
Starting with
Erlang

Walter Cazzola

Erlang
a few of history

characteristics

Sequential
Erlang
BEAM

datatypes

pattern matching

functions

guards

comprehensions

References

Slide 1 of 12

Starting with Erlang
Sequential Programming in Erlang (Overview)

Walter Cazzola

Dipartimento di Informatica
Università degli Studi di Milano

e-mail: cazzola@di.unimi.it
twitter: @w_cazzola

Starting with
Erlang

Walter Cazzola

Erlang
a few of history

characteristics

Sequential
Erlang
BEAM

datatypes

pattern matching

functions

guards

comprehensions

References

Slide 2 of 12

Erlang
A Few of History

30
+

Ye
ar

s

1981 — the Ericsson CS Lab has been founded.
1981–1986

– a lot of work to decide which paradigm would be better to
use in the telecommunication domain;

– conclusions: doesn’t exist the perfect paradigm but several
characteristics should be mixed.

1987 Erlang is born
– the name is after the Danish mathematician Agner Krarup

Erlang but could also mean Ericsson language.

1987–1991
– the JAM («Joe’s Abstract Machine») virtual machine (inspired

by the Prolog WAM) has been implemented (in C);
– in 1998 it has been replaced by BEAM («Bogdan/Björn’s Er-

lang Abstract Machine»).

1996 — Open Telecom Platform (OTP) has been released.
1998

– Ericsson stops to develop Erlang but not to use it
– Erlang becomes open source

– since 2006 the BEAM supports multi-core processors.

Starting with
Erlang

Walter Cazzola

Erlang
a few of history

characteristics

Sequential
Erlang
BEAM

datatypes

pattern matching

functions

guards

comprehensions

References

Slide 3 of 12

Erlang
Overview

Erlang is concurrency oriented, i.e., the process is the basic of
every computation.

Erlang adopts the actor’s model for concurrency with
– asynchronous message exchange;
– non shared memory

Erlang is a dynamically typed functional language.

Erlang supports distribution, fault tolerance and hot-swapping
(dynamic SW updating).

Starting with
Erlang

Walter Cazzola

Erlang
a few of history

characteristics

Sequential
Erlang
BEAM

datatypes

pattern matching

functions

guards

comprehensions

References

Slide 4 of 12

My First Erlang Program
Again a Factorial!!!

-module(fact).
-export([fact/1]).

fact(0) -> 1;
fact(N) -> N*fact(N-1).

The program must be run through the BEAM shell

[12:56]cazzola@mangog:~/lp/erlang>erl
Erlang/OTP 24 [erts-12.3.2.6] [source] [64-bit] [smp:16:16] [async-threads:1] [jit]

Eshell V12.3.2.6 (abort with ^G)
1> c(fact).
{ok,fact}
2> fact:fact(7).
5040
3> fact:fact(100).
9332621544394415268169923885626670049071596826438162146859296389521759999322991560894146
3976156518286253697920827223758251185210916864000000000000000000000000

Alternatively it could be run as a script via escript or through
native compilation via HiPE.

Kevin Manca

Kevin Manca

Starting with
Erlang

Walter Cazzola

Erlang
a few of history

characteristics

Sequential
Erlang
BEAM

datatypes

pattern matching

functions

guards

comprehensions

References

Slide 1 of 12

Starting with Erlang
Sequential Programming in Erlang (Overview)

Walter Cazzola

Dipartimento di Informatica
Università degli Studi di Milano

e-mail: cazzola@di.unimi.it
twitter: @w_cazzola

Starting with
Erlang

Walter Cazzola

Erlang
a few of history

characteristics

Sequential
Erlang
BEAM

datatypes

pattern matching

functions

guards

comprehensions

References

Slide 2 of 12

Erlang
A Few of History

30
+

Ye
ar

s
1981 — the Ericsson CS Lab has been founded.
1981–1986

– a lot of work to decide which paradigm would be better to
use in the telecommunication domain;

– conclusions: doesn’t exist the perfect paradigm but several
characteristics should be mixed.

1987 Erlang is born
– the name is after the Danish mathematician Agner Krarup

Erlang but could also mean Ericsson language.

1987–1991
– the JAM («Joe’s Abstract Machine») virtual machine (inspired

by the Prolog WAM) has been implemented (in C);
– in 1998 it has been replaced by BEAM («Bogdan/Björn’s Er-

lang Abstract Machine»).

1996 — Open Telecom Platform (OTP) has been released.
1998

– Ericsson stops to develop Erlang but not to use it
– Erlang becomes open source

– since 2006 the BEAM supports multi-core processors.

Starting with
Erlang

Walter Cazzola

Erlang
a few of history

characteristics

Sequential
Erlang
BEAM

datatypes

pattern matching

functions

guards

comprehensions

References

Slide 3 of 12

Erlang
Overview

Erlang is concurrency oriented, i.e., the process is the basic of
every computation.

Erlang adopts the actor’s model for concurrency with
– asynchronous message exchange;
– non shared memory

Erlang is a dynamically typed functional language.

Erlang supports distribution, fault tolerance and hot-swapping
(dynamic SW updating).

Starting with
Erlang

Walter Cazzola

Erlang
a few of history

characteristics

Sequential
Erlang
BEAM

datatypes

pattern matching

functions

guards

comprehensions

References

Slide 4 of 12

My First Erlang Program
Again a Factorial!!!

-module(fact).
-export([fact/1]).

fact(0) -> 1;
fact(N) -> N*fact(N-1).

The program must be run through the BEAM shell

[12:56]cazzola@mangog:~/lp/erlang>erl
Erlang/OTP 24 [erts-12.3.2.6] [source] [64-bit] [smp:16:16] [async-threads:1] [jit]

Eshell V12.3.2.6 (abort with ^G)
1> c(fact).
{ok,fact}
2> fact:fact(7).
5040
3> fact:fact(100).
9332621544394415268169923885626670049071596826438162146859296389521759999322991560894146
3976156518286253697920827223758251185210916864000000000000000000000000

Alternatively it could be run as a script via escript or through
native compilation via HiPE.

Kevin Manca

Kevin Manca

Starting with
Erlang

Walter Cazzola

Erlang
a few of history

characteristics

Sequential
Erlang
BEAM

datatypes

pattern matching

functions

guards

comprehensions

References

Slide 1 of 12

Starting with Erlang
Sequential Programming in Erlang (Overview)

Walter Cazzola

Dipartimento di Informatica
Università degli Studi di Milano

e-mail: cazzola@di.unimi.it
twitter: @w_cazzola

Starting with
Erlang

Walter Cazzola

Erlang
a few of history

characteristics

Sequential
Erlang
BEAM

datatypes

pattern matching

functions

guards

comprehensions

References

Slide 2 of 12

Erlang
A Few of History

30
+

Ye
ar

s

1981 — the Ericsson CS Lab has been founded.
1981–1986

– a lot of work to decide which paradigm would be better to
use in the telecommunication domain;

– conclusions: doesn’t exist the perfect paradigm but several
characteristics should be mixed.

1987 Erlang is born
– the name is after the Danish mathematician Agner Krarup

Erlang but could also mean Ericsson language.

1987–1991
– the JAM («Joe’s Abstract Machine») virtual machine (inspired

by the Prolog WAM) has been implemented (in C);
– in 1998 it has been replaced by BEAM («Bogdan/Björn’s Er-

lang Abstract Machine»).

1996 — Open Telecom Platform (OTP) has been released.
1998

– Ericsson stops to develop Erlang but not to use it
– Erlang becomes open source

– since 2006 the BEAM supports multi-core processors.

Starting with
Erlang

Walter Cazzola

Erlang
a few of history

characteristics

Sequential
Erlang
BEAM

datatypes

pattern matching

functions

guards

comprehensions

References

Slide 3 of 12

Erlang
Overview

Erlang is concurrency oriented, i.e., the process is the basic of
every computation.

Erlang adopts the actor’s model for concurrency with
– asynchronous message exchange;
– non shared memory

Erlang is a dynamically typed functional language.

Erlang supports distribution, fault tolerance and hot-swapping
(dynamic SW updating).

Starting with
Erlang

Walter Cazzola

Erlang
a few of history

characteristics

Sequential
Erlang
BEAM

datatypes

pattern matching

functions

guards

comprehensions

References

Slide 4 of 12

My First Erlang Program
Again a Factorial!!!

-module(fact).
-export([fact/1]).

fact(0) -> 1;
fact(N) -> N*fact(N-1).

The program must be run through the BEAM shell

[12:56]cazzola@mangog:~/lp/erlang>erl
Erlang/OTP 24 [erts-12.3.2.6] [source] [64-bit] [smp:16:16] [async-threads:1] [jit]

Eshell V12.3.2.6 (abort with ^G)
1> c(fact).
{ok,fact}
2> fact:fact(7).
5040
3> fact:fact(100).
9332621544394415268169923885626670049071596826438162146859296389521759999322991560894146
3976156518286253697920827223758251185210916864000000000000000000000000

Alternatively it could be run as a script via escript or through
native compilation via HiPE.

Kevin Manca

Kevin Manca

Starting with
Erlang

Walter Cazzola

Erlang
a few of history

characteristics

Sequential
Erlang
BEAM

datatypes

pattern matching

functions

guards

comprehensions

References

Slide 1 of 12

Starting with Erlang
Sequential Programming in Erlang (Overview)

Walter Cazzola

Dipartimento di Informatica
Università degli Studi di Milano

e-mail: cazzola@di.unimi.it
twitter: @w_cazzola

Starting with
Erlang

Walter Cazzola

Erlang
a few of history

characteristics

Sequential
Erlang
BEAM

datatypes

pattern matching

functions

guards

comprehensions

References

Slide 2 of 12

Erlang
A Few of History

30
+

Ye
ar

s

1981 — the Ericsson CS Lab has been founded.
1981–1986

– a lot of work to decide which paradigm would be better to
use in the telecommunication domain;

– conclusions: doesn’t exist the perfect paradigm but several
characteristics should be mixed.

1987 Erlang is born
– the name is after the Danish mathematician Agner Krarup

Erlang but could also mean Ericsson language.

1987–1991
– the JAM («Joe’s Abstract Machine») virtual machine (inspired

by the Prolog WAM) has been implemented (in C);
– in 1998 it has been replaced by BEAM («Bogdan/Björn’s Er-

lang Abstract Machine»).

1996 — Open Telecom Platform (OTP) has been released.
1998

– Ericsson stops to develop Erlang but not to use it
– Erlang becomes open source

– since 2006 the BEAM supports multi-core processors.

Starting with
Erlang

Walter Cazzola

Erlang
a few of history

characteristics

Sequential
Erlang
BEAM

datatypes

pattern matching

functions

guards

comprehensions

References

Slide 3 of 12

Erlang
Overview

Erlang is concurrency oriented, i.e., the process is the basic of
every computation.

Erlang adopts the actor’s model for concurrency with
– asynchronous message exchange;
– non shared memory

Erlang is a dynamically typed functional language.

Erlang supports distribution, fault tolerance and hot-swapping
(dynamic SW updating).

Starting with
Erlang

Walter Cazzola

Erlang
a few of history

characteristics

Sequential
Erlang
BEAM

datatypes

pattern matching

functions

guards

comprehensions

References

Slide 4 of 12

My First Erlang Program
Again a Factorial!!!

-module(fact).
-export([fact/1]).

fact(0) -> 1;
fact(N) -> N*fact(N-1).

The program must be run through the BEAM shell

[12:56]cazzola@mangog:~/lp/erlang>erl
Erlang/OTP 24 [erts-12.3.2.6] [source] [64-bit] [smp:16:16] [async-threads:1] [jit]

Eshell V12.3.2.6 (abort with ^G)
1> c(fact).
{ok,fact}
2> fact:fact(7).
5040
3> fact:fact(100).
9332621544394415268169923885626670049071596826438162146859296389521759999322991560894146
3976156518286253697920827223758251185210916864000000000000000000000000

Alternatively it could be run as a script via escript or through
native compilation via HiPE.

Kevin Manca

Kevin Manca

Starting with
Erlang

Walter Cazzola

Erlang
a few of history

characteristics

Sequential
Erlang
BEAM

datatypes

pattern matching

functions

guards

comprehensions

References

Slide 5 of 12

Sequential Erlang Overview
Numbers and Atoms

1> 10.
10
2> 16#FF.
255
3> $A.
65
4> -12.35e-2.
-0.1235

– b#val is used to store numbers in base «b»;
– $char is used for ascii values.

1> cazzola@di.unimi.it.
’cazzola@di.unimi.it’
2> ’Walter Cazzola’.
’Walter Cazzola’
3> ’Walter^M
3> Cazzola’.
’Walter\nCazzola’

– atoms start with lowercase letter but can contain any character;
– if quoted they can start by uppercase letters.

Starting with
Erlang

Walter Cazzola

Erlang
a few of history

characteristics

Sequential
Erlang
BEAM

datatypes

pattern matching

functions

guards

comprehensions

References

Slide 6 of 12

Sequential Erlang Overview
Tuples and Lists

1> {123, "walter", cazzola}.
{123,"walter",cazzola}
2> {}.
{}
3> {abc, {’Walter’, ’Cazzola’}, 3.14}.
{abc,{’Walter’,’Cazzola’},3.14}
4> {{1,2},3}=={1,{2,3}}.
false

– used to store a fixed number of items;
– tuples of any size, type and complexity are allowed.

1> [].
[]
2> [1|[]].
[1]
3> [1|[2]].
[1,2]
4> [{1,2},ok,[]].
[{1,2},ok,[]]
5> length([{1,2},ok,[]]).
3
6> [{1,2},ok,[]]==[{1,2},ok,[]].
true
7> A=[$W,$a,$l,$t,$e,$r], B=[$C,$a,$z,$z,$o,$l,$a].
"Cazzola"
8> A++" "++B.
"Walter Cazzola"
9> A--B.
"Wter"

– used to store a variable number of items;
– lists are dynamically sized.

Starting with
Erlang

Walter Cazzola

Erlang
a few of history

characteristics

Sequential
Erlang
BEAM

datatypes

pattern matching

functions

guards

comprehensions

References

Slide 7 of 12

Sequential Erlang Overview
Assignments & Pattern Matching

1> A = 1.
1
2> A = 2.

** exception error: no match of right hand side value 2

– are just name bindings to values and cannot be modified;
– start with an uppercase letter and _ is an anonymous variable.
– the bindings are created via pattern matching.

3> [B|L]=[a,b,c].
[a,b,c]

4> {A,B,L}.
{1,a,[b,c]}

5> {X,X}={B,B}.
{a,a}

6> {Y,Y}={X,b}.

** exception error: no match of right hand side value a,b

7> 1=A.
1
8> 1=Z.

* 1: variable ’Z’ is unbound

9> {A1, _, [B1|_], {B1}} = {abc, 23, [22,x], {22}}.
{abc,23,[22,x],{22}}
10> A1.
abc
11> B1.
22

Starting with
Erlang

Walter Cazzola

Erlang
a few of history

characteristics

Sequential
Erlang
BEAM

datatypes

pattern matching

functions

guards

comprehensions

References

Slide 8 of 12

Sequential Erlang Overview
Functions & Modules

name(pattern11, pattern12, ..., pattern1n) [when guard1] -> body1 ;
name(pattern21, pattern22, ..., pattern2n) [when guard2] -> body2 ;

...
name(patternk1, patternk2, ..., patternkn) [when guardk] -> bodyk .

– clauses are scanned sequentially until a match is found;
– when a match is found all the variables in the head become bound;

-module(ex_module).
-export([double/1]).

double(X) -> times(X, 2).
times(X, N) -> X * N.

– double can be called from outside the module, times is local to the
module;

– double/1 means the function double with one argument (note that
double/1 and double/2 are two different functions).

Starting with
Erlang

Walter Cazzola

Erlang
a few of history

characteristics

Sequential
Erlang
BEAM

datatypes

pattern matching

functions

guards

comprehensions

References

Slide 5 of 12

Sequential Erlang Overview
Numbers and Atoms

1> 10.
10
2> 16#FF.
255
3> $A.
65
4> -12.35e-2.
-0.1235

– b#val is used to store numbers in base «b»;
– $char is used for ascii values.

1> cazzola@di.unimi.it.
’cazzola@di.unimi.it’
2> ’Walter Cazzola’.
’Walter Cazzola’
3> ’Walter^M
3> Cazzola’.
’Walter\nCazzola’

– atoms start with lowercase letter but can contain any character;
– if quoted they can start by uppercase letters.

Starting with
Erlang

Walter Cazzola

Erlang
a few of history

characteristics

Sequential
Erlang
BEAM

datatypes

pattern matching

functions

guards

comprehensions

References

Slide 6 of 12

Sequential Erlang Overview
Tuples and Lists

1> {123, "walter", cazzola}.
{123,"walter",cazzola}
2> {}.
{}
3> {abc, {’Walter’, ’Cazzola’}, 3.14}.
{abc,{’Walter’,’Cazzola’},3.14}
4> {{1,2},3}=={1,{2,3}}.
false

– used to store a fixed number of items;
– tuples of any size, type and complexity are allowed.

1> [].
[]
2> [1|[]].
[1]
3> [1|[2]].
[1,2]
4> [{1,2},ok,[]].
[{1,2},ok,[]]
5> length([{1,2},ok,[]]).
3
6> [{1,2},ok,[]]==[{1,2},ok,[]].
true
7> A=[$W,$a,$l,$t,$e,$r], B=[$C,$a,$z,$z,$o,$l,$a].
"Cazzola"
8> A++" "++B.
"Walter Cazzola"
9> A--B.
"Wter"

– used to store a variable number of items;
– lists are dynamically sized.

Starting with
Erlang

Walter Cazzola

Erlang
a few of history

characteristics

Sequential
Erlang
BEAM

datatypes

pattern matching

functions

guards

comprehensions

References

Slide 7 of 12

Sequential Erlang Overview
Assignments & Pattern Matching

1> A = 1.
1
2> A = 2.

** exception error: no match of right hand side value 2

– are just name bindings to values and cannot be modified;
– start with an uppercase letter and _ is an anonymous variable.
– the bindings are created via pattern matching.

3> [B|L]=[a,b,c].
[a,b,c]

4> {A,B,L}.
{1,a,[b,c]}

5> {X,X}={B,B}.
{a,a}

6> {Y,Y}={X,b}.

** exception error: no match of right hand side value a,b

7> 1=A.
1
8> 1=Z.

* 1: variable ’Z’ is unbound

9> {A1, _, [B1|_], {B1}} = {abc, 23, [22,x], {22}}.
{abc,23,[22,x],{22}}
10> A1.
abc
11> B1.
22

Starting with
Erlang

Walter Cazzola

Erlang
a few of history

characteristics

Sequential
Erlang
BEAM

datatypes

pattern matching

functions

guards

comprehensions

References

Slide 8 of 12

Sequential Erlang Overview
Functions & Modules

name(pattern11, pattern12, ..., pattern1n) [when guard1] -> body1 ;
name(pattern21, pattern22, ..., pattern2n) [when guard2] -> body2 ;

...
name(patternk1, patternk2, ..., patternkn) [when guardk] -> bodyk .

– clauses are scanned sequentially until a match is found;
– when a match is found all the variables in the head become bound;

-module(ex_module).
-export([double/1]).

double(X) -> times(X, 2).
times(X, N) -> X * N.

– double can be called from outside the module, times is local to the
module;

– double/1 means the function double with one argument (note that
double/1 and double/2 are two different functions).

Starting with
Erlang

Walter Cazzola

Erlang
a few of history

characteristics

Sequential
Erlang
BEAM

datatypes

pattern matching

functions

guards

comprehensions

References

Slide 5 of 12

Sequential Erlang Overview
Numbers and Atoms

1> 10.
10
2> 16#FF.
255
3> $A.
65
4> -12.35e-2.
-0.1235

– b#val is used to store numbers in base «b»;
– $char is used for ascii values.

1> cazzola@di.unimi.it.
’cazzola@di.unimi.it’
2> ’Walter Cazzola’.
’Walter Cazzola’
3> ’Walter^M
3> Cazzola’.
’Walter\nCazzola’

– atoms start with lowercase letter but can contain any character;
– if quoted they can start by uppercase letters.

Starting with
Erlang

Walter Cazzola

Erlang
a few of history

characteristics

Sequential
Erlang
BEAM

datatypes

pattern matching

functions

guards

comprehensions

References

Slide 6 of 12

Sequential Erlang Overview
Tuples and Lists

1> {123, "walter", cazzola}.
{123,"walter",cazzola}
2> {}.
{}
3> {abc, {’Walter’, ’Cazzola’}, 3.14}.
{abc,{’Walter’,’Cazzola’},3.14}
4> {{1,2},3}=={1,{2,3}}.
false

– used to store a fixed number of items;
– tuples of any size, type and complexity are allowed.

1> [].
[]
2> [1|[]].
[1]
3> [1|[2]].
[1,2]
4> [{1,2},ok,[]].
[{1,2},ok,[]]
5> length([{1,2},ok,[]]).
3
6> [{1,2},ok,[]]==[{1,2},ok,[]].
true
7> A=[$W,$a,$l,$t,$e,$r], B=[$C,$a,$z,$z,$o,$l,$a].
"Cazzola"
8> A++" "++B.
"Walter Cazzola"
9> A--B.
"Wter"

– used to store a variable number of items;
– lists are dynamically sized.

