when an actor run for a too long period of time or when it enters

a receive statement with no message available, the actor is halted
and placed on a scheduling queue;

Actors and the rest of the system
– OS processes and actors have different schedulers and long running

Erlang applications do not interfere with the execution of the OS
processes (no one will become unresponsive)

– the BEAM supports symmetric multiprocessing (SMP)
– i.e., it can run processes in parallel on multiple CPUs
– but it cannot run lightweight processes (actors) in parallel on multiple

CPUs.
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Concurrency in Erlang
Receiving a Message.

The receiving operation uses pattern matching.
receive
Any -> do_something(Any)

end

– the actor pick out of the mailbox the oldest message matching Any;
– it is blocked waiting for a message when the queue is empty.

receive
{Pid, something} -> do_something(Pid)

end

– the actor tries to pick out the oldest message that matches
{Pid, something};

– if it fails the actor is blocked waiting for such a message
receive
Pattern1 [when GuardSeq1] -> Body1 ;

...
Patternn [when GuardSeqn] -> Bodyn

[after Exprt -> Bodyt]
end

– rules definition and evaluation is quite similar to the functions;
– when no pattern matches the mailbox the actor waits instead of

raising an exception;
– to avoid waiting forever the clause after can be used, after Exprt

ms the actor is woke up.
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Concurrency in Erlang
Converting Some Temperatures.

-module(converter).
-export([t_converter/0]).

t_converter() ->
receive
{toF, C} -> io:format("~p °C is ~p °F~n", [C, 32+C*9/5]), t_converter();
{toC, F} -> io:format("~p °F is ~p °C~n", [F, (F-32)*5/9]), t_converter();
{stop} -> io:format("Stopping!~n");
Other -> io:format("Unknown: ~p~n", [Other]), t_converter()

end.

1> Pid = spawn(converter, t_converter, []).
<0.39.0>
2> Pid ! {toC, 32}.
32 °F is 0.0 °C
{toC,32}
3> Pid ! {toF, 100}.
100 °C is 212.0 °F
{toF,100}
4> Pid ! {stop}.
Stopping!
{stop}
5> Pid ! {toF, 100}. % once stopped a message to such a process is silently ignored
{toF,100}
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Concurrency in Erlang
Calculating Some Areas.

-module(area_server).
-export([loop/0]).

loop() ->
receive

{rectangle, Width, Ht} ->
io:format("Area of rectangle is ~p~n",[Width * Ht]),
loop();

{circle, R} ->
io:format("Area of circle is ~p~n", [3.14159 * R * R]),
loop();

Other ->
io:format("I don’t know how to react to the message ~p~n",[Other]),
loop()

end.

1> Pid = spawn(fun area_server:loop/0).
<0.34.0>
2> Pid ! {rectangle, 30, 40}.
Area of rectangle is 1200
{rectangle,30,40}
4> Pid ! {circle, 40}.
Area of circle is 5026.544
{circle,40}
5> Pid ! {triangle,22,44}.
I don’t know what the area of a {triangle,22,44} is
{triangle,22,44}
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Concurrency in Erlang
Actor Scheduling in Erlang.

Actors are not processes and are not dealt by the operating
system

– the BEAM uses a preemptive scheduler;
– when an actor run for a too long period of time or when it enters

a receive statement with no message available, the actor is halted
and placed on a scheduling queue;

Actors and the rest of the system
– OS processes and actors have different schedulers and long running

Erlang applications do not interfere with the execution of the OS
processes (no one will become unresponsive)

– the BEAM supports symmetric multiprocessing (SMP)
– i.e., it can run processes in parallel on multiple CPUs
– but it cannot run lightweight processes (actors) in parallel on multiple

CPUs.
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Actor Scheduling in Erlang.

Actors are not processes and are not dealt by the operating
system

– the BEAM uses a preemptive scheduler;
– when an actor run for a too long period of time or when it enters

a receive statement with no message available, the actor is halted
and placed on a scheduling queue;

Actors and the rest of the system
– OS processes and actors have different schedulers and long running

Erlang applications do not interfere with the execution of the OS
processes (no one will become unresponsive)
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– i.e., it can run processes in parallel on multiple CPUs
– but it cannot run lightweight processes (actors) in parallel on multiple
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Actor Scheduling in Erlang.

Actors are not processes and are not dealt by the operating
system

– the BEAM uses a preemptive scheduler;
– when an actor run for a too long period of time or when it enters

a receive statement with no message available, the actor is halted
and placed on a scheduling queue;

Actors and the rest of the system
– OS processes and actors have different schedulers and long running

Erlang applications do not interfere with the execution of the OS
processes (no one will become unresponsive)

– the BEAM supports symmetric multiprocessing (SMP)
– i.e., it can run processes in parallel on multiple CPUs
– but it cannot run lightweight processes (actors) in parallel on multiple

CPUs.
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Concurrency in Erlang
Timing the Spawning Process.

-module(processes).
-export([max/1]).

max(N) ->
Max = erlang:system_info(process_limit),
io:format("Maximum allowed processes:~p~n",[Max]),
statistics(runtime), statistics(wall_clock),
L = for(1, N, fun() -> spawn(fun() -> wait() end) end),
{_, Time1} = statistics(runtime), {_, Time2} = statistics(wall_clock),
lists:foreach(fun(Pid) -> Pid ! die end, L),
U1 = Time1 * 1000 / N, U2 = Time2 * 1000 / N,
io:format("Process spawn time = ~p (~p) microseconds~n", [U1, U2]).

wait() -> receive die -> void end.

for(N, N, F) -> [F()];
for(I, N, F) -> [F()|for(I+1, N, F)].

1> processes:max(20000).
Maximum allowed processes:32768
Process spawn time = 2.5 (3.4) microseconds
ok
2> processes:max(40000).
Maximum allowed processes:32768

=ERROR REPORT==== 8-Nov-2011::14:24:32 ===
Too many processes
...
[16:48]cazzola@surtur:~/lp/erlang>erl +P 100000
1> processes:max(50000).
Maximum allowed processes:100000
Process spawn time = 3.2 (3.74) microseconds
ok
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Concurrency in Erlang
Giving a Name to the Actors.

Erlang provides a mechanism to render public the pid of a process
to all the other processes.

– register(an_atom, Pid)

– unregister(an_atom)

– whereis(an_atom)->Pid|undefined

– registered()

Once registered
– it is possible to send a message to it directly (name!msg).

-module(clock).
-export([start/2, stop/0]).

start(Time, Fun) -> register(clock, spawn(fun() -> tick(Time, Fun) end)).
stop() -> clock ! stop.

tick(Time, Fun) ->
receive
stop -> void

after
Time -> Fun(), tick(Time, Fun)

end.

5> clock:start(5000, fun() -> io:format("TICK ~p~n",[erlang:now()]) end).
true
TICK 1320,769016,673190
TICK 1320,769021,678451
TICK 1320,769026,679120
7> clock:stop().
stop
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