Starting with
Erlang

Walter Cazzola

Erlang
a few of history

characteristics

Sequential
Erlang
BEAM

datatypes

pattern matching

functions

guards

comprehensions

References

Slide 7 of 12

Sequential Erlang Overview
Assignments & Pattern Matching

1> A = 1.
1
2> A = 2.

** exception error: no match of right hand side value 2

– are just name bindings to values and cannot be modified;
– start with an uppercase letter and _ is an anonymous variable.
– the bindings are created via pattern matching.

3> [B|L]=[a,b,c].
[a,b,c]

4> {A,B,L}.
{1,a,[b,c]}

5> {X,X}={B,B}.
{a,a}

6> {Y,Y}={X,b}.

** exception error: no match of right hand side value a,b

7> 1=A.
1
8> 1=Z.

* 1: variable ’Z’ is unbound

9> {A1, _, [B1|_], {B1}} = {abc, 23, [22,x], {22}}.
{abc,23,[22,x],{22}}
10> A1.
abc
11> B1.
22

Starting with
Erlang

Walter Cazzola

Erlang
a few of history

characteristics

Sequential
Erlang
BEAM

datatypes

pattern matching

functions

guards

comprehensions

References

Slide 8 of 12

Sequential Erlang Overview
Functions & Modules

name(pattern11, pattern12, ..., pattern1n) [when guard1] -> body1 ;
name(pattern21, pattern22, ..., pattern2n) [when guard2] -> body2 ;

...
name(patternk1, patternk2, ..., patternkn) [when guardk] -> bodyk .

– clauses are scanned sequentially until a match is found;
– when a match is found all the variables in the head become bound;

-module(ex_module).
-export([double/1]).

double(X) -> times(X, 2).
times(X, N) -> X * N.

– double can be called from outside the module, times is local to the
module;

– double/1 means the function double with one argument (note that
double/1 and double/2 are two different functions).

Starting with
Erlang

Walter Cazzola

Erlang
a few of history

characteristics

Sequential
Erlang
BEAM

datatypes

pattern matching

functions

guards

comprehensions

References

Slide 5 of 12

Sequential Erlang Overview
Numbers and Atoms

1> 10.
10
2> 16#FF.
255
3> $A.
65
4> -12.35e-2.
-0.1235

– b#val is used to store numbers in base «b»;
– $char is used for ascii values.

1> cazzola@di.unimi.it.
’cazzola@di.unimi.it’
2> ’Walter Cazzola’.
’Walter Cazzola’
3> ’Walter^M
3> Cazzola’.
’Walter\nCazzola’

– atoms start with lowercase letter but can contain any character;
– if quoted they can start by uppercase letters.

Starting with
Erlang

Walter Cazzola

Erlang
a few of history

characteristics

Sequential
Erlang
BEAM

datatypes

pattern matching

functions

guards

comprehensions

References

Slide 6 of 12

Sequential Erlang Overview
Tuples and Lists

1> {123, "walter", cazzola}.
{123,"walter",cazzola}
2> {}.
{}
3> {abc, {’Walter’, ’Cazzola’}, 3.14}.
{abc,{’Walter’,’Cazzola’},3.14}
4> {{1,2},3}=={1,{2,3}}.
false

– used to store a fixed number of items;
– tuples of any size, type and complexity are allowed.

1> [].
[]
2> [1|[]].
[1]
3> [1|[2]].
[1,2]
4> [{1,2},ok,[]].
[{1,2},ok,[]]
5> length([{1,2},ok,[]]).
3
6> [{1,2},ok,[]]==[{1,2},ok,[]].
true
7> A=[$W,$a,$l,$t,$e,$r], B=[$C,$a,$z,$z,$o,$l,$a].
"Cazzola"
8> A++" "++B.
"Walter Cazzola"
9> A--B.
"Wter"

– used to store a variable number of items;
– lists are dynamically sized.

Starting with
Erlang

Walter Cazzola

Erlang
a few of history

characteristics

Sequential
Erlang
BEAM

datatypes

pattern matching

functions

guards

comprehensions

References

Slide 7 of 12

Sequential Erlang Overview
Assignments & Pattern Matching

1> A = 1.
1
2> A = 2.

** exception error: no match of right hand side value 2

– are just name bindings to values and cannot be modified;
– start with an uppercase letter and _ is an anonymous variable.
– the bindings are created via pattern matching.

3> [B|L]=[a,b,c].
[a,b,c]

4> {A,B,L}.
{1,a,[b,c]}

5> {X,X}={B,B}.
{a,a}

6> {Y,Y}={X,b}.

** exception error: no match of right hand side value a,b

7> 1=A.
1
8> 1=Z.

* 1: variable ’Z’ is unbound

9> {A1, _, [B1|_], {B1}} = {abc, 23, [22,x], {22}}.
{abc,23,[22,x],{22}}
10> A1.
abc
11> B1.
22

Starting with
Erlang

Walter Cazzola

Erlang
a few of history

characteristics

Sequential
Erlang
BEAM

datatypes

pattern matching

functions

guards

comprehensions

References

Slide 8 of 12

Sequential Erlang Overview
Functions & Modules

name(pattern11, pattern12, ..., pattern1n) [when guard1] -> body1 ;
name(pattern21, pattern22, ..., pattern2n) [when guard2] -> body2 ;

...
name(patternk1, patternk2, ..., patternkn) [when guardk] -> bodyk .

– clauses are scanned sequentially until a match is found;
– when a match is found all the variables in the head become bound;

-module(ex_module).
-export([double/1]).

double(X) -> times(X, 2).
times(X, N) -> X * N.

– double can be called from outside the module, times is local to the
module;

– double/1 means the function double with one argument (note that
double/1 and double/2 are two different functions).

Starting with
Erlang

Walter Cazzola

Erlang
a few of history

characteristics

Sequential
Erlang
BEAM

datatypes

pattern matching

functions

guards

comprehensions

References

Slide 9 of 12

Sequential Erlang Overview
Guard Sequences

Each clause in function definition can be guarded by a guard
sequence.

– a guard is a sequence g1 , g2 , . . . , gn of guard expressions;
– a guard expression is a subset of Erlang expressions to guarantee

to be free of side-effects;
– a guard sequence is true when all the guard expressions evaluate to

true.

Valid guard expression are:
– the atom true and other constants;
– calls to some built-in functions (BIFs);
– arithmetic and boolean expressions; and
– short-circuit expressions (andalso/orelse).

Permitted BIFs are:
is_atom/1 is_binary/1 is_bitstring/1 is_float/1 is_function/2
is_function/1 is_integer/1 is_list/1 is_number/1 is_pid/1
is_port/1 is_record/2 is_record/3 is_reference/1 is_tuple/1
abs/1 bit_size/1 byte_size element/2 float/1
hd/1 length/1 node/0 node/1 round/1
self/1 size/1 tl/1 trunc/1 tuple_size/1

Starting with
Erlang

Walter Cazzola

Erlang
a few of history

characteristics

Sequential
Erlang
BEAM

datatypes

pattern matching

functions

guards

comprehensions

References

Slide 10 of 12

Sequential Erlang Overview
Map, Filter & Reduce

-module(mfr).
-export([map/2,filter/2,reduce/2]).

map(_, []) -> [];
map(F, [H|TL]) -> [F(H)|map(F,TL)].

filter(_, []) -> [];
filter(P, [H|TL]) -> filter(P(H), P, H, TL).

filter(true, P, H, L) -> [H|filter(P, L)];
filter(false, P, _, L) -> filter(P, L).

reduce(F, [H|TL]) -> reduce(F, H, TL).

reduce(_, Q, []) -> Q;
reduce(F, Q, [H|TL]) -> reduce(F, F(Q,H), TL).

1> mfr:map(fun(X) -> X*X end, [1,2,3,4,5,6,7]).
[1,4,9,16,25,36,49]
2> mfr:filter(fun(X) -> (X rem 2)==0 end, [1,2,3,4,5,6,7]).
[2,4,6]
3> mfr:reduce(fun(X,Y) -> X+Y end, [1,2,3,4,5,6,7]).
28

They are available in the module lists.

Starting with
Erlang

Walter Cazzola

Erlang
a few of history

characteristics

Sequential
Erlang
BEAM

datatypes

pattern matching

functions

guards

comprehensions

References

Slide 11 of 12

Sequential Erlang Overview
List Comprehensions

[X||Qualifier1, ..., Qualifier_n]

X is an expression, each qualifier is a generator or a filter
– generators are in the form Pattern <- ListExpr where ListExpr

evaluates to a list;
– filters are either predicates or boolean expressions.
-module(sort).
-export([qsort/2]).

qsort(_, []) -> [];
qsort(P, [Pivot|TL]) ->
qsort(P, [X||X<-TL, P(X,Pivot)]) ++ [Pivot] ++ qsort(P, [X||X<-TL, not P(X,Pivot)]).

-module(prime).
-export([primes/1]).

primes(N) when N>1 -> [X|| X <- lists:seq(2,N),
(length([Y || Y <- lists:seq(2, trunc(math:sqrt(X))), ((X rem Y) == 0)]) == 0)];

primes(_) -> [].

1> sort:qsort(fun(X,Y) -> X<Y end, [13,1,-1,8,9,0,3.14]).
[-1,0,1,3.14,8,9,13]
2> sort:qsort(fun(X,Y) -> X>Y end, [13,1,-1,8,9,0,3.14]).
[13,9,8,3.14,1,0,-1]

3> prime:primes(100).
[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97]

Starting with
Erlang

Walter Cazzola

Erlang
a few of history

characteristics

Sequential
Erlang
BEAM

datatypes

pattern matching

functions

guards

comprehensions

References

Slide 12 of 12

References

I Gul Agha.
Actors: A Model of Concurrent Computation in Distributed Systems.

MIT Press, Cambridge, 1986.

I Joe Armstrong.
Programming Erlang: Software for a Concurrent World.
The Pragmatic Bookshelf, fifth edition, 2007.

I Francesco Cesarini and Simon Thompson.
Erlang Programming: A Concurrent Approach to Software Devel-
opment.
O’Reilly, June 2009.

Starting with
Erlang

Walter Cazzola

Erlang
a few of history

characteristics

Sequential
Erlang
BEAM

datatypes

pattern matching

functions

guards

comprehensions

References

Slide 9 of 12

Sequential Erlang Overview
Guard Sequences

Each clause in function definition can be guarded by a guard
sequence.

– a guard is a sequence g1 , g2 , . . . , gn of guard expressions;
– a guard expression is a subset of Erlang expressions to guarantee

to be free of side-effects;
– a guard sequence is true when all the guard expressions evaluate to

true.

Valid guard expression are:
– the atom true and other constants;
– calls to some built-in functions (BIFs);
– arithmetic and boolean expressions; and
– short-circuit expressions (andalso/orelse).

Permitted BIFs are:
is_atom/1 is_binary/1 is_bitstring/1 is_float/1 is_function/2
is_function/1 is_integer/1 is_list/1 is_number/1 is_pid/1
is_port/1 is_record/2 is_record/3 is_reference/1 is_tuple/1
abs/1 bit_size/1 byte_size element/2 float/1
hd/1 length/1 node/0 node/1 round/1
self/1 size/1 tl/1 trunc/1 tuple_size/1

Starting with
Erlang

Walter Cazzola

Erlang
a few of history

characteristics

Sequential
Erlang
BEAM

datatypes

pattern matching

functions

guards

comprehensions

References

Slide 10 of 12

Sequential Erlang Overview
Map, Filter & Reduce

-module(mfr).
-export([map/2,filter/2,reduce/2]).

map(_, []) -> [];
map(F, [H|TL]) -> [F(H)|map(F,TL)].

filter(_, []) -> [];
filter(P, [H|TL]) -> filter(P(H), P, H, TL).

filter(true, P, H, L) -> [H|filter(P, L)];
filter(false, P, _, L) -> filter(P, L).

reduce(F, [H|TL]) -> reduce(F, H, TL).

reduce(_, Q, []) -> Q;
reduce(F, Q, [H|TL]) -> reduce(F, F(Q,H), TL).

1> mfr:map(fun(X) -> X*X end, [1,2,3,4,5,6,7]).
[1,4,9,16,25,36,49]
2> mfr:filter(fun(X) -> (X rem 2)==0 end, [1,2,3,4,5,6,7]).
[2,4,6]
3> mfr:reduce(fun(X,Y) -> X+Y end, [1,2,3,4,5,6,7]).
28

They are available in the module lists.

Starting with
Erlang

Walter Cazzola

Erlang
a few of history

characteristics

Sequential
Erlang
BEAM

datatypes

pattern matching

functions

guards

comprehensions

References

Slide 11 of 12

Sequential Erlang Overview
List Comprehensions

[X||Qualifier1, ..., Qualifier_n]

X is an expression, each qualifier is a generator or a filter
– generators are in the form Pattern <- ListExpr where ListExpr

evaluates to a list;
– filters are either predicates or boolean expressions.
-module(sort).
-export([qsort/2]).

qsort(_, []) -> [];
qsort(P, [Pivot|TL]) ->
qsort(P, [X||X<-TL, P(X,Pivot)]) ++ [Pivot] ++ qsort(P, [X||X<-TL, not P(X,Pivot)]).

-module(prime).
-export([primes/1]).

primes(N) when N>1 -> [X|| X <- lists:seq(2,N),
(length([Y || Y <- lists:seq(2, trunc(math:sqrt(X))), ((X rem Y) == 0)]) == 0)];

primes(_) -> [].

1> sort:qsort(fun(X,Y) -> X<Y end, [13,1,-1,8,9,0,3.14]).
[-1,0,1,3.14,8,9,13]
2> sort:qsort(fun(X,Y) -> X>Y end, [13,1,-1,8,9,0,3.14]).
[13,9,8,3.14,1,0,-1]

3> prime:primes(100).
[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97]

Starting with
Erlang

Walter Cazzola

Erlang
a few of history

characteristics

Sequential
Erlang
BEAM

datatypes

pattern matching

functions

guards

comprehensions

References

Slide 12 of 12

References

I Gul Agha.
Actors: A Model of Concurrent Computation in Distributed Systems.

MIT Press, Cambridge, 1986.

I Joe Armstrong.
Programming Erlang: Software for a Concurrent World.
The Pragmatic Bookshelf, fifth edition, 2007.

I Francesco Cesarini and Simon Thompson.
Erlang Programming: A Concurrent Approach to Software Devel-
opment.
O’Reilly, June 2009.

Starting with
Erlang

Walter Cazzola

Erlang
a few of history

characteristics

Sequential
Erlang
BEAM

datatypes

pattern matching

functions

guards

comprehensions

References

Slide 9 of 12

Sequential Erlang Overview
Guard Sequences

Each clause in function definition can be guarded by a guard
sequence.

– a guard is a sequence g1 , g2 , . . . , gn of guard expressions;
– a guard expression is a subset of Erlang expressions to guarantee

to be free of side-effects;
– a guard sequence is true when all the guard expressions evaluate to

true.

Valid guard expression are:
– the atom true and other constants;
– calls to some built-in functions (BIFs);
– arithmetic and boolean expressions; and
– short-circuit expressions (andalso/orelse).

Permitted BIFs are:
is_atom/1 is_binary/1 is_bitstring/1 is_float/1 is_function/2
is_function/1 is_integer/1 is_list/1 is_number/1 is_pid/1
is_port/1 is_record/2 is_record/3 is_reference/1 is_tuple/1
abs/1 bit_size/1 byte_size element/2 float/1
hd/1 length/1 node/0 node/1 round/1
self/1 size/1 tl/1 trunc/1 tuple_size/1

Starting with
Erlang

Walter Cazzola

Erlang
a few of history

characteristics

Sequential
Erlang
BEAM

datatypes

pattern matching

functions

guards

comprehensions

References

Slide 10 of 12

Sequential Erlang Overview
Map, Filter & Reduce

-module(mfr).
-export([map/2,filter/2,reduce/2]).

map(_, []) -> [];
map(F, [H|TL]) -> [F(H)|map(F,TL)].

filter(_, []) -> [];
filter(P, [H|TL]) -> filter(P(H), P, H, TL).

filter(true, P, H, L) -> [H|filter(P, L)];
filter(false, P, _, L) -> filter(P, L).

reduce(F, [H|TL]) -> reduce(F, H, TL).

reduce(_, Q, []) -> Q;
reduce(F, Q, [H|TL]) -> reduce(F, F(Q,H), TL).

1> mfr:map(fun(X) -> X*X end, [1,2,3,4,5,6,7]).
[1,4,9,16,25,36,49]
2> mfr:filter(fun(X) -> (X rem 2)==0 end, [1,2,3,4,5,6,7]).
[2,4,6]
3> mfr:reduce(fun(X,Y) -> X+Y end, [1,2,3,4,5,6,7]).
28

They are available in the module lists.

Starting with
Erlang

Walter Cazzola

Erlang
a few of history

characteristics

Sequential
Erlang
BEAM

datatypes

pattern matching

functions

guards

comprehensions

References

Slide 11 of 12

Sequential Erlang Overview
List Comprehensions

[X||Qualifier1, ..., Qualifier_n]

X is an expression, each qualifier is a generator or a filter
– generators are in the form Pattern <- ListExpr where ListExpr

evaluates to a list;
– filters are either predicates or boolean expressions.
-module(sort).
-export([qsort/2]).

qsort(_, []) -> [];
qsort(P, [Pivot|TL]) ->
qsort(P, [X||X<-TL, P(X,Pivot)]) ++ [Pivot] ++ qsort(P, [X||X<-TL, not P(X,Pivot)]).

-module(prime).
-export([primes/1]).

primes(N) when N>1 -> [X|| X <- lists:seq(2,N),
(length([Y || Y <- lists:seq(2, trunc(math:sqrt(X))), ((X rem Y) == 0)]) == 0)];

primes(_) -> [].

1> sort:qsort(fun(X,Y) -> X<Y end, [13,1,-1,8,9,0,3.14]).
[-1,0,1,3.14,8,9,13]
2> sort:qsort(fun(X,Y) -> X>Y end, [13,1,-1,8,9,0,3.14]).
[13,9,8,3.14,1,0,-1]

3> prime:primes(100).
[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97]

Starting with
Erlang

Walter Cazzola

Erlang
a few of history

characteristics

Sequential
Erlang
BEAM

datatypes

pattern matching

functions

guards

comprehensions

References

Slide 12 of 12

References

I Gul Agha.
Actors: A Model of Concurrent Computation in Distributed Systems.

MIT Press, Cambridge, 1986.

I Joe Armstrong.
Programming Erlang: Software for a Concurrent World.
The Pragmatic Bookshelf, fifth edition, 2007.

I Francesco Cesarini and Simon Thompson.
Erlang Programming: A Concurrent Approach to Software Devel-
opment.
O’Reilly, June 2009.

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 1 of 15

Actor Model Concurrency in Erlang
Processes and their interaction

Walter Cazzola

Dipartimento di Informatica
Università degli Studi di Milano

e-mail: cazzola@di.unimi.it
twitter: @w_cazzola

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 2 of 15

Actor Model Concurrency
Traditional (Shared-State) Concurrency

Threads are the traditional way of offering concurrency
– the execution of the program is split up into concurrently running

tasks;
– such tasks operate on shared memory

Several problems
– race conditions with update loss

T1 (withdraw(10)) T2 (withdraw(10)) balance
if (balance - amount >= 0) 15§

if (balance - amount >= 0) 15§

balance -= amount; 5§

balance -= amount; -5§

– deadlocks
P1 P2

lock(A) lock(B)

lock(B) lock(A)

Erlang (and also Scala via the Akka library) takes a different
approach to concurrency: the Actor Model.

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 3 of 15

Actor Model Concurrency
Overview

Each object is an actor.
– it has a mailbox and a behavior;
– actors communicate through messages buffered in a mailbox.

Computation is data-driven, upon receiving a message an actor
– can send a number of messages to other actors;
– can create a number of actors; and
– can assume a different behavior for dealing with the next message

in its mailbox.

Note that,
– all communications are performed asynchronously;

– the sender does not wait for a message to be received upon sending
it;

– no guarantees about the receiving order but they will eventually be
delivered.

– there is no shared state between actors
– information about internal state are requested/provided by messages;
– also internal state manipulation happens through messages.

– actors run concurrently and are implemented as lightweight user-
space threads

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 4 of 15

Actor Model Concurrency
Transaction Overview

1 2 · · · n n+1

XTask

X

1 m r r+1 1

W Y

new task

new message new actor

new behavior

mailbox

actor
new

behavior

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 1 of 15

Actor Model Concurrency in Erlang
Processes and their interaction

Walter Cazzola

Dipartimento di Informatica
Università degli Studi di Milano

e-mail: cazzola@di.unimi.it
twitter: @w_cazzola

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 2 of 15

Actor Model Concurrency
Traditional (Shared-State) Concurrency

Threads are the traditional way of offering concurrency
– the execution of the program is split up into concurrently running

tasks;
– such tasks operate on shared memory

Several problems
– race conditions with update loss

T1 (withdraw(10)) T2 (withdraw(10)) balance
if (balance - amount >= 0) 15§

if (balance - amount >= 0) 15§

balance -= amount; 5§

balance -= amount; -5§

– deadlocks
P1 P2

lock(A) lock(B)

lock(B) lock(A)

Erlang (and also Scala via the Akka library) takes a different
approach to concurrency: the Actor Model.

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 3 of 15

Actor Model Concurrency
Overview

Each object is an actor.
– it has a mailbox and a behavior;
– actors communicate through messages buffered in a mailbox.

Computation is data-driven, upon receiving a message an actor
– can send a number of messages to other actors;
– can create a number of actors; and
– can assume a different behavior for dealing with the next message

in its mailbox.

Note that,
– all communications are performed asynchronously;

– the sender does not wait for a message to be received upon sending
it;

– no guarantees about the receiving order but they will eventually be
delivered.

– there is no shared state between actors
– information about internal state are requested/provided by messages;
– also internal state manipulation happens through messages.

– actors run concurrently and are implemented as lightweight user-
space threads

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 4 of 15

Actor Model Concurrency
Transaction Overview

1 2 · · · n n+1

XTask

X

1 m r r+1 1

W Y

new task

new message new actor

new behavior

mailbox

actor
new

behavior

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 1 of 15

Actor Model Concurrency in Erlang
Processes and their interaction

Walter Cazzola

Dipartimento di Informatica
Università degli Studi di Milano

e-mail: cazzola@di.unimi.it
twitter: @w_cazzola

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 2 of 15

Actor Model Concurrency
Traditional (Shared-State) Concurrency

Threads are the traditional way of offering concurrency
– the execution of the program is split up into concurrently running

tasks;
– such tasks operate on shared memory

Several problems
– race conditions with update loss

T1 (withdraw(10)) T2 (withdraw(10)) balance
if (balance - amount >= 0) 15§

if (balance - amount >= 0) 15§

balance -= amount; 5§

balance -= amount; -5§

– deadlocks
P1 P2

lock(A) lock(B)

lock(B) lock(A)

Erlang (and also Scala via the Akka library) takes a different
approach to concurrency: the Actor Model.

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 3 of 15

Actor Model Concurrency
Overview

Each object is an actor.
– it has a mailbox and a behavior;
– actors communicate through messages buffered in a mailbox.

Computation is data-driven, upon receiving a message an actor
– can send a number of messages to other actors;
– can create a number of actors; and
– can assume a different behavior for dealing with the next message

in its mailbox.

Note that,
– all communications are performed asynchronously;

– the sender does not wait for a message to be received upon sending
it;

– no guarantees about the receiving order but they will eventually be
delivered.

– there is no shared state between actors
– information about internal state are requested/provided by messages;
– also internal state manipulation happens through messages.

– actors run concurrently and are implemented as lightweight user-
space threads

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 4 of 15

Actor Model Concurrency
Transaction Overview

1 2 · · · n n+1

XTask

X

1 m r r+1 1

W Y

new task

new message new actor

new behavior

mailbox

actor
new

behavior

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 5 of 15

Concurrency in Erlang
Overview

Three basic elements form the foundation for concurrency
– a built-in function (spawn()) to create new actors;
– an operator (!) to send a message to another actor; and
– a mechanism to pattern-match message from the actor’s mailbox.

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 6 of 15

Concurrency in Erlang
Spawning New Processes.

Pid = spawn(demo, loop, [3,a])

pid <0.36.0>

pid <0.37.0>

pid <0.36.0>

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 7 of 15

Concurrency in Erlang
My First Erlang Process.

-module(processes_demo).
-export([start/2, loop/2]).

start(N,A) -> spawn (processes_demo, loop, [N,A]).

loop(0,A) -> io:format("~p(~p) ~p~n", [A, self(), stops]);
loop(N,A) -> io:format("~p(~p) ~p~n", [A, self(), N]), loop(N-1,A).

1> processes_demo:start(7,a),processes_demo:start(5,b),processes_demo:start(3,c).
a(<0.73.0>) 7
b(<0.74.0>) 5
a(<0.73.0>) 6
c(<0.75.0>) 3
b(<0.74.0>) 4
<0.75.0>
a(<0.73.0>) 5
c(<0.75.0>) 2
b(<0.74.0>) 3
a(<0.73.0>) 4
c(<0.75.0>) 1
b(<0.74.0>) 2
a(<0.73.0>) 3
c(<0.75.0>) stops
b(<0.74.0>) 1
a(<0.73.0>) 2
b(<0.74.0>) stops
a(<0.73.0>) 1
a(<0.73.0>) stops

self() returns the PID of the process.

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 8 of 15

Concurrency in Erlang
Sending a Message.

Every actor is characterized by:
– an address which identifies the actor and
– a mailbox where the delivered messages but not cleared yet are

stored;

Messages are sorted on arrival time (not on sending time).
To send a message to an actor:

– has to know the address (pid) of the target actor;
– to send its address (pid) to the target with the message if a reply

is necessary; and
– to use the send (!) primitive.

Exp1 ! Exp2

– Exp1 must identify an actor;
– Exp2 any valid Erlang expression; the result of the send expression

is the one of Exp2 ;
– the sending never fails also when the target actor doesn’t exist or

is unreachable;
– the sending operation never block the sender.

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 5 of 15

Concurrency in Erlang
Overview

Three basic elements form the foundation for concurrency
– a built-in function (spawn()) to create new actors;
– an operator (!) to send a message to another actor; and
– a mechanism to pattern-match message from the actor’s mailbox.

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 6 of 15

Concurrency in Erlang
Spawning New Processes.

Pid = spawn(demo, loop, [3,a])

pid <0.36.0>

pid <0.37.0>

pid <0.36.0>

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 7 of 15

Concurrency in Erlang
My First Erlang Process.

-module(processes_demo).
-export([start/2, loop/2]).

start(N,A) -> spawn (processes_demo, loop, [N,A]).

loop(0,A) -> io:format("~p(~p) ~p~n", [A, self(), stops]);
loop(N,A) -> io:format("~p(~p) ~p~n", [A, self(), N]), loop(N-1,A).

1> processes_demo:start(7,a),processes_demo:start(5,b),processes_demo:start(3,c).
a(<0.73.0>) 7
b(<0.74.0>) 5
a(<0.73.0>) 6
c(<0.75.0>) 3
b(<0.74.0>) 4
<0.75.0>
a(<0.73.0>) 5
c(<0.75.0>) 2
b(<0.74.0>) 3
a(<0.73.0>) 4
c(<0.75.0>) 1
b(<0.74.0>) 2
a(<0.73.0>) 3
c(<0.75.0>) stops
b(<0.74.0>) 1
a(<0.73.0>) 2
b(<0.74.0>) stops
a(<0.73.0>) 1
a(<0.73.0>) stops

self() returns the PID of the process.

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 8 of 15

Concurrency in Erlang
Sending a Message.

Every actor is characterized by:
– an address which identifies the actor and
– a mailbox where the delivered messages but not cleared yet are

stored;

Messages are sorted on arrival time (not on sending time).
To send a message to an actor:

– has to know the address (pid) of the target actor;
– to send its address (pid) to the target with the message if a reply

is necessary; and
– to use the send (!) primitive.

Exp1 ! Exp2

– Exp1 must identify an actor;
– Exp2 any valid Erlang expression; the result of the send expression

is the one of Exp2 ;
– the sending never fails also when the target actor doesn’t exist or

is unreachable;
– the sending operation never block the sender.

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 5 of 15

Concurrency in Erlang
Overview

Three basic elements form the foundation for concurrency
– a built-in function (spawn()) to create new actors;
– an operator (!) to send a message to another actor; and
– a mechanism to pattern-match message from the actor’s mailbox.

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 6 of 15

Concurrency in Erlang
Spawning New Processes.

Pid = spawn(demo, loop, [3,a])

pid <0.36.0>

pid <0.37.0>

pid <0.36.0>

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 7 of 15

Concurrency in Erlang
My First Erlang Process.

-module(processes_demo).
-export([start/2, loop/2]).

start(N,A) -> spawn (processes_demo, loop, [N,A]).

loop(0,A) -> io:format("~p(~p) ~p~n", [A, self(), stops]);
loop(N,A) -> io:format("~p(~p) ~p~n", [A, self(), N]), loop(N-1,A).

1> processes_demo:start(7,a),processes_demo:start(5,b),processes_demo:start(3,c).
a(<0.73.0>) 7
b(<0.74.0>) 5
a(<0.73.0>) 6
c(<0.75.0>) 3
b(<0.74.0>) 4
<0.75.0>
a(<0.73.0>) 5
c(<0.75.0>) 2
b(<0.74.0>) 3
a(<0.73.0>) 4
c(<0.75.0>) 1
b(<0.74.0>) 2
a(<0.73.0>) 3
c(<0.75.0>) stops
b(<0.74.0>) 1
a(<0.73.0>) 2
b(<0.74.0>) stops
a(<0.73.0>) 1
a(<0.73.0>) stops

self() returns the PID of the process.

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 8 of 15

Concurrency in Erlang
Sending a Message.

Every actor is characterized by:
– an address which identifies the actor and
– a mailbox where the delivered messages but not cleared yet are

stored;

Messages are sorted on arrival time (not on sending time).
To send a message to an actor:

– has to know the address (pid) of the target actor;
– to send its address (pid) to the target with the message if a reply

is necessary; and
– to use the send (!) primitive.

Exp1 ! Exp2

– Exp1 must identify an actor;
– Exp2 any valid Erlang expression; the result of the send expression

is the one of Exp2 ;
– the sending never fails also when the target actor doesn’t exist or

is unreachable;
– the sending operation never block the sender.

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 5 of 15

Concurrency in Erlang
Overview

Three basic elements form the foundation for concurrency
– a built-in function (spawn()) to create new actors;
– an operator (!) to send a message to another actor; and
– a mechanism to pattern-match message from the actor’s mailbox.

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 6 of 15

Concurrency in Erlang
Spawning New Processes.

Pid = spawn(demo, loop, [3,a])

pid <0.36.0>

pid <0.37.0>

pid <0.36.0>

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 7 of 15

Concurrency in Erlang
My First Erlang Process.

-module(processes_demo).
-export([start/2, loop/2]).

start(N,A) -> spawn (processes_demo, loop, [N,A]).

loop(0,A) -> io:format("~p(~p) ~p~n", [A, self(), stops]);
loop(N,A) -> io:format("~p(~p) ~p~n", [A, self(), N]), loop(N-1,A).

1> processes_demo:start(7,a),processes_demo:start(5,b),processes_demo:start(3,c).
a(<0.73.0>) 7
b(<0.74.0>) 5
a(<0.73.0>) 6
c(<0.75.0>) 3
b(<0.74.0>) 4
<0.75.0>
a(<0.73.0>) 5
c(<0.75.0>) 2
b(<0.74.0>) 3
a(<0.73.0>) 4
c(<0.75.0>) 1
b(<0.74.0>) 2
a(<0.73.0>) 3
c(<0.75.0>) stops
b(<0.74.0>) 1
a(<0.73.0>) 2
b(<0.74.0>) stops
a(<0.73.0>) 1
a(<0.73.0>) stops

self() returns the PID of the process.

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 8 of 15

Concurrency in Erlang
Sending a Message.

Every actor is characterized by:
– an address which identifies the actor and
– a mailbox where the delivered messages but not cleared yet are

stored;

Messages are sorted on arrival time (not on sending time).
To send a message to an actor:

– has to know the address (pid) of the target actor;
– to send its address (pid) to the target with the message if a reply

is necessary; and
– to use the send (!) primitive.

Exp1 ! Exp2

– Exp1 must identify an actor;
– Exp2 any valid Erlang expression; the result of the send expression

is the one of Exp2 ;
– the sending never fails also when the target actor doesn’t exist or

is unreachable;
– the sending operation never block the sender.

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 9 of 15

Concurrency in Erlang
Receiving a Message.

The receiving operation uses pattern matching.
receive
Any -> do_something(Any)

end

– the actor pick out of the mailbox the oldest message matching Any;
– it is blocked waiting for a message when the queue is empty.

receive
{Pid, something} -> do_something(Pid)

end

– the actor tries to pick out the oldest message that matches
{Pid, something};

– if it fails the actor is blocked waiting for such a message
receive
Pattern1 [when GuardSeq1] -> Body1 ;

...
Patternn [when GuardSeqn] -> Bodyn

[after Exprt -> Bodyt]
end

– rules definition and evaluation is quite similar to the functions;
– when no pattern matches the mailbox the actor waits instead of

raising an exception;
– to avoid waiting forever the clause after can be used, after Exprt

ms the actor is woke up.

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 10 of 15

Concurrency in Erlang
Converting Some Temperatures.

-module(converter).
-export([t_converter/0]).

t_converter() ->
receive
{toF, C} -> io:format("~p °C is ~p °F~n", [C, 32+C*9/5]), t_converter();
{toC, F} -> io:format("~p °F is ~p °C~n", [F, (F-32)*5/9]), t_converter();
{stop} -> io:format("Stopping!~n");
Other -> io:format("Unknown: ~p~n", [Other]), t_converter()

end.

1> Pid = spawn(converter, t_converter, []).
<0.39.0>
2> Pid ! {toC, 32}.
32 °F is 0.0 °C
{toC,32}
3> Pid ! {toF, 100}.
100 °C is 212.0 °F
{toF,100}
4> Pid ! {stop}.
Stopping!
{stop}
5> Pid ! {toF, 100}. % once stopped a message to such a process is silently ignored
{toF,100}

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 11 of 15

Concurrency in Erlang
Calculating Some Areas.

-module(area_server).
-export([loop/0]).

loop() ->
receive

{rectangle, Width, Ht} ->
io:format("Area of rectangle is ~p~n",[Width * Ht]),
loop();

{circle, R} ->
io:format("Area of circle is ~p~n", [3.14159 * R * R]),
loop();

Other ->
io:format("I don’t know how to react to the message ~p~n",[Other]),
loop()

end.

1> Pid = spawn(fun area_server:loop/0).
<0.34.0>
2> Pid ! {rectangle, 30, 40}.
Area of rectangle is 1200
{rectangle,30,40}
4> Pid ! {circle, 40}.
Area of circle is 5026.544
{circle,40}
5> Pid ! {triangle,22,44}.
I don’t know what the area of a {triangle,22,44} is
{triangle,22,44}

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 12 of 15

Concurrency in Erlang
Actor Scheduling in Erlang.

Actors are not processes and are not dealt by the operating
system

– the BEAM uses a preemptive scheduler;
– when an actor run for a too long period of time or when it enters

a receive statement with no message available, the actor is halted
and placed on a scheduling queue;

Actors and the rest of the system
– OS processes and actors have different schedulers and long running

Erlang applications do not interfere with the execution of the OS
processes (no one will become unresponsive)

– the BEAM supports symmetric multiprocessing (SMP)
– i.e., it can run processes in parallel on multiple CPUs
– but it cannot run lightweight processes (actors) in parallel on multiple

CPUs.

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 9 of 15

Concurrency in Erlang
Receiving a Message.

The receiving operation uses pattern matching.
receive
Any -> do_something(Any)

end

– the actor pick out of the mailbox the oldest message matching Any;
– it is blocked waiting for a message when the queue is empty.

receive
{Pid, something} -> do_something(Pid)

end

– the actor tries to pick out the oldest message that matches
{Pid, something};

– if it fails the actor is blocked waiting for such a message
receive
Pattern1 [when GuardSeq1] -> Body1 ;

...
Patternn [when GuardSeqn] -> Bodyn

[after Exprt -> Bodyt]
end

– rules definition and evaluation is quite similar to the functions;
– when no pattern matches the mailbox the actor waits instead of

raising an exception;
– to avoid waiting forever the clause after can be used, after Exprt

ms the actor is woke up.

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 10 of 15

Concurrency in Erlang
Converting Some Temperatures.

-module(converter).
-export([t_converter/0]).

t_converter() ->
receive
{toF, C} -> io:format("~p °C is ~p °F~n", [C, 32+C*9/5]), t_converter();
{toC, F} -> io:format("~p °F is ~p °C~n", [F, (F-32)*5/9]), t_converter();
{stop} -> io:format("Stopping!~n");
Other -> io:format("Unknown: ~p~n", [Other]), t_converter()

end.

1> Pid = spawn(converter, t_converter, []).
<0.39.0>
2> Pid ! {toC, 32}.
32 °F is 0.0 °C
{toC,32}
3> Pid ! {toF, 100}.
100 °C is 212.0 °F
{toF,100}
4> Pid ! {stop}.
Stopping!
{stop}
5> Pid ! {toF, 100}. % once stopped a message to such a process is silently ignored
{toF,100}

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 11 of 15

Concurrency in Erlang
Calculating Some Areas.

-module(area_server).
-export([loop/0]).

loop() ->
receive

{rectangle, Width, Ht} ->
io:format("Area of rectangle is ~p~n",[Width * Ht]),
loop();

{circle, R} ->
io:format("Area of circle is ~p~n", [3.14159 * R * R]),
loop();

Other ->
io:format("I don’t know how to react to the message ~p~n",[Other]),
loop()

end.

1> Pid = spawn(fun area_server:loop/0).
<0.34.0>
2> Pid ! {rectangle, 30, 40}.
Area of rectangle is 1200
{rectangle,30,40}
4> Pid ! {circle, 40}.
Area of circle is 5026.544
{circle,40}
5> Pid ! {triangle,22,44}.
I don’t know what the area of a {triangle,22,44} is
{triangle,22,44}

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 12 of 15

Concurrency in Erlang
Actor Scheduling in Erlang.

Actors are not processes and are not dealt by the operating
system

– the BEAM uses a preemptive scheduler;
– when an actor run for a too long period of time or when it enters

a receive statement with no message available, the actor is halted
and placed on a scheduling queue;

Actors and the rest of the system
– OS processes and actors have different schedulers and long running

Erlang applications do not interfere with the execution of the OS
processes (no one will become unresponsive)

– the BEAM supports symmetric multiprocessing (SMP)
– i.e., it can run processes in parallel on multiple CPUs
– but it cannot run lightweight processes (actors) in parallel on multiple

CPUs.

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 9 of 15

Concurrency in Erlang
Receiving a Message.

The receiving operation uses pattern matching.
receive
Any -> do_something(Any)

end

– the actor pick out of the mailbox the oldest message matching Any;
– it is blocked waiting for a message when the queue is empty.

receive
{Pid, something} -> do_something(Pid)

end

– the actor tries to pick out the oldest message that matches
{Pid, something};

– if it fails the actor is blocked waiting for such a message
receive
Pattern1 [when GuardSeq1] -> Body1 ;

...
Patternn [when GuardSeqn] -> Bodyn

[after Exprt -> Bodyt]
end

– rules definition and evaluation is quite similar to the functions;
– when no pattern matches the mailbox the actor waits instead of

raising an exception;
– to avoid waiting forever the clause after can be used, after Exprt

ms the actor is woke up.

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 10 of 15

Concurrency in Erlang
Converting Some Temperatures.

-module(converter).
-export([t_converter/0]).

t_converter() ->
receive
{toF, C} -> io:format("~p °C is ~p °F~n", [C, 32+C*9/5]), t_converter();
{toC, F} -> io:format("~p °F is ~p °C~n", [F, (F-32)*5/9]), t_converter();
{stop} -> io:format("Stopping!~n");
Other -> io:format("Unknown: ~p~n", [Other]), t_converter()

end.

1> Pid = spawn(converter, t_converter, []).
<0.39.0>
2> Pid ! {toC, 32}.
32 °F is 0.0 °C
{toC,32}
3> Pid ! {toF, 100}.
100 °C is 212.0 °F
{toF,100}
4> Pid ! {stop}.
Stopping!
{stop}
5> Pid ! {toF, 100}. % once stopped a message to such a process is silently ignored
{toF,100}

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 11 of 15

Concurrency in Erlang
Calculating Some Areas.

-module(area_server).
-export([loop/0]).

loop() ->
receive

{rectangle, Width, Ht} ->
io:format("Area of rectangle is ~p~n",[Width * Ht]),
loop();

{circle, R} ->
io:format("Area of circle is ~p~n", [3.14159 * R * R]),
loop();

Other ->
io:format("I don’t know how to react to the message ~p~n",[Other]),
loop()

end.

1> Pid = spawn(fun area_server:loop/0).
<0.34.0>
2> Pid ! {rectangle, 30, 40}.
Area of rectangle is 1200
{rectangle,30,40}
4> Pid ! {circle, 40}.
Area of circle is 5026.544
{circle,40}
5> Pid ! {triangle,22,44}.
I don’t know what the area of a {triangle,22,44} is
{triangle,22,44}

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 12 of 15

Concurrency in Erlang
Actor Scheduling in Erlang.

Actors are not processes and are not dealt by the operating
system

– the BEAM uses a preemptive scheduler;
– when an actor run for a too long period of time or when it enters

a receive statement with no message available, the actor is halted
and placed on a scheduling queue;

Actors and the rest of the system
– OS processes and actors have different schedulers and long running

Erlang applications do not interfere with the execution of the OS
processes (no one will become unresponsive)

– the BEAM supports symmetric multiprocessing (SMP)
– i.e., it can run processes in parallel on multiple CPUs
– but it cannot run lightweight processes (actors) in parallel on multiple

CPUs.

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 9 of 15

Concurrency in Erlang
Receiving a Message.

The receiving operation uses pattern matching.
receive
Any -> do_something(Any)

end

– the actor pick out of the mailbox the oldest message matching Any;
– it is blocked waiting for a message when the queue is empty.

receive
{Pid, something} -> do_something(Pid)

end

– the actor tries to pick out the oldest message that matches
{Pid, something};

– if it fails the actor is blocked waiting for such a message
receive
Pattern1 [when GuardSeq1] -> Body1 ;

...
Patternn [when GuardSeqn] -> Bodyn

[after Exprt -> Bodyt]
end

– rules definition and evaluation is quite similar to the functions;
– when no pattern matches the mailbox the actor waits instead of

raising an exception;
– to avoid waiting forever the clause after can be used, after Exprt

ms the actor is woke up.

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 10 of 15

Concurrency in Erlang
Converting Some Temperatures.

-module(converter).
-export([t_converter/0]).

t_converter() ->
receive
{toF, C} -> io:format("~p °C is ~p °F~n", [C, 32+C*9/5]), t_converter();
{toC, F} -> io:format("~p °F is ~p °C~n", [F, (F-32)*5/9]), t_converter();
{stop} -> io:format("Stopping!~n");
Other -> io:format("Unknown: ~p~n", [Other]), t_converter()

end.

1> Pid = spawn(converter, t_converter, []).
<0.39.0>
2> Pid ! {toC, 32}.
32 °F is 0.0 °C
{toC,32}
3> Pid ! {toF, 100}.
100 °C is 212.0 °F
{toF,100}
4> Pid ! {stop}.
Stopping!
{stop}
5> Pid ! {toF, 100}. % once stopped a message to such a process is silently ignored
{toF,100}

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 11 of 15

Concurrency in Erlang
Calculating Some Areas.

-module(area_server).
-export([loop/0]).

loop() ->
receive

{rectangle, Width, Ht} ->
io:format("Area of rectangle is ~p~n",[Width * Ht]),
loop();

{circle, R} ->
io:format("Area of circle is ~p~n", [3.14159 * R * R]),
loop();

Other ->
io:format("I don’t know how to react to the message ~p~n",[Other]),
loop()

end.

1> Pid = spawn(fun area_server:loop/0).
<0.34.0>
2> Pid ! {rectangle, 30, 40}.
Area of rectangle is 1200
{rectangle,30,40}
4> Pid ! {circle, 40}.
Area of circle is 5026.544
{circle,40}
5> Pid ! {triangle,22,44}.
I don’t know what the area of a {triangle,22,44} is
{triangle,22,44}

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 12 of 15

Concurrency in Erlang
Actor Scheduling in Erlang.

Actors are not processes and are not dealt by the operating
system

– the BEAM uses a preemptive scheduler;
– when an actor run for a too long period of time or when it enters

a receive statement with no message available, the actor is halted
and placed on a scheduling queue;

Actors and the rest of the system
– OS processes and actors have different schedulers and long running

Erlang applications do not interfere with the execution of the OS
processes (no one will become unresponsive)

– the BEAM supports symmetric multiprocessing (SMP)
– i.e., it can run processes in parallel on multiple CPUs
– but it cannot run lightweight processes (actors) in parallel on multiple

CPUs.

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 13 of 15

Concurrency in Erlang
Timing the Spawning Process.

-module(processes).
-export([max/1]).

max(N) ->
Max = erlang:system_info(process_limit),
io:format("Maximum allowed processes:~p~n",[Max]),
statistics(runtime), statistics(wall_clock),
L = for(1, N, fun() -> spawn(fun() -> wait() end) end),
{_, Time1} = statistics(runtime), {_, Time2} = statistics(wall_clock),
lists:foreach(fun(Pid) -> Pid ! die end, L),
U1 = Time1 * 1000 / N, U2 = Time2 * 1000 / N,
io:format("Process spawn time = ~p (~p) microseconds~n", [U1, U2]).

wait() -> receive die -> void end.

for(N, N, F) -> [F()];
for(I, N, F) -> [F()|for(I+1, N, F)].

1> processes:max(20000).
Maximum allowed processes:32768
Process spawn time = 2.5 (3.4) microseconds
ok
2> processes:max(40000).
Maximum allowed processes:32768

=ERROR REPORT==== 8-Nov-2011::14:24:32 ===
Too many processes
...
[16:48]cazzola@surtur:~/lp/erlang>erl +P 100000
1> processes:max(50000).
Maximum allowed processes:100000
Process spawn time = 3.2 (3.74) microseconds
ok

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 14 of 15

Concurrency in Erlang
Giving a Name to the Actors.

Erlang provides a mechanism to render public the pid of a process
to all the other processes.

– register(an_atom, Pid)

– unregister(an_atom)

– whereis(an_atom)->Pid|undefined

– registered()

Once registered
– it is possible to send a message to it directly (name!msg).

-module(clock).
-export([start/2, stop/0]).

start(Time, Fun) -> register(clock, spawn(fun() -> tick(Time, Fun) end)).
stop() -> clock ! stop.

tick(Time, Fun) ->
receive
stop -> void

after
Time -> Fun(), tick(Time, Fun)

end.

5> clock:start(5000, fun() -> io:format("TICK ~p~n",[erlang:now()]) end).
true
TICK 1320,769016,673190
TICK 1320,769021,678451
TICK 1320,769026,679120
7> clock:stop().
stop

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 15 of 15

References

I Gul Agha.
Actors: A Model of Concurrent Computation in Distributed Systems.

MIT Press, Cambridge, 1986.

I Joe Armstrong.
Programming Erlang: Software for a Concurrent World.
The Pragmatic Bookshelf, fifth edition, 2007.

I Francesco Cesarini and Simon J. Thompson.
Erlang Programming: A Concurrent Approach to Software Devel-
opment.
O’Reilly, June 2009.

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 13 of 15

Concurrency in Erlang
Timing the Spawning Process.

-module(processes).
-export([max/1]).

max(N) ->
Max = erlang:system_info(process_limit),
io:format("Maximum allowed processes:~p~n",[Max]),
statistics(runtime), statistics(wall_clock),
L = for(1, N, fun() -> spawn(fun() -> wait() end) end),
{_, Time1} = statistics(runtime), {_, Time2} = statistics(wall_clock),
lists:foreach(fun(Pid) -> Pid ! die end, L),
U1 = Time1 * 1000 / N, U2 = Time2 * 1000 / N,
io:format("Process spawn time = ~p (~p) microseconds~n", [U1, U2]).

wait() -> receive die -> void end.

for(N, N, F) -> [F()];
for(I, N, F) -> [F()|for(I+1, N, F)].

1> processes:max(20000).
Maximum allowed processes:32768
Process spawn time = 2.5 (3.4) microseconds
ok
2> processes:max(40000).
Maximum allowed processes:32768

=ERROR REPORT==== 8-Nov-2011::14:24:32 ===
Too many processes
...
[16:48]cazzola@surtur:~/lp/erlang>erl +P 100000
1> processes:max(50000).
Maximum allowed processes:100000
Process spawn time = 3.2 (3.74) microseconds
ok

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 14 of 15

Concurrency in Erlang
Giving a Name to the Actors.

Erlang provides a mechanism to render public the pid of a process
to all the other processes.

– register(an_atom, Pid)

– unregister(an_atom)

– whereis(an_atom)->Pid|undefined

– registered()

Once registered
– it is possible to send a message to it directly (name!msg).

-module(clock).
-export([start/2, stop/0]).

start(Time, Fun) -> register(clock, spawn(fun() -> tick(Time, Fun) end)).
stop() -> clock ! stop.

tick(Time, Fun) ->
receive
stop -> void

after
Time -> Fun(), tick(Time, Fun)

end.

5> clock:start(5000, fun() -> io:format("TICK ~p~n",[erlang:now()]) end).
true
TICK 1320,769016,673190
TICK 1320,769021,678451
TICK 1320,769026,679120
7> clock:stop().
stop

Actor Model
Concurrency

in Erlang

Walter Cazzola

Concurrency
shared-state

Erlang
concurrency

spawn

send

receive

scheduling

named actors

References

Slide 15 of 15

References

I Gul Agha.
Actors: A Model of Concurrent Computation in Distributed Systems.

MIT Press, Cambridge, 1986.

I Joe Armstrong.
Programming Erlang: Software for a Concurrent World.
The Pragmatic Bookshelf, fifth edition, 2007.

I Francesco Cesarini and Simon J. Thompson.
Erlang Programming: A Concurrent Approach to Software Devel-
opment.
O’Reilly, June 2009.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 1 of 14

Errors in Concurrency

Walter Cazzola

Dipartimento di Informatica
Università degli Studi di Milano

e-mail: cazzola@di.unimi.it
twitter: @w_cazzola

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 2 of 14

Errors in Concurrent Programs
Error Handling on Exit

When two processes are related
– the errors of one affect the behavior of the other process;
– the BIF link function helps to monitor.

A is linked to B

A B

7B dies

A B

{’EXIT’, B, Why}

an exit signal is sent to A
A

If A is linked to B
– when B dies an exit signal is sent to A;
– the signal is a message like {’EXIT’, Pid, _}.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 3 of 14

Errors in Concurrent Programs
Error Handling on Exit

-module(dies).
-export([on_exit/2]).

on_exit(Pid, Fun) ->
spawn(fun() ->

process_flag(trap_exit, true),
link(Pid),
receive
{’EXIT’, Pid, Why} -> Fun(Why)

end
end).

1> F = fun() -> receive X -> list_to_atom(X) end end.
#Fun<erl_eval.20.67289768>
2> Pid = spawn(F).
<0.35.0>
3> dies:on_exit(Pid, fun(Why) -> io:format("~p died with:~p~n",[Pid, Why]) end).
<0.37.0>
4> Pid ! hello.
<0.35.0> died with:{badarg,[{erlang,list_to_atom,[hello]}]}

=ERROR REPORT==== 9-Nov-2011::17:50:20 ===
Error in process <0.35.0> with exit value: badarg,[{erlang,list_to_atom,[hello]}]}
hello

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 4 of 14

Errors in Concurrent Programs
Details of Error Handling

Links
– defines an error propagation path between two processes;
– if a process dies an exit signal is sent to the other process;
– the set of processes linked to a given process is called link set.

Exit Signals
– they are generated by a process when it dies;
– signals are broadcast to all processes in the link set of the dying

process;
– the exit signal contains an argument explaining why the process died

(exit(Reason) or implicitly set).
– when a process «naturally dies» the exit reason is normal;
– exit signals can be explicitly sent via exit(Pid, X): the sender does

not die («fake death»).

System Processes
– a non system process that receives a exit signal dies too;
– a system process receives the signal as a normal message in its

mailbox;
– process_flag(trap_exit, true) transform a process into a system

process.

Kevin Manca

Kevin Manca

Kevin Manca

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 1 of 14

Errors in Concurrency

Walter Cazzola

Dipartimento di Informatica
Università degli Studi di Milano

e-mail: cazzola@di.unimi.it
twitter: @w_cazzola

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 2 of 14

Errors in Concurrent Programs
Error Handling on Exit

When two processes are related
– the errors of one affect the behavior of the other process;
– the BIF link function helps to monitor.

A is linked to B

A B

7B dies

A B

{’EXIT’, B, Why}

an exit signal is sent to A
A

If A is linked to B
– when B dies an exit signal is sent to A;
– the signal is a message like {’EXIT’, Pid, _}.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 3 of 14

Errors in Concurrent Programs
Error Handling on Exit

-module(dies).
-export([on_exit/2]).

on_exit(Pid, Fun) ->
spawn(fun() ->

process_flag(trap_exit, true),
link(Pid),
receive
{’EXIT’, Pid, Why} -> Fun(Why)

end
end).

1> F = fun() -> receive X -> list_to_atom(X) end end.
#Fun<erl_eval.20.67289768>
2> Pid = spawn(F).
<0.35.0>
3> dies:on_exit(Pid, fun(Why) -> io:format("~p died with:~p~n",[Pid, Why]) end).
<0.37.0>
4> Pid ! hello.
<0.35.0> died with:{badarg,[{erlang,list_to_atom,[hello]}]}

=ERROR REPORT==== 9-Nov-2011::17:50:20 ===
Error in process <0.35.0> with exit value: badarg,[{erlang,list_to_atom,[hello]}]}
hello

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 4 of 14

Errors in Concurrent Programs
Details of Error Handling

Links
– defines an error propagation path between two processes;
– if a process dies an exit signal is sent to the other process;
– the set of processes linked to a given process is called link set.

Exit Signals
– they are generated by a process when it dies;
– signals are broadcast to all processes in the link set of the dying

process;
– the exit signal contains an argument explaining why the process died

(exit(Reason) or implicitly set).
– when a process «naturally dies» the exit reason is normal;
– exit signals can be explicitly sent via exit(Pid, X): the sender does

not die («fake death»).

System Processes
– a non system process that receives a exit signal dies too;
– a system process receives the signal as a normal message in its

mailbox;
– process_flag(trap_exit, true) transform a process into a system

process.

Kevin Manca

Kevin Manca

Kevin Manca

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 1 of 14

Errors in Concurrency

Walter Cazzola

Dipartimento di Informatica
Università degli Studi di Milano

e-mail: cazzola@di.unimi.it
twitter: @w_cazzola

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 2 of 14

Errors in Concurrent Programs
Error Handling on Exit

When two processes are related
– the errors of one affect the behavior of the other process;
– the BIF link function helps to monitor.

A is linked to B

A B

7B dies

A B

{’EXIT’, B, Why}

an exit signal is sent to A
A

If A is linked to B
– when B dies an exit signal is sent to A;
– the signal is a message like {’EXIT’, Pid, _}.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 3 of 14

Errors in Concurrent Programs
Error Handling on Exit

-module(dies).
-export([on_exit/2]).

on_exit(Pid, Fun) ->
spawn(fun() ->

process_flag(trap_exit, true),
link(Pid),
receive
{’EXIT’, Pid, Why} -> Fun(Why)

end
end).

1> F = fun() -> receive X -> list_to_atom(X) end end.
#Fun<erl_eval.20.67289768>
2> Pid = spawn(F).
<0.35.0>
3> dies:on_exit(Pid, fun(Why) -> io:format("~p died with:~p~n",[Pid, Why]) end).
<0.37.0>
4> Pid ! hello.
<0.35.0> died with:{badarg,[{erlang,list_to_atom,[hello]}]}

=ERROR REPORT==== 9-Nov-2011::17:50:20 ===
Error in process <0.35.0> with exit value: badarg,[{erlang,list_to_atom,[hello]}]}
hello

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 4 of 14

Errors in Concurrent Programs
Details of Error Handling

Links
– defines an error propagation path between two processes;
– if a process dies an exit signal is sent to the other process;
– the set of processes linked to a given process is called link set.

Exit Signals
– they are generated by a process when it dies;
– signals are broadcast to all processes in the link set of the dying

process;
– the exit signal contains an argument explaining why the process died

(exit(Reason) or implicitly set).
– when a process «naturally dies» the exit reason is normal;
– exit signals can be explicitly sent via exit(Pid, X): the sender does

not die («fake death»).

System Processes
– a non system process that receives a exit signal dies too;
– a system process receives the signal as a normal message in its

mailbox;
– process_flag(trap_exit, true) transform a process into a system

process.

Kevin Manca

Kevin Manca

Kevin Manca

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 5 of 14

Errors in Concurrent Programs
Details of Error Handling (Cont’d)

Receiver’s Behavior
trap_exit Exit Signal Action

true kill dies & broadcasts it to its link set
true X adds {’EXIT’, Pid, X} to the mailbox
false normal continues & the signal vanishes
false kill dies & broadcasts it to its link set
false X dies & broadcasts it to its link set

Alternatives
– I don’t care if a process I create crashes.

Pid = spawn(fun() ->... end)

– I want to die if a process I create crashes.
Pid = spawn_link(fun() ->... end)

– I want to handle errors if a process I create crashes
process_flag(trap_exits, true),
Pid = spawn_link(fun() ->... end).

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 6 of 14

Errors in Concurrent Programs
Going into Details of Error Handling

-module(edemo1).
-export([start/2]).

start(Bool, M) ->
A = spawn(fun() -> a() end),
B = spawn(fun() -> b(A, Bool) end),
C = spawn(fun() -> c(B, M) end),
sleep(1000), status(b, B), status(c, C).

a() -> process_flag(trap_exit, true), wait(a).
b(A, Bool) -> process_flag(trap_exit, Bool), link(A), wait(b).
c(B, M) -> link(B),
case M of
{die, Reason} -> exit(Reason);
{divide, N} -> 1/N, wait(c);
normal -> true

end.

This starts 3 processes: A, B and C
– A will trap exits and watch for exits from B;
– B will trap exits if Bool is true and
– C will die with exit reason M.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 7 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

wait(Prog) ->
receive
Any ->

io:format("Process ~p received ~p~n", [Prog, Any]),
wait(Prog)

end.

sleep(T) ->
receive
after T -> true
end.

status(Name, Pid) ->
case erlang:is_process_alive(Pid) of
true -> io:format("process ~p (~p) is alive~n", [Name, Pid]);
false -> io:format("process ~p (~p) is dead~n", [Name, Pid])

end.

This starts 3 processes: A, B and C
– wait/1 just prints any message it receives;
– sleep/1 awakes the invoking process after a period of time;
– status/2 prints the aliveness of the invoing process.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 8 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

1> edemo1:start(false, {die,normal}).
process b (<0.48.0>) is alive
process c (<0.49.0>) is dead
ok

A is linked to B B is linked to C

A B C

7exit(normal)

A is linked to B

A B

– B is not a system process;
– when C dies with normal signal, B doesn’t die.

Kevin

Kevin
Privileged (System process)

Kevin

Kevin Manca

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 5 of 14

Errors in Concurrent Programs
Details of Error Handling (Cont’d)

Receiver’s Behavior
trap_exit Exit Signal Action

true kill dies & broadcasts it to its link set
true X adds {’EXIT’, Pid, X} to the mailbox
false normal continues & the signal vanishes
false kill dies & broadcasts it to its link set
false X dies & broadcasts it to its link set

Alternatives
– I don’t care if a process I create crashes.

Pid = spawn(fun() ->... end)

– I want to die if a process I create crashes.
Pid = spawn_link(fun() ->... end)

– I want to handle errors if a process I create crashes
process_flag(trap_exits, true),
Pid = spawn_link(fun() ->... end).

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 6 of 14

Errors in Concurrent Programs
Going into Details of Error Handling

-module(edemo1).
-export([start/2]).

start(Bool, M) ->
A = spawn(fun() -> a() end),
B = spawn(fun() -> b(A, Bool) end),
C = spawn(fun() -> c(B, M) end),
sleep(1000), status(b, B), status(c, C).

a() -> process_flag(trap_exit, true), wait(a).
b(A, Bool) -> process_flag(trap_exit, Bool), link(A), wait(b).
c(B, M) -> link(B),
case M of
{die, Reason} -> exit(Reason);
{divide, N} -> 1/N, wait(c);
normal -> true

end.

This starts 3 processes: A, B and C
– A will trap exits and watch for exits from B;
– B will trap exits if Bool is true and
– C will die with exit reason M.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 7 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

wait(Prog) ->
receive
Any ->

io:format("Process ~p received ~p~n", [Prog, Any]),
wait(Prog)

end.

sleep(T) ->
receive
after T -> true
end.

status(Name, Pid) ->
case erlang:is_process_alive(Pid) of
true -> io:format("process ~p (~p) is alive~n", [Name, Pid]);
false -> io:format("process ~p (~p) is dead~n", [Name, Pid])

end.

This starts 3 processes: A, B and C
– wait/1 just prints any message it receives;
– sleep/1 awakes the invoking process after a period of time;
– status/2 prints the aliveness of the invoing process.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 8 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

1> edemo1:start(false, {die,normal}).
process b (<0.48.0>) is alive
process c (<0.49.0>) is dead
ok

A is linked to B B is linked to C

A B C

7exit(normal)

A is linked to B

A B

– B is not a system process;
– when C dies with normal signal, B doesn’t die.

Kevin

Kevin
Privileged (System process)

Kevin

Kevin Manca

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 5 of 14

Errors in Concurrent Programs
Details of Error Handling (Cont’d)

Receiver’s Behavior
trap_exit Exit Signal Action

true kill dies & broadcasts it to its link set
true X adds {’EXIT’, Pid, X} to the mailbox
false normal continues & the signal vanishes
false kill dies & broadcasts it to its link set
false X dies & broadcasts it to its link set

Alternatives
– I don’t care if a process I create crashes.

Pid = spawn(fun() ->... end)

– I want to die if a process I create crashes.
Pid = spawn_link(fun() ->... end)

– I want to handle errors if a process I create crashes
process_flag(trap_exits, true),
Pid = spawn_link(fun() ->... end).

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 6 of 14

Errors in Concurrent Programs
Going into Details of Error Handling

-module(edemo1).
-export([start/2]).

start(Bool, M) ->
A = spawn(fun() -> a() end),
B = spawn(fun() -> b(A, Bool) end),
C = spawn(fun() -> c(B, M) end),
sleep(1000), status(b, B), status(c, C).

a() -> process_flag(trap_exit, true), wait(a).
b(A, Bool) -> process_flag(trap_exit, Bool), link(A), wait(b).
c(B, M) -> link(B),
case M of
{die, Reason} -> exit(Reason);
{divide, N} -> 1/N, wait(c);
normal -> true

end.

This starts 3 processes: A, B and C
– A will trap exits and watch for exits from B;
– B will trap exits if Bool is true and
– C will die with exit reason M.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 7 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

wait(Prog) ->
receive
Any ->

io:format("Process ~p received ~p~n", [Prog, Any]),
wait(Prog)

end.

sleep(T) ->
receive
after T -> true
end.

status(Name, Pid) ->
case erlang:is_process_alive(Pid) of
true -> io:format("process ~p (~p) is alive~n", [Name, Pid]);
false -> io:format("process ~p (~p) is dead~n", [Name, Pid])

end.

This starts 3 processes: A, B and C
– wait/1 just prints any message it receives;
– sleep/1 awakes the invoking process after a period of time;
– status/2 prints the aliveness of the invoing process.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 8 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

1> edemo1:start(false, {die,normal}).
process b (<0.48.0>) is alive
process c (<0.49.0>) is dead
ok

A is linked to B B is linked to C

A B C

7exit(normal)

A is linked to B

A B

– B is not a system process;
– when C dies with normal signal, B doesn’t die.

Kevin

Kevin
Privileged (System process)

Kevin

Kevin Manca

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 5 of 14

Errors in Concurrent Programs
Details of Error Handling (Cont’d)

Receiver’s Behavior
trap_exit Exit Signal Action

true kill dies & broadcasts it to its link set
true X adds {’EXIT’, Pid, X} to the mailbox
false normal continues & the signal vanishes
false kill dies & broadcasts it to its link set
false X dies & broadcasts it to its link set

Alternatives
– I don’t care if a process I create crashes.

Pid = spawn(fun() ->... end)

– I want to die if a process I create crashes.
Pid = spawn_link(fun() ->... end)

– I want to handle errors if a process I create crashes
process_flag(trap_exits, true),
Pid = spawn_link(fun() ->... end).

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 6 of 14

Errors in Concurrent Programs
Going into Details of Error Handling

-module(edemo1).
-export([start/2]).

start(Bool, M) ->
A = spawn(fun() -> a() end),
B = spawn(fun() -> b(A, Bool) end),
C = spawn(fun() -> c(B, M) end),
sleep(1000), status(b, B), status(c, C).

a() -> process_flag(trap_exit, true), wait(a).
b(A, Bool) -> process_flag(trap_exit, Bool), link(A), wait(b).
c(B, M) -> link(B),
case M of
{die, Reason} -> exit(Reason);
{divide, N} -> 1/N, wait(c);
normal -> true

end.

This starts 3 processes: A, B and C
– A will trap exits and watch for exits from B;
– B will trap exits if Bool is true and
– C will die with exit reason M.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 7 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

wait(Prog) ->
receive
Any ->

io:format("Process ~p received ~p~n", [Prog, Any]),
wait(Prog)

end.

sleep(T) ->
receive
after T -> true
end.

status(Name, Pid) ->
case erlang:is_process_alive(Pid) of
true -> io:format("process ~p (~p) is alive~n", [Name, Pid]);
false -> io:format("process ~p (~p) is dead~n", [Name, Pid])

end.

This starts 3 processes: A, B and C
– wait/1 just prints any message it receives;
– sleep/1 awakes the invoking process after a period of time;
– status/2 prints the aliveness of the invoing process.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 8 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

1> edemo1:start(false, {die,normal}).
process b (<0.48.0>) is alive
process c (<0.49.0>) is dead
ok

A is linked to B B is linked to C

A B C

7exit(normal)

A is linked to B

A B

– B is not a system process;
– when C dies with normal signal, B doesn’t die.

Kevin

Kevin
Privileged (System process)

Kevin

Kevin Manca

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 9 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

1> edemo1:start(false, {die, abc}).
Process a received {’EXIT’,<0.40.0>,abc}
process b (<0.40.0>) is dead
process c (<0.41.0>) is dead
ok

A is linked to B B is linked to C

A B C

7exit(abc)

A is linked to B

A B

7exit(abc)

– B is not a system process;
– when C evaluates exit(abc), process B dies;
– when B exits rebroadcasts the unmodified exit signal to its link set
– A traps the exit signal and convert it to the error message

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 10 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

6> edemo1:start(false, {divide,0}).
Process a received {’EXIT’,<0.56.0>,{badarith,[{edemo1,c,2}]}}

=ERROR REPORT==== 11-Nov-2011::18:03:29 ===
Error in process <0.57.0> with exit value: {badarith,[{edemo1,c,2}]}

process b (<0.56.0>) is dead
process c (<0.57.0>) is dead
ok

A is linked to B B is linked to C

A B C

7{badarith, . . . }

A is linked to B

A B

7{badarith, . . . }

– B is not a system process;
– when C tries to divide by zero an error occurs and C dies with a

{badarith, ...} error;
– B receives this and dies and the error is propagated to A.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 11 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

1> edemo1:start(false, {die, kill}).
Process a received {’EXIT’,<0.60.0>,killed}
process b (<0.60.0>) is dead
process c (<0.61.0>) is dead
ok

A is linked to B B is linked to C

A B C

7exit(kill)

A is linked to B

A B

7exit(killed)

– B is not a system process;
– the exit reason kill causes B to die, and the error is propagated to

its link set.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 12 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

8> edemo1:start(true, {divide,0}).
Process b received {’EXIT’,<0.65.0>,{badarith,[{edemo1,c,2}]}}

=ERROR REPORT==== 11-Nov-2011::18:16:47 ===
Error in process <0.65.0> with exit value: {badarith,[{edemo1,c,2}]}

process b (<0.64.0>) is alive
process c (<0.65.0>) is dead
ok

A is linked to B B is linked to C

A B C

7{badarith, . . . }

A is linked to B

A B

– B is a system process;
– in all cases, B traps the error;
– the error is never propagated to A.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 9 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

1> edemo1:start(false, {die, abc}).
Process a received {’EXIT’,<0.40.0>,abc}
process b (<0.40.0>) is dead
process c (<0.41.0>) is dead
ok

A is linked to B B is linked to C

A B C

7exit(abc)

A is linked to B

A B

7exit(abc)

– B is not a system process;
– when C evaluates exit(abc), process B dies;
– when B exits rebroadcasts the unmodified exit signal to its link set
– A traps the exit signal and convert it to the error message

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 10 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

6> edemo1:start(false, {divide,0}).
Process a received {’EXIT’,<0.56.0>,{badarith,[{edemo1,c,2}]}}

=ERROR REPORT==== 11-Nov-2011::18:03:29 ===
Error in process <0.57.0> with exit value: {badarith,[{edemo1,c,2}]}

process b (<0.56.0>) is dead
process c (<0.57.0>) is dead
ok

A is linked to B B is linked to C

A B C

7{badarith, . . . }

A is linked to B

A B

7{badarith, . . . }

– B is not a system process;
– when C tries to divide by zero an error occurs and C dies with a

{badarith, ...} error;
– B receives this and dies and the error is propagated to A.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 11 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

1> edemo1:start(false, {die, kill}).
Process a received {’EXIT’,<0.60.0>,killed}
process b (<0.60.0>) is dead
process c (<0.61.0>) is dead
ok

A is linked to B B is linked to C

A B C

7exit(kill)

A is linked to B

A B

7exit(killed)

– B is not a system process;
– the exit reason kill causes B to die, and the error is propagated to

its link set.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 12 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

8> edemo1:start(true, {divide,0}).
Process b received {’EXIT’,<0.65.0>,{badarith,[{edemo1,c,2}]}}

=ERROR REPORT==== 11-Nov-2011::18:16:47 ===
Error in process <0.65.0> with exit value: {badarith,[{edemo1,c,2}]}

process b (<0.64.0>) is alive
process c (<0.65.0>) is dead
ok

A is linked to B B is linked to C

A B C

7{badarith, . . . }

A is linked to B

A B

– B is a system process;
– in all cases, B traps the error;
– the error is never propagated to A.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 9 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

1> edemo1:start(false, {die, abc}).
Process a received {’EXIT’,<0.40.0>,abc}
process b (<0.40.0>) is dead
process c (<0.41.0>) is dead
ok

A is linked to B B is linked to C

A B C

7exit(abc)

A is linked to B

A B

7exit(abc)

– B is not a system process;
– when C evaluates exit(abc), process B dies;
– when B exits rebroadcasts the unmodified exit signal to its link set
– A traps the exit signal and convert it to the error message

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 10 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

6> edemo1:start(false, {divide,0}).
Process a received {’EXIT’,<0.56.0>,{badarith,[{edemo1,c,2}]}}

=ERROR REPORT==== 11-Nov-2011::18:03:29 ===
Error in process <0.57.0> with exit value: {badarith,[{edemo1,c,2}]}

process b (<0.56.0>) is dead
process c (<0.57.0>) is dead
ok

A is linked to B B is linked to C

A B C

7{badarith, . . . }

A is linked to B

A B

7{badarith, . . . }

– B is not a system process;
– when C tries to divide by zero an error occurs and C dies with a

{badarith, ...} error;
– B receives this and dies and the error is propagated to A.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 11 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

1> edemo1:start(false, {die, kill}).
Process a received {’EXIT’,<0.60.0>,killed}
process b (<0.60.0>) is dead
process c (<0.61.0>) is dead
ok

A is linked to B B is linked to C

A B C

7exit(kill)

A is linked to B

A B

7exit(killed)

– B is not a system process;
– the exit reason kill causes B to die, and the error is propagated to

its link set.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 12 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

8> edemo1:start(true, {divide,0}).
Process b received {’EXIT’,<0.65.0>,{badarith,[{edemo1,c,2}]}}

=ERROR REPORT==== 11-Nov-2011::18:16:47 ===
Error in process <0.65.0> with exit value: {badarith,[{edemo1,c,2}]}

process b (<0.64.0>) is alive
process c (<0.65.0>) is dead
ok

A is linked to B B is linked to C

A B C

7{badarith, . . . }

A is linked to B

A B

– B is a system process;
– in all cases, B traps the error;
– the error is never propagated to A.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 9 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

1> edemo1:start(false, {die, abc}).
Process a received {’EXIT’,<0.40.0>,abc}
process b (<0.40.0>) is dead
process c (<0.41.0>) is dead
ok

A is linked to B B is linked to C

A B C

7exit(abc)

A is linked to B

A B

7exit(abc)

– B is not a system process;
– when C evaluates exit(abc), process B dies;
– when B exits rebroadcasts the unmodified exit signal to its link set
– A traps the exit signal and convert it to the error message

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 10 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

6> edemo1:start(false, {divide,0}).
Process a received {’EXIT’,<0.56.0>,{badarith,[{edemo1,c,2}]}}

=ERROR REPORT==== 11-Nov-2011::18:03:29 ===
Error in process <0.57.0> with exit value: {badarith,[{edemo1,c,2}]}

process b (<0.56.0>) is dead
process c (<0.57.0>) is dead
ok

A is linked to B B is linked to C

A B C

7{badarith, . . . }

A is linked to B

A B

7{badarith, . . . }

– B is not a system process;
– when C tries to divide by zero an error occurs and C dies with a

{badarith, ...} error;
– B receives this and dies and the error is propagated to A.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 11 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

1> edemo1:start(false, {die, kill}).
Process a received {’EXIT’,<0.60.0>,killed}
process b (<0.60.0>) is dead
process c (<0.61.0>) is dead
ok

A is linked to B B is linked to C

A B C

7exit(kill)

A is linked to B

A B

7exit(killed)

– B is not a system process;
– the exit reason kill causes B to die, and the error is propagated to

its link set.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 12 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

8> edemo1:start(true, {divide,0}).
Process b received {’EXIT’,<0.65.0>,{badarith,[{edemo1,c,2}]}}

=ERROR REPORT==== 11-Nov-2011::18:16:47 ===
Error in process <0.65.0> with exit value: {badarith,[{edemo1,c,2}]}

process b (<0.64.0>) is alive
process c (<0.65.0>) is dead
ok

A is linked to B B is linked to C

A B C

7{badarith, . . . }

A is linked to B

A B

– B is a system process;
– in all cases, B traps the error;
– the error is never propagated to A.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 9 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

1> edemo1:start(false, {die, abc}).
Process a received {’EXIT’,<0.40.0>,abc}
process b (<0.40.0>) is dead
process c (<0.41.0>) is dead
ok

A is linked to B B is linked to C

A B C

7exit(abc)

A is linked to B

A B

7exit(abc)

– B is not a system process;
– when C evaluates exit(abc), process B dies;
– when B exits rebroadcasts the unmodified exit signal to its link set
– A traps the exit signal and convert it to the error message

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 10 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

6> edemo1:start(false, {divide,0}).
Process a received {’EXIT’,<0.56.0>,{badarith,[{edemo1,c,2}]}}

=ERROR REPORT==== 11-Nov-2011::18:03:29 ===
Error in process <0.57.0> with exit value: {badarith,[{edemo1,c,2}]}

process b (<0.56.0>) is dead
process c (<0.57.0>) is dead
ok

A is linked to B B is linked to C

A B C

7{badarith, . . . }

A is linked to B

A B

7{badarith, . . . }

– B is not a system process;
– when C tries to divide by zero an error occurs and C dies with a

{badarith, ...} error;
– B receives this and dies and the error is propagated to A.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 11 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

1> edemo1:start(false, {die, kill}).
Process a received {’EXIT’,<0.60.0>,killed}
process b (<0.60.0>) is dead
process c (<0.61.0>) is dead
ok

A is linked to B B is linked to C

A B C

7exit(kill)

A is linked to B

A B

7exit(killed)

– B is not a system process;
– the exit reason kill causes B to die, and the error is propagated to

its link set.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 12 of 14

Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

8> edemo1:start(true, {divide,0}).
Process b received {’EXIT’,<0.65.0>,{badarith,[{edemo1,c,2}]}}

=ERROR REPORT==== 11-Nov-2011::18:16:47 ===
Error in process <0.65.0> with exit value: {badarith,[{edemo1,c,2}]}

process b (<0.64.0>) is alive
process c (<0.65.0>) is dead
ok

A is linked to B B is linked to C

A B C

7{badarith, . . . }

A is linked to B

A B

– B is a system process;
– in all cases, B traps the error;
– the error is never propagated to A.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 13 of 14

Errors in Concurrent Programs
Monitors: Unidirectional Links

Links are symmetric
– i.e., if A dies, B will sent an exit signal and vice versa;
– to prevent a process from dying, we have to make it a system

process that is not alway desirable.

A monitor is an asymmetric link
– if A monitors B and B dies A will be sent an exit signal but
– if A dies B will not be sent a signal.

A can create a monitor for B calling erlang:monitor(process, B)

– if B dies with exit reason Reason a ’DOWN’ message

{’DOWN’, Ref, process, B, Reason}

is sent to A (Ref is the reference to the monitor).
– the monitor is unidirectional:

– to repeat the above call will create several, independent monitors and
each one will send a ’DOWN’ message when B terminates.

Errors in
Concurrency

Walter Cazzola

Error
Handling
links

monitors

References

Slide 14 of 14

References

I Gul Agha.
Actors: A Model of Concurrent Computation in Distributed Systems.

MIT Press, Cambridge, 1986.

I Joe Armstrong.
Programming Erlang: Software for a Concurrent World.
The Pragmatic Bookshelf, fifth edition, 2007.

I Francesco Cesarini and Simon J. Thompson.
Erlang Programming: A Concurrent Approach to Software Devel-
opment.
O’Reilly, June 2009.

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 1 of 12

Distribution in Erlang

Walter Cazzola

Dipartimento di Informatica
Università degli Studi di Milano

e-mail: cazzola@di.unimi.it
twitter: @w_cazzola

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 2 of 12

Distributed Programming
Whys

Performance
– to speed up programs by arranging that different parts of the

program are run in parallel on different machines.

Reliability
– to make fault tolerant systems by structuring the system to be

replicated on several machines: if one fails the computation contin-
ues on another machine.

Scalability
– resources on a single machine tend to be exhausted;
– to add another computer means to double the resources.

Intrinsically Distributed Applications
– e.g., chat systems, multi-user games, . . .

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 3 of 12

Distributed Programming in Erlang
Models of Distribution

Erlang provides two models of distribution: distributed Erlang
and socket based distribution

Distributed Erlang
– applications run on a set of tightly coupled computers called Erlang

nodes;
– processes can be spawned on every node, and
– apart from the spawning all things still work as always

Socket-Based Distribution
– it can run in an untrusted environment;
– less powerful (restricted connections);
– fine grained control on what can be executed on a node.

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 4 of 12

Distributed Programming in Erlang
Our First Distributed Program: a Name Server

-module(kvs).
-export([start/0, store/2, lookup/1]).

start() -> register(kvs, spawn(fun() -> loop() end)).
store(Key, Value) -> rpc({store, Key, Value}).
lookup(Key) -> rpc({lookup, Key}).

rpc(Q) ->
kvs ! {self(), Q},
receive
{kvs, Reply} -> Reply

end.

loop() ->
receive
{From, {store, Key, Value}} -> put(Key, {ok, Value}), From ! {kvs, true}, loop();
{From, {lookup, Key}} -> From ! {kvs, get(Key)}, loop()

end.

The name server reply to the protocol
– start() that starts the server with the registered name kvs;
– lookup(Key) returns the value associated to the Key into the name

server; and
– store(Key, Value) associate the Value to the Key into the name

server.

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 1 of 12

Distribution in Erlang

Walter Cazzola

Dipartimento di Informatica
Università degli Studi di Milano

e-mail: cazzola@di.unimi.it
twitter: @w_cazzola

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 2 of 12

Distributed Programming
Whys

Performance
– to speed up programs by arranging that different parts of the

program are run in parallel on different machines.

Reliability
– to make fault tolerant systems by structuring the system to be

replicated on several machines: if one fails the computation contin-
ues on another machine.

Scalability
– resources on a single machine tend to be exhausted;
– to add another computer means to double the resources.

Intrinsically Distributed Applications
– e.g., chat systems, multi-user games, . . .

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 3 of 12

Distributed Programming in Erlang
Models of Distribution

Erlang provides two models of distribution: distributed Erlang
and socket based distribution

Distributed Erlang
– applications run on a set of tightly coupled computers called Erlang

nodes;
– processes can be spawned on every node, and
– apart from the spawning all things still work as always

Socket-Based Distribution
– it can run in an untrusted environment;
– less powerful (restricted connections);
– fine grained control on what can be executed on a node.

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 4 of 12

Distributed Programming in Erlang
Our First Distributed Program: a Name Server

-module(kvs).
-export([start/0, store/2, lookup/1]).

start() -> register(kvs, spawn(fun() -> loop() end)).
store(Key, Value) -> rpc({store, Key, Value}).
lookup(Key) -> rpc({lookup, Key}).

rpc(Q) ->
kvs ! {self(), Q},
receive
{kvs, Reply} -> Reply

end.

loop() ->
receive
{From, {store, Key, Value}} -> put(Key, {ok, Value}), From ! {kvs, true}, loop();
{From, {lookup, Key}} -> From ! {kvs, get(Key)}, loop()

end.

The name server reply to the protocol
– start() that starts the server with the registered name kvs;
– lookup(Key) returns the value associated to the Key into the name

server; and
– store(Key, Value) associate the Value to the Key into the name

server.

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 1 of 12

Distribution in Erlang

Walter Cazzola

Dipartimento di Informatica
Università degli Studi di Milano

e-mail: cazzola@di.unimi.it
twitter: @w_cazzola

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 2 of 12

Distributed Programming
Whys

Performance
– to speed up programs by arranging that different parts of the

program are run in parallel on different machines.

Reliability
– to make fault tolerant systems by structuring the system to be

replicated on several machines: if one fails the computation contin-
ues on another machine.

Scalability
– resources on a single machine tend to be exhausted;
– to add another computer means to double the resources.

Intrinsically Distributed Applications
– e.g., chat systems, multi-user games, . . .

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 3 of 12

Distributed Programming in Erlang
Models of Distribution

Erlang provides two models of distribution: distributed Erlang
and socket based distribution

Distributed Erlang
– applications run on a set of tightly coupled computers called Erlang

nodes;
– processes can be spawned on every node, and
– apart from the spawning all things still work as always

Socket-Based Distribution
– it can run in an untrusted environment;
– less powerful (restricted connections);
– fine grained control on what can be executed on a node.

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 4 of 12

Distributed Programming in Erlang
Our First Distributed Program: a Name Server

-module(kvs).
-export([start/0, store/2, lookup/1]).

start() -> register(kvs, spawn(fun() -> loop() end)).
store(Key, Value) -> rpc({store, Key, Value}).
lookup(Key) -> rpc({lookup, Key}).

rpc(Q) ->
kvs ! {self(), Q},
receive
{kvs, Reply} -> Reply

end.

loop() ->
receive
{From, {store, Key, Value}} -> put(Key, {ok, Value}), From ! {kvs, true}, loop();
{From, {lookup, Key}} -> From ! {kvs, get(Key)}, loop()

end.

The name server reply to the protocol
– start() that starts the server with the registered name kvs;
– lookup(Key) returns the value associated to the Key into the name

server; and
– store(Key, Value) associate the Value to the Key into the name

server.

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 5 of 12

Distributed Programming in Erlang
Our First Distributed Program: a Name Server (Cont’d)

Sequential Execution
1> kvs:start().
true
2> kvs:store({location, walter}, "Genova").
true
3> kvs:store(weather, sunny).
true
4> kvs:lookup(weather).
{ok,sunny}
5> kvs:lookup({location, walter}).
{ok,"Genova"}
6> kvs:lookup({location, cazzola}).
undefined

Distributed but on Localhost
[15:58]cazzola@surtur:~/lp/erlang>erl -sname sif
(sif@surtur)1> kvs:start().
true

(sif@surtur)2> kvs:lookup(weather).
{ok,sunny}

[15:58]cazzola@surtur:~/lp/erlang>erl -sname amora
(amora@surtur)1>

rpc:call(sif@surtur, kvs, store, [weather, sunny]).
true
(amora@surtur)2>

rpc:call(sif@surtur, kvs, lookup, [weather]).
{ok,sunny}

Distributed on two separate computers (surtur and thor)
[16:31]cazzola@surtur:~/lp/erlang> ssh thor
[16:32]cazzola@thor:~>erl -name sif -setcookie abc
(sif@thor)1> kvs:start().
true
(sif@thor)2> kvs:lookup(weather).
{ok,warm}

[16:32]cazzola@surtur:>erl -name amora -setcookie abc
(amora@surtur)1>

rpc:call(sif@thor, kvs, store, [weather, warm]).
true
(amora@surtur)2>

rpc:call(sif@thor, kvs, lookup, [weather]).
{ok,warm}

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 6 of 12

Distributed Programming in Erlang
Distribution Primitives

Node is the central concept.
– it is a self-contained Erlang system VM with its own address space

and own set of processes;
– the access to a single node is secured by a cookie system

– each node has a cookie and
– it must be the same of any node to which the node talks;
– the cookie is set when the VM starts or using erlang:set_cookie.

– the set of nodes with the same cookie define a cluster

Primitives for writing distributed programs are:
– spawn(Node, Mod, Func, ArgList)->Pid

– spawn_link(Node, Mod, Func, ArgList)->Pid

– disconnect_node(Node)->bools() | ignored

– monitor_node(Node, Flag)->true

– {RegName, Node}!Msg

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 7 of 12

Distributed Programming in Erlang
An Example of Distributed Spawning

-module(ddemo).
-export([rpc/4, start/1]).

start(Node) -> spawn(Node, fun() -> loop() end).

rpc(Pid, M, F, A) ->
Pid ! {rpc, self(), M, F, A},
receive
{Pid, Response} -> Response

end.

loop() ->
receive
{rpc, Pid, M, F, A} ->

Pid ! {self(), (catch apply(M, F, A))},
loop()

end.

[19:01]cazzola@surtur:~/lp/erlang>erl -name sif -setcookie abc
(sif@surtur.di.unimi.it)1> Pid = ddemo:start(’amora@thor.di.unimi.it’).
<8745.43.0>
(sif@surtur.di.unimi.it)3> ddemo:rpc(Pid, erlang, node, []).
’amora@thor.di.unimi.it’

Note
– Erlang provides specific libraries with support for distribution look

at: rpc and global.

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 8 of 12

Distributed Programming in Erlang
The Cookie Protection System

Two nodes to communicate MUST have the same magic cookie.
Three ways to set the cookie:

1. to store the cookie in $HOME/.erlang.cookie

[19:26]cazzola@surtur:~/lp/erlang>echo "A Magic Cookie" > ~/.erlang.cookie
[19:27]cazzola@surtur:~/lp/erlang>chmod 400 ~/.erlang.cookie

2. through the option -setcookie

[19:27]cazzola@surtur:~/lp/erlang>erl -setcookie "A Magic Cookie"

3. by using the BIF erlang:set_cookies

[19:34]cazzola@surtur:~/lp/erlang>erl -sname sif
(sif@surtur)1> erlang:set_cookie(node(), ’A Magic Cookie’).
true

Note that 1 and 3 are safer than 2 and the cookies never wander
on the net in clear.

Kevin
Sullo stesso nodo della VM
di Erlang

Kevin Manca

Kevin Manca

Kevin
user fun fun:fun dict

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 5 of 12

Distributed Programming in Erlang
Our First Distributed Program: a Name Server (Cont’d)

Sequential Execution
1> kvs:start().
true
2> kvs:store({location, walter}, "Genova").
true
3> kvs:store(weather, sunny).
true
4> kvs:lookup(weather).
{ok,sunny}
5> kvs:lookup({location, walter}).
{ok,"Genova"}
6> kvs:lookup({location, cazzola}).
undefined

Distributed but on Localhost
[15:58]cazzola@surtur:~/lp/erlang>erl -sname sif
(sif@surtur)1> kvs:start().
true

(sif@surtur)2> kvs:lookup(weather).
{ok,sunny}

[15:58]cazzola@surtur:~/lp/erlang>erl -sname amora
(amora@surtur)1>

rpc:call(sif@surtur, kvs, store, [weather, sunny]).
true
(amora@surtur)2>

rpc:call(sif@surtur, kvs, lookup, [weather]).
{ok,sunny}

Distributed on two separate computers (surtur and thor)
[16:31]cazzola@surtur:~/lp/erlang> ssh thor
[16:32]cazzola@thor:~>erl -name sif -setcookie abc
(sif@thor)1> kvs:start().
true
(sif@thor)2> kvs:lookup(weather).
{ok,warm}

[16:32]cazzola@surtur:>erl -name amora -setcookie abc
(amora@surtur)1>

rpc:call(sif@thor, kvs, store, [weather, warm]).
true
(amora@surtur)2>

rpc:call(sif@thor, kvs, lookup, [weather]).
{ok,warm}

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 6 of 12

Distributed Programming in Erlang
Distribution Primitives

Node is the central concept.
– it is a self-contained Erlang system VM with its own address space

and own set of processes;
– the access to a single node is secured by a cookie system

– each node has a cookie and
– it must be the same of any node to which the node talks;
– the cookie is set when the VM starts or using erlang:set_cookie.

– the set of nodes with the same cookie define a cluster

Primitives for writing distributed programs are:
– spawn(Node, Mod, Func, ArgList)->Pid

– spawn_link(Node, Mod, Func, ArgList)->Pid

– disconnect_node(Node)->bools() | ignored

– monitor_node(Node, Flag)->true

– {RegName, Node}!Msg

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 7 of 12

Distributed Programming in Erlang
An Example of Distributed Spawning

-module(ddemo).
-export([rpc/4, start/1]).

start(Node) -> spawn(Node, fun() -> loop() end).

rpc(Pid, M, F, A) ->
Pid ! {rpc, self(), M, F, A},
receive
{Pid, Response} -> Response

end.

loop() ->
receive
{rpc, Pid, M, F, A} ->

Pid ! {self(), (catch apply(M, F, A))},
loop()

end.

[19:01]cazzola@surtur:~/lp/erlang>erl -name sif -setcookie abc
(sif@surtur.di.unimi.it)1> Pid = ddemo:start(’amora@thor.di.unimi.it’).
<8745.43.0>
(sif@surtur.di.unimi.it)3> ddemo:rpc(Pid, erlang, node, []).
’amora@thor.di.unimi.it’

Note
– Erlang provides specific libraries with support for distribution look

at: rpc and global.

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 8 of 12

Distributed Programming in Erlang
The Cookie Protection System

Two nodes to communicate MUST have the same magic cookie.
Three ways to set the cookie:

1. to store the cookie in $HOME/.erlang.cookie

[19:26]cazzola@surtur:~/lp/erlang>echo "A Magic Cookie" > ~/.erlang.cookie
[19:27]cazzola@surtur:~/lp/erlang>chmod 400 ~/.erlang.cookie

2. through the option -setcookie

[19:27]cazzola@surtur:~/lp/erlang>erl -setcookie "A Magic Cookie"

3. by using the BIF erlang:set_cookies

[19:34]cazzola@surtur:~/lp/erlang>erl -sname sif
(sif@surtur)1> erlang:set_cookie(node(), ’A Magic Cookie’).
true

Note that 1 and 3 are safer than 2 and the cookies never wander
on the net in clear.

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 5 of 12

Distributed Programming in Erlang
Our First Distributed Program: a Name Server (Cont’d)

Sequential Execution
1> kvs:start().
true
2> kvs:store({location, walter}, "Genova").
true
3> kvs:store(weather, sunny).
true
4> kvs:lookup(weather).
{ok,sunny}
5> kvs:lookup({location, walter}).
{ok,"Genova"}
6> kvs:lookup({location, cazzola}).
undefined

Distributed but on Localhost
[15:58]cazzola@surtur:~/lp/erlang>erl -sname sif
(sif@surtur)1> kvs:start().
true

(sif@surtur)2> kvs:lookup(weather).
{ok,sunny}

[15:58]cazzola@surtur:~/lp/erlang>erl -sname amora
(amora@surtur)1>

rpc:call(sif@surtur, kvs, store, [weather, sunny]).
true
(amora@surtur)2>

rpc:call(sif@surtur, kvs, lookup, [weather]).
{ok,sunny}

Distributed on two separate computers (surtur and thor)
[16:31]cazzola@surtur:~/lp/erlang> ssh thor
[16:32]cazzola@thor:~>erl -name sif -setcookie abc
(sif@thor)1> kvs:start().
true
(sif@thor)2> kvs:lookup(weather).
{ok,warm}

[16:32]cazzola@surtur:>erl -name amora -setcookie abc
(amora@surtur)1>

rpc:call(sif@thor, kvs, store, [weather, warm]).
true
(amora@surtur)2>

rpc:call(sif@thor, kvs, lookup, [weather]).
{ok,warm}

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 6 of 12

Distributed Programming in Erlang
Distribution Primitives

Node is the central concept.
– it is a self-contained Erlang system VM with its own address space

and own set of processes;
– the access to a single node is secured by a cookie system

– each node has a cookie and
– it must be the same of any node to which the node talks;
– the cookie is set when the VM starts or using erlang:set_cookie.

– the set of nodes with the same cookie define a cluster

Primitives for writing distributed programs are:
– spawn(Node, Mod, Func, ArgList)->Pid

– spawn_link(Node, Mod, Func, ArgList)->Pid

– disconnect_node(Node)->bools() | ignored

– monitor_node(Node, Flag)->true

– {RegName, Node}!Msg

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 7 of 12

Distributed Programming in Erlang
An Example of Distributed Spawning

-module(ddemo).
-export([rpc/4, start/1]).

start(Node) -> spawn(Node, fun() -> loop() end).

rpc(Pid, M, F, A) ->
Pid ! {rpc, self(), M, F, A},
receive
{Pid, Response} -> Response

end.

loop() ->
receive
{rpc, Pid, M, F, A} ->

Pid ! {self(), (catch apply(M, F, A))},
loop()

end.

[19:01]cazzola@surtur:~/lp/erlang>erl -name sif -setcookie abc
(sif@surtur.di.unimi.it)1> Pid = ddemo:start(’amora@thor.di.unimi.it’).
<8745.43.0>
(sif@surtur.di.unimi.it)3> ddemo:rpc(Pid, erlang, node, []).
’amora@thor.di.unimi.it’

Note
– Erlang provides specific libraries with support for distribution look

at: rpc and global.

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 8 of 12

Distributed Programming in Erlang
The Cookie Protection System

Two nodes to communicate MUST have the same magic cookie.
Three ways to set the cookie:

1. to store the cookie in $HOME/.erlang.cookie

[19:26]cazzola@surtur:~/lp/erlang>echo "A Magic Cookie" > ~/.erlang.cookie
[19:27]cazzola@surtur:~/lp/erlang>chmod 400 ~/.erlang.cookie

2. through the option -setcookie

[19:27]cazzola@surtur:~/lp/erlang>erl -setcookie "A Magic Cookie"

3. by using the BIF erlang:set_cookies

[19:34]cazzola@surtur:~/lp/erlang>erl -sname sif
(sif@surtur)1> erlang:set_cookie(node(), ’A Magic Cookie’).
true

Note that 1 and 3 are safer than 2 and the cookies never wander
on the net in clear.

Kevin

Kevin

Kevin
Macchina virtuale diversa -> Nodo =/= 0

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 5 of 12

Distributed Programming in Erlang
Our First Distributed Program: a Name Server (Cont’d)

Sequential Execution
1> kvs:start().
true
2> kvs:store({location, walter}, "Genova").
true
3> kvs:store(weather, sunny).
true
4> kvs:lookup(weather).
{ok,sunny}
5> kvs:lookup({location, walter}).
{ok,"Genova"}
6> kvs:lookup({location, cazzola}).
undefined

Distributed but on Localhost
[15:58]cazzola@surtur:~/lp/erlang>erl -sname sif
(sif@surtur)1> kvs:start().
true

(sif@surtur)2> kvs:lookup(weather).
{ok,sunny}

[15:58]cazzola@surtur:~/lp/erlang>erl -sname amora
(amora@surtur)1>

rpc:call(sif@surtur, kvs, store, [weather, sunny]).
true
(amora@surtur)2>

rpc:call(sif@surtur, kvs, lookup, [weather]).
{ok,sunny}

Distributed on two separate computers (surtur and thor)
[16:31]cazzola@surtur:~/lp/erlang> ssh thor
[16:32]cazzola@thor:~>erl -name sif -setcookie abc
(sif@thor)1> kvs:start().
true
(sif@thor)2> kvs:lookup(weather).
{ok,warm}

[16:32]cazzola@surtur:>erl -name amora -setcookie abc
(amora@surtur)1>

rpc:call(sif@thor, kvs, store, [weather, warm]).
true
(amora@surtur)2>

rpc:call(sif@thor, kvs, lookup, [weather]).
{ok,warm}

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 6 of 12

Distributed Programming in Erlang
Distribution Primitives

Node is the central concept.
– it is a self-contained Erlang system VM with its own address space

and own set of processes;
– the access to a single node is secured by a cookie system

– each node has a cookie and
– it must be the same of any node to which the node talks;
– the cookie is set when the VM starts or using erlang:set_cookie.

– the set of nodes with the same cookie define a cluster

Primitives for writing distributed programs are:
– spawn(Node, Mod, Func, ArgList)->Pid

– spawn_link(Node, Mod, Func, ArgList)->Pid

– disconnect_node(Node)->bools() | ignored

– monitor_node(Node, Flag)->true

– {RegName, Node}!Msg

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 7 of 12

Distributed Programming in Erlang
An Example of Distributed Spawning

-module(ddemo).
-export([rpc/4, start/1]).

start(Node) -> spawn(Node, fun() -> loop() end).

rpc(Pid, M, F, A) ->
Pid ! {rpc, self(), M, F, A},
receive
{Pid, Response} -> Response

end.

loop() ->
receive
{rpc, Pid, M, F, A} ->

Pid ! {self(), (catch apply(M, F, A))},
loop()

end.

[19:01]cazzola@surtur:~/lp/erlang>erl -name sif -setcookie abc
(sif@surtur.di.unimi.it)1> Pid = ddemo:start(’amora@thor.di.unimi.it’).
<8745.43.0>
(sif@surtur.di.unimi.it)3> ddemo:rpc(Pid, erlang, node, []).
’amora@thor.di.unimi.it’

Note
– Erlang provides specific libraries with support for distribution look

at: rpc and global.

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 8 of 12

Distributed Programming in Erlang
The Cookie Protection System

Two nodes to communicate MUST have the same magic cookie.
Three ways to set the cookie:

1. to store the cookie in $HOME/.erlang.cookie

[19:26]cazzola@surtur:~/lp/erlang>echo "A Magic Cookie" > ~/.erlang.cookie
[19:27]cazzola@surtur:~/lp/erlang>chmod 400 ~/.erlang.cookie

2. through the option -setcookie

[19:27]cazzola@surtur:~/lp/erlang>erl -setcookie "A Magic Cookie"

3. by using the BIF erlang:set_cookies

[19:34]cazzola@surtur:~/lp/erlang>erl -sname sif
(sif@surtur)1> erlang:set_cookie(node(), ’A Magic Cookie’).
true

Note that 1 and 3 are safer than 2 and the cookies never wander
on the net in clear.

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 9 of 12

Distributed Programming in Erlang
Socket Based Distribution

Problem with spawn-based distribution
– the client can spawn any process on the server machine
– e.g., rpc:multicall(nodes(), os, cmd, ["cd /; rm -rf *"])

Spawn-based distribution
– is perfect when you own all the machines and you want to control

them from a single machine; but
– is not suited when different people own the machines and want to

control what is in execution on their machines.

Socket-base distribution
– will use a restricted form of spawn where the owner of a machine

has explicit control over what is run on his machine;
– lib_chan;

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 10 of 12

Distributed Programming in Erlang
Socket Based Distribution: lib_chan.

lib_chan is a module
– that allows a user to explicitly control which processes are spawned

on his machines.

The interface is as follows
– start_server()->true

this starts a server on local host, whose behavior depends on $HOME/
.erlang_config/lib_chan.conf

– connect(Host, Port, S, P, ArgsC)->{ok, Pid}|{error, Why}
try to open the port Port on the host Host and then to activate
the service S protected by the password P.

The configuration file contains tuples of the form:
– {port, NNNN}

this starts listening to port number NNNN

– {service, S, password, P, mfa, SomeMod, SomeFunc, SomeArgs}
– this defines a service S protected by password P;

– When the connection is created by the connect call, the server
spawns

SomeMod:SomeFunc(MM, ArgC, SomeArgs)
– where MM is the Pid of a proxy process to send messages to the client

and ArgsC comes from the client connect call.

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 11 of 12

Distributed Programming in Erlang
Socket Based Distribution: lib_chan in action.

{port, 12340}.
{service, nameServer, password, "ABXy45", mfa, mod_name_server, start_me_up, notUsed}.

-module(mod_name_server).
-export([start_me_up/3]).

start_me_up(MM, _ArgsC, _ArgS) -> loop(MM).

loop(MM) ->
receive
{chan, MM, {store, K, V}} -> kvs:store(K,V), loop(MM);
{chan, MM, {lookup, K}} -> MM ! {send, kvs:lookup(K)}, loop(MM);
{chan_closed, MM} -> true

end.

1> kvs:start().
true
2> lib_chan:start_server().
Starting a port server on 12340...
true
3> kvs:lookup(joe).
{ok,"writing a book"}

1> {ok, Pid} = lib_chan:connect("localhost", 12340, nameServer, "ABXy45", "").
{ok, <0.43.0>}
2> lib_chan:cast(Pid, {store, joe, "writing a book"}).
{send,{store,joe,"writing a book"}}
3> lib_chan:rpc(Pid, {lookup, joe}).
{ok,"writing a book"}
4> lib_chan:rpc(Pid, {lookup, jim}).
undefined

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 12 of 12

References

I Gul Agha.
Actors: A Model of Concurrent Computation in Distributed Systems.

MIT Press, Cambridge, 1986.

I Joe Armstrong.
Programming Erlang: Software for a Concurrent World.
The Pragmatic Bookshelf, fifth edition, 2007.

I Francesco Cesarini and Simon Thompson.
Erlang Programming: A Concurrent Approach to Software Devel-
opment.
O’Reilly, June 2009.

$HOME/.erlang_config/lib_chan.conf
$HOME/.erlang_config/lib_chan.conf

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 9 of 12

Distributed Programming in Erlang
Socket Based Distribution

Problem with spawn-based distribution
– the client can spawn any process on the server machine
– e.g., rpc:multicall(nodes(), os, cmd, ["cd /; rm -rf *"])

Spawn-based distribution
– is perfect when you own all the machines and you want to control

them from a single machine; but
– is not suited when different people own the machines and want to

control what is in execution on their machines.

Socket-base distribution
– will use a restricted form of spawn where the owner of a machine

has explicit control over what is run on his machine;
– lib_chan;

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 10 of 12

Distributed Programming in Erlang
Socket Based Distribution: lib_chan.

lib_chan is a module
– that allows a user to explicitly control which processes are spawned

on his machines.

The interface is as follows
– start_server()->true

this starts a server on local host, whose behavior depends on $HOME/
.erlang_config/lib_chan.conf

– connect(Host, Port, S, P, ArgsC)->{ok, Pid}|{error, Why}
try to open the port Port on the host Host and then to activate
the service S protected by the password P.

The configuration file contains tuples of the form:
– {port, NNNN}

this starts listening to port number NNNN

– {service, S, password, P, mfa, SomeMod, SomeFunc, SomeArgs}
– this defines a service S protected by password P;

– When the connection is created by the connect call, the server
spawns

SomeMod:SomeFunc(MM, ArgC, SomeArgs)
– where MM is the Pid of a proxy process to send messages to the client

and ArgsC comes from the client connect call.

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 11 of 12

Distributed Programming in Erlang
Socket Based Distribution: lib_chan in action.

{port, 12340}.
{service, nameServer, password, "ABXy45", mfa, mod_name_server, start_me_up, notUsed}.

-module(mod_name_server).
-export([start_me_up/3]).

start_me_up(MM, _ArgsC, _ArgS) -> loop(MM).

loop(MM) ->
receive
{chan, MM, {store, K, V}} -> kvs:store(K,V), loop(MM);
{chan, MM, {lookup, K}} -> MM ! {send, kvs:lookup(K)}, loop(MM);
{chan_closed, MM} -> true

end.

1> kvs:start().
true
2> lib_chan:start_server().
Starting a port server on 12340...
true
3> kvs:lookup(joe).
{ok,"writing a book"}

1> {ok, Pid} = lib_chan:connect("localhost", 12340, nameServer, "ABXy45", "").
{ok, <0.43.0>}
2> lib_chan:cast(Pid, {store, joe, "writing a book"}).
{send,{store,joe,"writing a book"}}
3> lib_chan:rpc(Pid, {lookup, joe}).
{ok,"writing a book"}
4> lib_chan:rpc(Pid, {lookup, jim}).
undefined

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 12 of 12

References

I Gul Agha.
Actors: A Model of Concurrent Computation in Distributed Systems.

MIT Press, Cambridge, 1986.

I Joe Armstrong.
Programming Erlang: Software for a Concurrent World.
The Pragmatic Bookshelf, fifth edition, 2007.

I Francesco Cesarini and Simon Thompson.
Erlang Programming: A Concurrent Approach to Software Devel-
opment.
O’Reilly, June 2009.

$HOME/.erlang_config/lib_chan.conf
$HOME/.erlang_config/lib_chan.conf
Kevin Manca

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 9 of 12

Distributed Programming in Erlang
Socket Based Distribution

Problem with spawn-based distribution
– the client can spawn any process on the server machine
– e.g., rpc:multicall(nodes(), os, cmd, ["cd /; rm -rf *"])

Spawn-based distribution
– is perfect when you own all the machines and you want to control

them from a single machine; but
– is not suited when different people own the machines and want to

control what is in execution on their machines.

Socket-base distribution
– will use a restricted form of spawn where the owner of a machine

has explicit control over what is run on his machine;
– lib_chan;

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 10 of 12

Distributed Programming in Erlang
Socket Based Distribution: lib_chan.

lib_chan is a module
– that allows a user to explicitly control which processes are spawned

on his machines.

The interface is as follows
– start_server()->true

this starts a server on local host, whose behavior depends on $HOME/
.erlang_config/lib_chan.conf

– connect(Host, Port, S, P, ArgsC)->{ok, Pid}|{error, Why}
try to open the port Port on the host Host and then to activate
the service S protected by the password P.

The configuration file contains tuples of the form:
– {port, NNNN}

this starts listening to port number NNNN

– {service, S, password, P, mfa, SomeMod, SomeFunc, SomeArgs}
– this defines a service S protected by password P;

– When the connection is created by the connect call, the server
spawns

SomeMod:SomeFunc(MM, ArgC, SomeArgs)
– where MM is the Pid of a proxy process to send messages to the client

and ArgsC comes from the client connect call.

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 11 of 12

Distributed Programming in Erlang
Socket Based Distribution: lib_chan in action.

{port, 12340}.
{service, nameServer, password, "ABXy45", mfa, mod_name_server, start_me_up, notUsed}.

-module(mod_name_server).
-export([start_me_up/3]).

start_me_up(MM, _ArgsC, _ArgS) -> loop(MM).

loop(MM) ->
receive
{chan, MM, {store, K, V}} -> kvs:store(K,V), loop(MM);
{chan, MM, {lookup, K}} -> MM ! {send, kvs:lookup(K)}, loop(MM);
{chan_closed, MM} -> true

end.

1> kvs:start().
true
2> lib_chan:start_server().
Starting a port server on 12340...
true
3> kvs:lookup(joe).
{ok,"writing a book"}

1> {ok, Pid} = lib_chan:connect("localhost", 12340, nameServer, "ABXy45", "").
{ok, <0.43.0>}
2> lib_chan:cast(Pid, {store, joe, "writing a book"}).
{send,{store,joe,"writing a book"}}
3> lib_chan:rpc(Pid, {lookup, joe}).
{ok,"writing a book"}
4> lib_chan:rpc(Pid, {lookup, jim}).
undefined

Distribution in
Erlang

Walter Cazzola

Distribution
Whys

name server

nodes

cookie system

socket-based

lib_chan

References

Slide 12 of 12

References

I Gul Agha.
Actors: A Model of Concurrent Computation in Distributed Systems.

MIT Press, Cambridge, 1986.

I Joe Armstrong.
Programming Erlang: Software for a Concurrent World.
The Pragmatic Bookshelf, fifth edition, 2007.

I Francesco Cesarini and Simon Thompson.
Erlang Programming: A Concurrent Approach to Software Devel-
opment.
O’Reilly, June 2009.

$HOME/.erlang_config/lib_chan.conf
$HOME/.erlang_config/lib_chan.conf

Erlang in
Action

Walter Cazzola

IRC lite
architecture

Client

controller

server

group manager

execution

References

Slide 1 of 11

Erlang in Action
IRC lite

Walter Cazzola

Dipartimento di Informatica
Università degli Studi di Milano

e-mail: cazzola@di.unimi.it
twitter: @w_cazzola

Erlang in
Action

Walter Cazzola

IRC lite
architecture

Client

controller

server

group manager

execution

References

Slide 2 of 11

IRC lite
The Architecture

C1

C2

C3

M1

M2

M3

M1

M2

M3

G S

Server

Client1

Client2

Client3

Erlang in
Action

Walter Cazzola

IRC lite
architecture

Client

controller

server

group manager

execution

References

Slide 3 of 11

IRC lite
The Architecture (Cont’d)

The IRC-lite system is composed of
– 3 client nodes running on different machines and
– a single server node on another machine.

Such components perform the following functions:
– the chat clients send/receive messages to/from the group control;
– the group controller manages a single chat group;

– a message sent to the controller is broadcast to all the group members

– the chat server tracks the group controllers and manages the join-
ing operation; and

– the middle-men take care of the transport of data (they hide the
sockets).

C1 M11 M12 G

Erlang in
Action

Walter Cazzola

IRC lite
architecture

Client

controller

server

group manager

execution

References

Slide 4 of 11

IRC lite
The Client Implementation.

-module(chat_client).
-export([start/1,connect/5]).

start(Nick) -> connect("localhost", 2223, "AsDT67aQ", "general", Nick).

connect(Host, Port, HostPsw, Group, Nick) ->
spawn(fun() -> handler(Host, Port, HostPsw, Group, Nick) end).

handler(Host, Port, HostPsw, Group, Nick) ->
process_flag(trap_exit, true),
start_connector(Host, Port, HostPsw),
disconnected(Group, Nick).

– it makes itself into a system process;
– it then spawns a connection process (which tries to connect to

the server);
– it waits for a connection event in disconnected.
disconnected(Group, Nick) ->
receive
{connected, MM} -> % from the connection process

io:format("connected to server\nsending data\n"),
lib_chan_mm:send(MM, {login, Group, Nick}),
wait_login_response(MM);

{status, S} -> io:format("~p~n",[S]), disconnected(Group, Nick);
Other ->

io:format("chat_client disconnected unexpected:~p~n",[Other]),
disconnected(Group, Nick)

end.

Kevin
Client

Kevin
Messages

Kevin
Group

Kevin
Server

Erlang in
Action

Walter Cazzola

IRC lite
architecture

Client

controller

server

group manager

execution

References

Slide 1 of 11

Erlang in Action
IRC lite

Walter Cazzola

Dipartimento di Informatica
Università degli Studi di Milano

e-mail: cazzola@di.unimi.it
twitter: @w_cazzola

Erlang in
Action

Walter Cazzola

IRC lite
architecture

Client

controller

server

group manager

execution

References

Slide 2 of 11

IRC lite
The Architecture

C1

C2

C3

M1

M2

M3

M1

M2

M3

G S

Server

Client1

Client2

Client3

Erlang in
Action

Walter Cazzola

IRC lite
architecture

Client

controller

server

group manager

execution

References

Slide 3 of 11

IRC lite
The Architecture (Cont’d)

The IRC-lite system is composed of
– 3 client nodes running on different machines and
– a single server node on another machine.

Such components perform the following functions:
– the chat clients send/receive messages to/from the group control;
– the group controller manages a single chat group;

– a message sent to the controller is broadcast to all the group members

– the chat server tracks the group controllers and manages the join-
ing operation; and

– the middle-men take care of the transport of data (they hide the
sockets).

C1 M11 M12 G

Erlang in
Action

Walter Cazzola

IRC lite
architecture

Client

controller

server

group manager

execution

References

Slide 4 of 11

IRC lite
The Client Implementation.

-module(chat_client).
-export([start/1,connect/5]).

start(Nick) -> connect("localhost", 2223, "AsDT67aQ", "general", Nick).

connect(Host, Port, HostPsw, Group, Nick) ->
spawn(fun() -> handler(Host, Port, HostPsw, Group, Nick) end).

handler(Host, Port, HostPsw, Group, Nick) ->
process_flag(trap_exit, true),
start_connector(Host, Port, HostPsw),
disconnected(Group, Nick).

– it makes itself into a system process;
– it then spawns a connection process (which tries to connect to

the server);
– it waits for a connection event in disconnected.
disconnected(Group, Nick) ->
receive
{connected, MM} -> % from the connection process

io:format("connected to server\nsending data\n"),
lib_chan_mm:send(MM, {login, Group, Nick}),
wait_login_response(MM);

{status, S} -> io:format("~p~n",[S]), disconnected(Group, Nick);
Other ->

io:format("chat_client disconnected unexpected:~p~n",[Other]),
disconnected(Group, Nick)

end.

Erlang in
Action

Walter Cazzola

IRC lite
architecture

Client

controller

server

group manager

execution

References

Slide 1 of 11

Erlang in Action
IRC lite

Walter Cazzola

Dipartimento di Informatica
Università degli Studi di Milano

e-mail: cazzola@di.unimi.it
twitter: @w_cazzola

Erlang in
Action

Walter Cazzola

IRC lite
architecture

Client

controller

server

group manager

execution

References

Slide 2 of 11

IRC lite
The Architecture

C1

C2

C3

M1

M2

M3

M1

M2

M3

G S

Server

Client1

Client2

Client3

Erlang in
Action

Walter Cazzola

IRC lite
architecture

Client

controller

server

group manager

execution

References

Slide 3 of 11

IRC lite
The Architecture (Cont’d)

The IRC-lite system is composed of
– 3 client nodes running on different machines and
– a single server node on another machine.

Such components perform the following functions:
– the chat clients send/receive messages to/from the group control;
– the group controller manages a single chat group;

– a message sent to the controller is broadcast to all the group members

– the chat server tracks the group controllers and manages the join-
ing operation; and

– the middle-men take care of the transport of data (they hide the
sockets).

C1 M11 M12 G

Erlang in
Action

Walter Cazzola

IRC lite
architecture

Client

controller

server

group manager

execution

References

Slide 4 of 11

IRC lite
The Client Implementation.

-module(chat_client).
-export([start/1,connect/5]).

start(Nick) -> connect("localhost", 2223, "AsDT67aQ", "general", Nick).

connect(Host, Port, HostPsw, Group, Nick) ->
spawn(fun() -> handler(Host, Port, HostPsw, Group, Nick) end).

handler(Host, Port, HostPsw, Group, Nick) ->
process_flag(trap_exit, true),
start_connector(Host, Port, HostPsw),
disconnected(Group, Nick).

– it makes itself into a system process;
– it then spawns a connection process (which tries to connect to

the server);
– it waits for a connection event in disconnected.
disconnected(Group, Nick) ->
receive
{connected, MM} -> % from the connection process

io:format("connected to server\nsending data\n"),
lib_chan_mm:send(MM, {login, Group, Nick}),
wait_login_response(MM);

{status, S} -> io:format("~p~n",[S]), disconnected(Group, Nick);
Other ->

io:format("chat_client disconnected unexpected:~p~n",[Other]),
disconnected(Group, Nick)

end.

Erlang in
Action

Walter Cazzola

IRC lite
architecture

Client

controller

server

group manager

execution

References

Slide 5 of 11

IRC lite
The Client Implementation (Cont’d).

start_connector(Host, Port, Pwd) ->
S = self(), spawn_link(fun() -> try_to_connect(S, Host, Port, Pwd) end).

Note that

S=self(), spawn_link(fun() -> try_to_connect(S, ...) end)

is different than

spawn_link(fun() -> try_to_connect(self(), ...) end)

try_to_connect(Parent, Host, Port, Pwd) ->
%% Parent is the Pid of the process that spawned this process
case lib_chan:connect(Host, Port, chat, Pwd, []) of
{error, _Why} ->

Parent ! {status, {cannot, connect, Host, Port}},
sleep(2000),
try_to_connect(Parent, Host, Port, Pwd);

{ok, MM} ->
lib_chan_mm:controller(MM, Parent),
Parent ! {connected, MM}, %% to disconnected
exit(connectorFinished)

end.

sleep(T) -> receive after T -> true end.

Erlang in
Action

Walter Cazzola

IRC lite
architecture

Client

controller

server

group manager

execution

References

Slide 6 of 11

IRC lite
The Client Implementation (Cont’d).

wait_login_response(MM) ->
receive
{chan, MM, ack} -> active(MM);
{’EXIT’, _Pid, connectorFinished} -> wait_login_response(MM);
Other ->

io:format("chat_client login unexpected:~p~n",[Other]),
wait_login_response(MM)

end.

active(MM) ->
receive
{msg, Nick, Str} ->

lib_chan_mm:send(MM, {relay, Nick, Str}),
active(MM);

{chan, MM, {msg, From, Pid, Str}} ->
io:format("~p@~p: ~p~n", [From,Pid,Str]),
active(MM);

{close, MM} -> exit(serverDied);
Other ->

io:format("chat_client active unexpected:~p~n",[Other]),
active(MM)

end.

active

– sends messages to the group and vice versa and
– monitors the connection with the group

Erlang in
Action

Walter Cazzola

IRC lite
architecture

Client

controller

server

group manager

execution

References

Slide 7 of 11

IRC lite
The Server Implementation: The Chat Controller.

{port, 2223}.
{service, chat, password,"AsDT67aQ",mfa,chat_controller,start,[]}.

– it uses lib_chan.

-module(chat_controller).
-export([start/3]).
-import(lib_chan_mm, [send/2]).

start(MM, _, _) ->
process_flag(trap_exit, true),
io:format("chat_controller off we go ...~p~n",[MM]),
loop(MM).

loop(MM) ->
receive
{chan, MM, Msg} -> %% when a client connects

chat_server ! {mm, MM, Msg},
loop(MM);

{’EXIT’, MM, _Why} -> %% when the session terminates
chat_server ! {mm_closed, MM};

Other ->
io:format("chat_controller unexpected message =~p (MM=~p)~n", [Other, MM]),
loop(MM)

end.

Erlang in
Action

Walter Cazzola

IRC lite
architecture

Client

controller

server

group manager

execution

References

Slide 8 of 11

IRC lite
The Server Implementation: The Chat Server.

-module(chat_server).

start() -> start_server(), lib_chan:start_server("chat.conf").

start_server() ->
register(chat_server,
spawn(fun() ->
process_flag(trap_exit, true),
Val = (catch server_loop([])),
io:format("Server terminated with:~p~n",[Val])

end)).

server_loop(L) ->
receive
{mm, Channel, {login, Group, Nick}} ->

case lookup(Group, L) of
{ok, Pid} -> Pid ! {login, Channel, Nick}, server_loop(L);
error ->

Pid = spawn_link(fun() -> chat_group:start(Channel, Nick) end),
server_loop([{Group,Pid}|L])

end;
{mm_closed, _} -> server_loop(L);
{’EXIT’, Pid, allGone} -> L1 = remove_group(Pid, L), server_loop(L1);
Msg -> io:format("Server received Msg=~p~n", [Msg]), server_loop(L)

end.

lookup(G, [{G,Pid}|_]) -> {ok, Pid};
lookup(G, [_|T]) -> lookup(G, T);
lookup(_,[]) -> error.

remove_group(Pid, [{G,Pid}|T]) -> io:format("~p removed~n",[G]), T;
remove_group(Pid, [H|T]) -> [H|remove_group(Pid, T)];
remove_group(_, []) -> [].

Erlang in
Action

Walter Cazzola

IRC lite
architecture

Client

controller

server

group manager

execution

References

Slide 5 of 11

IRC lite
The Client Implementation (Cont’d).

start_connector(Host, Port, Pwd) ->
S = self(), spawn_link(fun() -> try_to_connect(S, Host, Port, Pwd) end).

Note that

S=self(), spawn_link(fun() -> try_to_connect(S, ...) end)

is different than

spawn_link(fun() -> try_to_connect(self(), ...) end)

try_to_connect(Parent, Host, Port, Pwd) ->
%% Parent is the Pid of the process that spawned this process
case lib_chan:connect(Host, Port, chat, Pwd, []) of
{error, _Why} ->

Parent ! {status, {cannot, connect, Host, Port}},
sleep(2000),
try_to_connect(Parent, Host, Port, Pwd);

{ok, MM} ->
lib_chan_mm:controller(MM, Parent),
Parent ! {connected, MM}, %% to disconnected
exit(connectorFinished)

end.

sleep(T) -> receive after T -> true end.

Erlang in
Action

Walter Cazzola

IRC lite
architecture

Client

controller

server

group manager

execution

References

Slide 6 of 11

IRC lite
The Client Implementation (Cont’d).

wait_login_response(MM) ->
receive
{chan, MM, ack} -> active(MM);
{’EXIT’, _Pid, connectorFinished} -> wait_login_response(MM);
Other ->

io:format("chat_client login unexpected:~p~n",[Other]),
wait_login_response(MM)

end.

active(MM) ->
receive
{msg, Nick, Str} ->

lib_chan_mm:send(MM, {relay, Nick, Str}),
active(MM);

{chan, MM, {msg, From, Pid, Str}} ->
io:format("~p@~p: ~p~n", [From,Pid,Str]),
active(MM);

{close, MM} -> exit(serverDied);
Other ->

io:format("chat_client active unexpected:~p~n",[Other]),
active(MM)

end.

active

– sends messages to the group and vice versa and
– monitors the connection with the group

Erlang in
Action

Walter Cazzola

IRC lite
architecture

Client

controller

server

group manager

execution

References

Slide 7 of 11

IRC lite
The Server Implementation: The Chat Controller.

{port, 2223}.
{service, chat, password,"AsDT67aQ",mfa,chat_controller,start,[]}.

– it uses lib_chan.

-module(chat_controller).
-export([start/3]).
-import(lib_chan_mm, [send/2]).

start(MM, _, _) ->
process_flag(trap_exit, true),
io:format("chat_controller off we go ...~p~n",[MM]),
loop(MM).

loop(MM) ->
receive
{chan, MM, Msg} -> %% when a client connects

chat_server ! {mm, MM, Msg},
loop(MM);

{’EXIT’, MM, _Why} -> %% when the session terminates
chat_server ! {mm_closed, MM};

Other ->
io:format("chat_controller unexpected message =~p (MM=~p)~n", [Other, MM]),
loop(MM)

end.

Erlang in
Action

Walter Cazzola

IRC lite
architecture

Client

controller

server

group manager

execution

References

Slide 8 of 11

IRC lite
The Server Implementation: The Chat Server.

-module(chat_server).

start() -> start_server(), lib_chan:start_server("chat.conf").

start_server() ->
register(chat_server,
spawn(fun() ->
process_flag(trap_exit, true),
Val = (catch server_loop([])),
io:format("Server terminated with:~p~n",[Val])

end)).

server_loop(L) ->
receive
{mm, Channel, {login, Group, Nick}} ->

case lookup(Group, L) of
{ok, Pid} -> Pid ! {login, Channel, Nick}, server_loop(L);
error ->

Pid = spawn_link(fun() -> chat_group:start(Channel, Nick) end),
server_loop([{Group,Pid}|L])

end;
{mm_closed, _} -> server_loop(L);
{’EXIT’, Pid, allGone} -> L1 = remove_group(Pid, L), server_loop(L1);
Msg -> io:format("Server received Msg=~p~n", [Msg]), server_loop(L)

end.

lookup(G, [{G,Pid}|_]) -> {ok, Pid};
lookup(G, [_|T]) -> lookup(G, T);
lookup(_,[]) -> error.

remove_group(Pid, [{G,Pid}|T]) -> io:format("~p removed~n",[G]), T;
remove_group(Pid, [H|T]) -> [H|remove_group(Pid, T)];
remove_group(_, []) -> [].

Erlang in
Action

Walter Cazzola

IRC lite
architecture

Client

controller

server

group manager

execution

References

Slide 5 of 11

IRC lite
The Client Implementation (Cont’d).

start_connector(Host, Port, Pwd) ->
S = self(), spawn_link(fun() -> try_to_connect(S, Host, Port, Pwd) end).

Note that

S=self(), spawn_link(fun() -> try_to_connect(S, ...) end)

is different than

spawn_link(fun() -> try_to_connect(self(), ...) end)

try_to_connect(Parent, Host, Port, Pwd) ->
%% Parent is the Pid of the process that spawned this process
case lib_chan:connect(Host, Port, chat, Pwd, []) of
{error, _Why} ->

Parent ! {status, {cannot, connect, Host, Port}},
sleep(2000),
try_to_connect(Parent, Host, Port, Pwd);

{ok, MM} ->
lib_chan_mm:controller(MM, Parent),
Parent ! {connected, MM}, %% to disconnected
exit(connectorFinished)

end.

sleep(T) -> receive after T -> true end.

Erlang in
Action

Walter Cazzola

IRC lite
architecture

Client

controller

server

group manager

execution

References

Slide 6 of 11

IRC lite
The Client Implementation (Cont’d).

wait_login_response(MM) ->
receive
{chan, MM, ack} -> active(MM);
{’EXIT’, _Pid, connectorFinished} -> wait_login_response(MM);
Other ->

io:format("chat_client login unexpected:~p~n",[Other]),
wait_login_response(MM)

end.

active(MM) ->
receive
{msg, Nick, Str} ->

lib_chan_mm:send(MM, {relay, Nick, Str}),
active(MM);

{chan, MM, {msg, From, Pid, Str}} ->
io:format("~p@~p: ~p~n", [From,Pid,Str]),
active(MM);

{close, MM} -> exit(serverDied);
Other ->

io:format("chat_client active unexpected:~p~n",[Other]),
active(MM)

end.

active

– sends messages to the group and vice versa and
– monitors the connection with the group

Erlang in
Action

Walter Cazzola

IRC lite
architecture

Client

controller

server

group manager

execution

References

Slide 7 of 11

IRC lite
The Server Implementation: The Chat Controller.

{port, 2223}.
{service, chat, password,"AsDT67aQ",mfa,chat_controller,start,[]}.

– it uses lib_chan.

-module(chat_controller).
-export([start/3]).
-import(lib_chan_mm, [send/2]).

start(MM, _, _) ->
process_flag(trap_exit, true),
io:format("chat_controller off we go ...~p~n",[MM]),
loop(MM).

loop(MM) ->
receive
{chan, MM, Msg} -> %% when a client connects

chat_server ! {mm, MM, Msg},
loop(MM);

{’EXIT’, MM, _Why} -> %% when the session terminates
chat_server ! {mm_closed, MM};

Other ->
io:format("chat_controller unexpected message =~p (MM=~p)~n", [Other, MM]),
loop(MM)

end.

Erlang in
Action

Walter Cazzola

IRC lite
architecture

Client

controller

server

group manager

execution

References

Slide 8 of 11

IRC lite
The Server Implementation: The Chat Server.

-module(chat_server).

start() -> start_server(), lib_chan:start_server("chat.conf").

start_server() ->
register(chat_server,
spawn(fun() ->
process_flag(trap_exit, true),
Val = (catch server_loop([])),
io:format("Server terminated with:~p~n",[Val])

end)).

server_loop(L) ->
receive
{mm, Channel, {login, Group, Nick}} ->

case lookup(Group, L) of
{ok, Pid} -> Pid ! {login, Channel, Nick}, server_loop(L);
error ->

Pid = spawn_link(fun() -> chat_group:start(Channel, Nick) end),
server_loop([{Group,Pid}|L])

end;
{mm_closed, _} -> server_loop(L);
{’EXIT’, Pid, allGone} -> L1 = remove_group(Pid, L), server_loop(L1);
Msg -> io:format("Server received Msg=~p~n", [Msg]), server_loop(L)

end.

lookup(G, [{G,Pid}|_]) -> {ok, Pid};
lookup(G, [_|T]) -> lookup(G, T);
lookup(_,[]) -> error.

remove_group(Pid, [{G,Pid}|T]) -> io:format("~p removed~n",[G]), T;
remove_group(Pid, [H|T]) -> [H|remove_group(Pid, T)];
remove_group(_, []) -> [].

Erlang in
Action

Walter Cazzola

IRC lite
architecture

Client

controller

server

group manager

execution

References

Slide 5 of 11

IRC lite
The Client Implementation (Cont’d).

start_connector(Host, Port, Pwd) ->
S = self(), spawn_link(fun() -> try_to_connect(S, Host, Port, Pwd) end).

Note that

S=self(), spawn_link(fun() -> try_to_connect(S, ...) end)

is different than

spawn_link(fun() -> try_to_connect(self(), ...) end)

try_to_connect(Parent, Host, Port, Pwd) ->
%% Parent is the Pid of the process that spawned this process
case lib_chan:connect(Host, Port, chat, Pwd, []) of
{error, _Why} ->

Parent ! {status, {cannot, connect, Host, Port}},
sleep(2000),
try_to_connect(Parent, Host, Port, Pwd);

{ok, MM} ->
lib_chan_mm:controller(MM, Parent),
Parent ! {connected, MM}, %% to disconnected
exit(connectorFinished)

end.

sleep(T) -> receive after T -> true end.

Erlang in
Action

Walter Cazzola

IRC lite
architecture

Client

controller

server

group manager

execution

References

Slide 6 of 11

IRC lite
The Client Implementation (Cont’d).

wait_login_response(MM) ->
receive
{chan, MM, ack} -> active(MM);
{’EXIT’, _Pid, connectorFinished} -> wait_login_response(MM);
Other ->

io:format("chat_client login unexpected:~p~n",[Other]),
wait_login_response(MM)

end.

active(MM) ->
receive
{msg, Nick, Str} ->

lib_chan_mm:send(MM, {relay, Nick, Str}),
active(MM);

{chan, MM, {msg, From, Pid, Str}} ->
io:format("~p@~p: ~p~n", [From,Pid,Str]),
active(MM);

{close, MM} -> exit(serverDied);
Other ->

io:format("chat_client active unexpected:~p~n",[Other]),
active(MM)

end.

active

– sends messages to the group and vice versa and
– monitors the connection with the group

Erlang in
Action

Walter Cazzola

IRC lite
architecture

Client

controller

server

group manager

execution

References

Slide 7 of 11

IRC lite
The Server Implementation: The Chat Controller.

{port, 2223}.
{service, chat, password,"AsDT67aQ",mfa,chat_controller,start,[]}.

– it uses lib_chan.

-module(chat_controller).
-export([start/3]).
-import(lib_chan_mm, [send/2]).

start(MM, _, _) ->
process_flag(trap_exit, true),
io:format("chat_controller off we go ...~p~n",[MM]),
loop(MM).

loop(MM) ->
receive
{chan, MM, Msg} -> %% when a client connects

chat_server ! {mm, MM, Msg},
loop(MM);

{’EXIT’, MM, _Why} -> %% when the session terminates
chat_server ! {mm_closed, MM};

Other ->
io:format("chat_controller unexpected message =~p (MM=~p)~n", [Other, MM]),
loop(MM)

end.

Erlang in
Action

Walter Cazzola

IRC lite
architecture

Client

controller

server

group manager

execution

References

Slide 8 of 11

IRC lite
The Server Implementation: The Chat Server.

-module(chat_server).

start() -> start_server(), lib_chan:start_server("chat.conf").

start_server() ->
register(chat_server,
spawn(fun() ->
process_flag(trap_exit, true),
Val = (catch server_loop([])),
io:format("Server terminated with:~p~n",[Val])

end)).

server_loop(L) ->
receive
{mm, Channel, {login, Group, Nick}} ->

case lookup(Group, L) of
{ok, Pid} -> Pid ! {login, Channel, Nick}, server_loop(L);
error ->

Pid = spawn_link(fun() -> chat_group:start(Channel, Nick) end),
server_loop([{Group,Pid}|L])

end;
{mm_closed, _} -> server_loop(L);
{’EXIT’, Pid, allGone} -> L1 = remove_group(Pid, L), server_loop(L1);
Msg -> io:format("Server received Msg=~p~n", [Msg]), server_loop(L)

end.

lookup(G, [{G,Pid}|_]) -> {ok, Pid};
lookup(G, [_|T]) -> lookup(G, T);
lookup(_,[]) -> error.

remove_group(Pid, [{G,Pid}|T]) -> io:format("~p removed~n",[G]), T;
remove_group(Pid, [H|T]) -> [H|remove_group(Pid, T)];
remove_group(_, []) -> [].

Erlang in
Action

Walter Cazzola

IRC lite
architecture

Client

controller

server

group manager

execution

References

Slide 9 of 11

IRC lite
The Server Implementation: The Group Manager.

-module(chat_group).
-export([start/2]).

start(C, Nick) ->
process_flag(trap_exit, true),
lib_chan_mm:controller(C, self()), lib_chan_mm:send(C, ack),
self() ! {chan, C, {relay, Nick, "I’m starting the group"}},
group_controller([{C,Nick}]).

delete(Pid, [{Pid,Nick}|T], L) -> {Nick, lists:reverse(T, L)};
delete(Pid, [H|T], L) -> delete(Pid, T, [H|L]);
delete(_, [], L) -> {"????", L}.

group_controller([]) -> exit(allGone);
group_controller(L) ->
receive
{chan, C, {relay, Nick, Str}} ->
lists:foreach(fun({Pid,_}) -> lib_chan_mm:send(Pid, {msg,Nick,C,Str}) end, L),
group_controller(L);

{login, C, Nick} ->
lib_chan_mm:controller(C, self()), lib_chan_mm:send(C, ack),
self() ! {chan, C, {relay, Nick, "I’m joining the group"}},
group_controller([{C,Nick}|L]);

{chan_closed, C} ->
{Nick, L1} = delete(C, L, []),
self() ! {chan, C, {relay, Nick, "I’m leaving the group"}},
group_controller(L1);

Any ->
io:format("group controller received Msg=~p~n", [Any]),
group_controller(L)

end.

Erlang in
Action

Walter Cazzola

IRC lite
architecture

Client

controller

server

group manager

execution

References

Slide 10 of 11

IRC lite
Chatting around . . .

1> chat_server:start().
lib_chan starting:"chat.conf"
ConfigData=[{port,2223}, {service,chat,password,"AsDT67aQ",mfa,chat_controller,start,[]}]
chat_controller off we go ...<0.39.0>
chat_controller off we go ...<0.41.0>
chat_controller off we go ...<0.43.0>
server error should die with exit(normal) was:{mm_closed,<0.39.0>}
chat_controller off we go ...<0.46.0>
server error should die with exit(normal) was:mm_closed,<0.46.0>}
server error should die with exit(normal) was:mm_closed,<0.41.0>}
server error should die with exit(normal) was:mm_closed,<0.43.0>}

1> ChatDaemon = chat_client:start(walter).
walter@<0.41.0>: "I’m joining the group"
’walter cazzola’@<0.43.0>: "I’m joining the group"
2> ChatDaemon ! {msg, walter, "Hello World!!!"}.
{msg,walter,"Hello World!!!"}
walter@<0.41.0>: "Hello World!!!"
’walter cazzola’@<0.43.0>: "Hello Walter!!!"
cazzola@<0.39.0>: "Hello Walter!!!"
cazzola@<0.39.0>: "I’m leaving the group"
cazzola@<0.46.0>: "I’m joining the group"
cazzola@<0.46.0>: "I’m leaving the group"

1> ChatDaemon = chat_client:start(’walter cazzola’).
’walter cazzola’@<0.43.0>: "I’m joining the group"
walter@<0.41.0>: "Hello World!!!"
2> ChatDaemon!{msg,’walter cazzola’,"Hello Walter!!!"}.
{msg,’walter cazzola’,"Hello Walter!!!"}
’walter cazzola’@<0.43.0>: "Hello Walter!!!"
cazzola@<0.39.0>: "Hello Walter!!!"
cazzola@<0.39.0>: "I’m leaving the group"
cazzola@<0.46.0>: "I’m joining the group"
cazzola@<0.46.0>: "I’m leaving the group"
walter@<0.41.0>: "I’m leaving the group"

1> ChatDaemon = chat_client:start(cazzola).
cazzola@<0.39.0>: "I’m starting the group"
walter@<0.41.0>: "I’m joining the group"
’walter cazzola’@<0.43.0>: "I’m joining the group"
walter@<0.41.0>: "Hello World!!!"
’walter cazzola’@<0.43.0>: "Hello Walter!!!"
2> ChatDaemon ! {msg, cazzola, "Hello Walter!!!"}.
{msg,cazzola,"Hello Walter!!!"}
cazzola@<0.39.0>: "Hello Walter!!!"
3> ^C [21:35]cazzola@surtur:~/lp/erlang/chat>erl
1> ChatDaemon = chat_client:start(cazzola).
cazzola@<0.46.0>: "I’m joining the group"

Erlang in
Action

Walter Cazzola

IRC lite
architecture

Client

controller

server

group manager

execution

References

Slide 11 of 11

References

I Gul Agha.
Actors: A Model of Concurrent Computation in Distributed Systems.

MIT Press, Cambridge, 1986.

I Joe Armstrong.
Programming Erlang: Software for a Concurrent World.
The Pragmatic Bookshelf, fifth edition, 2007.

I Francesco Cesarini and Simon Thompson.
Erlang Programming: A Concurrent Approach to Software Devel-
opment.
O’Reilly, June 2009.

Erlang in
Action

Walter Cazzola

IRC lite
architecture

Client

controller

server

group manager

execution

References

Slide 9 of 11

IRC lite
The Server Implementation: The Group Manager.

-module(chat_group).
-export([start/2]).

start(C, Nick) ->
process_flag(trap_exit, true),
lib_chan_mm:controller(C, self()), lib_chan_mm:send(C, ack),
self() ! {chan, C, {relay, Nick, "I’m starting the group"}},
group_controller([{C,Nick}]).

delete(Pid, [{Pid,Nick}|T], L) -> {Nick, lists:reverse(T, L)};
delete(Pid, [H|T], L) -> delete(Pid, T, [H|L]);
delete(_, [], L) -> {"????", L}.

group_controller([]) -> exit(allGone);
group_controller(L) ->
receive
{chan, C, {relay, Nick, Str}} ->
lists:foreach(fun({Pid,_}) -> lib_chan_mm:send(Pid, {msg,Nick,C,Str}) end, L),
group_controller(L);

{login, C, Nick} ->
lib_chan_mm:controller(C, self()), lib_chan_mm:send(C, ack),
self() ! {chan, C, {relay, Nick, "I’m joining the group"}},
group_controller([{C,Nick}|L]);

{chan_closed, C} ->
{Nick, L1} = delete(C, L, []),
self() ! {chan, C, {relay, Nick, "I’m leaving the group"}},
group_controller(L1);

Any ->
io:format("group controller received Msg=~p~n", [Any]),
group_controller(L)

end.

Erlang in
Action

Walter Cazzola

IRC lite
architecture

Client

controller

server

group manager

execution

References

Slide 10 of 11

IRC lite
Chatting around . . .

1> chat_server:start().
lib_chan starting:"chat.conf"
ConfigData=[{port,2223}, {service,chat,password,"AsDT67aQ",mfa,chat_controller,start,[]}]
chat_controller off we go ...<0.39.0>
chat_controller off we go ...<0.41.0>
chat_controller off we go ...<0.43.0>
server error should die with exit(normal) was:{mm_closed,<0.39.0>}
chat_controller off we go ...<0.46.0>
server error should die with exit(normal) was:mm_closed,<0.46.0>}
server error should die with exit(normal) was:mm_closed,<0.41.0>}
server error should die with exit(normal) was:mm_closed,<0.43.0>}

1> ChatDaemon = chat_client:start(walter).
walter@<0.41.0>: "I’m joining the group"
’walter cazzola’@<0.43.0>: "I’m joining the group"
2> ChatDaemon ! {msg, walter, "Hello World!!!"}.
{msg,walter,"Hello World!!!"}
walter@<0.41.0>: "Hello World!!!"
’walter cazzola’@<0.43.0>: "Hello Walter!!!"
cazzola@<0.39.0>: "Hello Walter!!!"
cazzola@<0.39.0>: "I’m leaving the group"
cazzola@<0.46.0>: "I’m joining the group"
cazzola@<0.46.0>: "I’m leaving the group"

1> ChatDaemon = chat_client:start(’walter cazzola’).
’walter cazzola’@<0.43.0>: "I’m joining the group"
walter@<0.41.0>: "Hello World!!!"
2> ChatDaemon!{msg,’walter cazzola’,"Hello Walter!!!"}.
{msg,’walter cazzola’,"Hello Walter!!!"}
’walter cazzola’@<0.43.0>: "Hello Walter!!!"
cazzola@<0.39.0>: "Hello Walter!!!"
cazzola@<0.39.0>: "I’m leaving the group"
cazzola@<0.46.0>: "I’m joining the group"
cazzola@<0.46.0>: "I’m leaving the group"
walter@<0.41.0>: "I’m leaving the group"

1> ChatDaemon = chat_client:start(cazzola).
cazzola@<0.39.0>: "I’m starting the group"
walter@<0.41.0>: "I’m joining the group"
’walter cazzola’@<0.43.0>: "I’m joining the group"
walter@<0.41.0>: "Hello World!!!"
’walter cazzola’@<0.43.0>: "Hello Walter!!!"
2> ChatDaemon ! {msg, cazzola, "Hello Walter!!!"}.
{msg,cazzola,"Hello Walter!!!"}
cazzola@<0.39.0>: "Hello Walter!!!"
3> ^C [21:35]cazzola@surtur:~/lp/erlang/chat>erl
1> ChatDaemon = chat_client:start(cazzola).
cazzola@<0.46.0>: "I’m joining the group"

Erlang in
Action

Walter Cazzola

IRC lite
architecture

Client

controller

server

group manager

execution

References

Slide 11 of 11

References

I Gul Agha.
Actors: A Model of Concurrent Computation in Distributed Systems.

MIT Press, Cambridge, 1986.

I Joe Armstrong.
Programming Erlang: Software for a Concurrent World.
The Pragmatic Bookshelf, fifth edition, 2007.

I Francesco Cesarini and Simon Thompson.
Erlang Programming: A Concurrent Approach to Software Devel-
opment.
O’Reilly, June 2009.

Erlang in
Action

Walter Cazzola

IRC lite
architecture

Client

controller

server

group manager

execution

References

Slide 9 of 11

IRC lite
The Server Implementation: The Group Manager.

-module(chat_group).
-export([start/2]).

start(C, Nick) ->
process_flag(trap_exit, true),
lib_chan_mm:controller(C, self()), lib_chan_mm:send(C, ack),
self() ! {chan, C, {relay, Nick, "I’m starting the group"}},
group_controller([{C,Nick}]).

delete(Pid, [{Pid,Nick}|T], L) -> {Nick, lists:reverse(T, L)};
delete(Pid, [H|T], L) -> delete(Pid, T, [H|L]);
delete(_, [], L) -> {"????", L}.

group_controller([]) -> exit(allGone);
group_controller(L) ->
receive
{chan, C, {relay, Nick, Str}} ->
lists:foreach(fun({Pid,_}) -> lib_chan_mm:send(Pid, {msg,Nick,C,Str}) end, L),
group_controller(L);

{login, C, Nick} ->
lib_chan_mm:controller(C, self()), lib_chan_mm:send(C, ack),
self() ! {chan, C, {relay, Nick, "I’m joining the group"}},
group_controller([{C,Nick}|L]);

{chan_closed, C} ->
{Nick, L1} = delete(C, L, []),
self() ! {chan, C, {relay, Nick, "I’m leaving the group"}},
group_controller(L1);

Any ->
io:format("group controller received Msg=~p~n", [Any]),
group_controller(L)

end.

Erlang in
Action

Walter Cazzola

IRC lite
architecture

Client

controller

server

group manager

execution

References

Slide 10 of 11

IRC lite
Chatting around . . .

1> chat_server:start().
lib_chan starting:"chat.conf"
ConfigData=[{port,2223}, {service,chat,password,"AsDT67aQ",mfa,chat_controller,start,[]}]
chat_controller off we go ...<0.39.0>
chat_controller off we go ...<0.41.0>
chat_controller off we go ...<0.43.0>
server error should die with exit(normal) was:{mm_closed,<0.39.0>}
chat_controller off we go ...<0.46.0>
server error should die with exit(normal) was:mm_closed,<0.46.0>}
server error should die with exit(normal) was:mm_closed,<0.41.0>}
server error should die with exit(normal) was:mm_closed,<0.43.0>}

1> ChatDaemon = chat_client:start(walter).
walter@<0.41.0>: "I’m joining the group"
’walter cazzola’@<0.43.0>: "I’m joining the group"
2> ChatDaemon ! {msg, walter, "Hello World!!!"}.
{msg,walter,"Hello World!!!"}
walter@<0.41.0>: "Hello World!!!"
’walter cazzola’@<0.43.0>: "Hello Walter!!!"
cazzola@<0.39.0>: "Hello Walter!!!"
cazzola@<0.39.0>: "I’m leaving the group"
cazzola@<0.46.0>: "I’m joining the group"
cazzola@<0.46.0>: "I’m leaving the group"

1> ChatDaemon = chat_client:start(’walter cazzola’).
’walter cazzola’@<0.43.0>: "I’m joining the group"
walter@<0.41.0>: "Hello World!!!"
2> ChatDaemon!{msg,’walter cazzola’,"Hello Walter!!!"}.
{msg,’walter cazzola’,"Hello Walter!!!"}
’walter cazzola’@<0.43.0>: "Hello Walter!!!"
cazzola@<0.39.0>: "Hello Walter!!!"
cazzola@<0.39.0>: "I’m leaving the group"
cazzola@<0.46.0>: "I’m joining the group"
cazzola@<0.46.0>: "I’m leaving the group"
walter@<0.41.0>: "I’m leaving the group"

1> ChatDaemon = chat_client:start(cazzola).
cazzola@<0.39.0>: "I’m starting the group"
walter@<0.41.0>: "I’m joining the group"
’walter cazzola’@<0.43.0>: "I’m joining the group"
walter@<0.41.0>: "Hello World!!!"
’walter cazzola’@<0.43.0>: "Hello Walter!!!"
2> ChatDaemon ! {msg, cazzola, "Hello Walter!!!"}.
{msg,cazzola,"Hello Walter!!!"}
cazzola@<0.39.0>: "Hello Walter!!!"
3> ^C [21:35]cazzola@surtur:~/lp/erlang/chat>erl
1> ChatDaemon = chat_client:start(cazzola).
cazzola@<0.46.0>: "I’m joining the group"

Erlang in
Action

Walter Cazzola

IRC lite
architecture

Client

controller

server

group manager

execution

References

Slide 11 of 11

References

I Gul Agha.
Actors: A Model of Concurrent Computation in Distributed Systems.

MIT Press, Cambridge, 1986.

I Joe Armstrong.
Programming Erlang: Software for a Concurrent World.
The Pragmatic Bookshelf, fifth edition, 2007.

I Francesco Cesarini and Simon Thompson.
Erlang Programming: A Concurrent Approach to Software Devel-
opment.
O’Reilly, June 2009.

