Concurrency

Walter Cazzola

Errors in Concurrency

Walter Cazzola

Dirartimento di Informatica
Universita deali Studi di Milano
e-mail: cazzola@di.unimi.it
twitter: @w_cazzola

Slide | of 4+

Kevin Manca

Kevin Manca

Kevin Manca

Errors in Concurrent Proarams
Error Handling on Exit

Errors in
Concurrency

When two processes are related

\Walter Cazzola

an exit sianal is sent to A

[# Ais linked to B

Slide 2- of I+

Kevin Manca

Kevin Manca

Kevin Manca

Errors in Concurrent Proarams
Error Handliina on Exit

Errors in
Concurrency

-module(dies).

Walter C. |
erter Cozzold -export([on_exit/2]).

on_exit(Pid, Fun) ->

spawn (fun() ->
process_flag(trap_exit, true),
link(Pid),
receive

{'EXIT’, Pid, Why} -> Fun(Why)

end

end) .

1> F = fun() -> receive X -> list_to_atom(X) end end.
#Fun<erl_eval.20.67289768>

2> Pid = spawn(F).

<0.35.0>

3> dies:on_exit(Pid, fun(Why) -> io:format("~p died with:~p~n",[Pid, Why]) end).
<0.37.0>

4> Pid ! hello.
<0.35.0> died with:{badarg, [{erlang,list_to_atom, [hello]}]}

=ERROR REPORT: 9-Nov-2011::17:50:20

Error in process <0.35.0> with exit valu badarg, [{erlang, list_to_atom, [hello]}1}
hello

Slide 3 of 4+

Kevin Manca

Kevin Manca

Kevin Manca

Errors in Concurrent Proarams

Details of Error Handling

Errors in L| Nks

Concurrency

— defines an error propaaation path Between two processes;

Walter Cazzola . R . R .
e — i# a process dies an exit signal is sent to the other process;

— the set of processes linked tO a8 Given process is called link set.

Exit Signals
— they are cenerated By a process when it dies;

— signals are Broadecast to all processes in the link set of the dyina
process;

— the exit signal contains an araument explaining why the process died
(exit(Reason) or implicitly set).

— when a process «naturally dies» the exit reason is normal;
— exit signals can e explicitly sent via exit(Pid, X): the sender does
not die («fake death»).
System Processes
— 3 NON system process that receives a exit sianal dies too;

— 3 system process receives the sianal as a Nnormal messa&e In its
MailBox;

— process_flag(trap_exit, true) transform a process into a system

process.
Slide 4 of 4

Kevin Manca

Kevin Manca

Kevin Manca

Errors in Concurrent Proarams
Details of Exrror Handling (Cont'd)

Errors in
Concurrency

R eceiver’s Behavior
\Walter Cazzola

trap_exit Exit Signal Action

true Kill dies + Broadeasts it to its link set
true M adds {’EXIT’, Pid, X} tO the mailrox
false normal continues < the sianal vanishes

false Kill dies % Broadeasts it to its link set
false ~ dies + Broadeasts it to its link set
Privileged (System process)
Arternatives

Slide S of 4

Kevin

Kevin
Privileged (System process)

Kevin

Kevin Manca

Errors in Concurrent Proarams
QGoing into Details of Error Handling

Errors in
Concurrency

Walter Cazzola -module(edemol) .
-export([start/2]).
start(Bool, M) ->
A = spawn(fun() -> a() end),
B = spawn(fun() -> b(A, Bool) end),
C = spawn(fun() -> c(B, M) end),
sleep(1000), status(b, B), status(c, C).

a() -> process_flag(trap_exit, true), wait(a).
b(A, Bool) -> process_flag(trap_exit, Bool), link(A), wait(b).
c(B, M) -> link(B),
case M of
{die, Reason} -> exit(Reason);
{divide, N} -> 1/N, wait(c);
normal -> true
end.

This starts 3 processes: A, B and C
= A will trap exits and watch for exits from B;
= B will trap exits i£ Bool is true and
= C will die with exit reason M.

Slide £ of 4+

Kevin

Kevin
Privileged (System process)

Kevin

Kevin Manca

Errors in Concurrent Proarams
GoinG into Details of Error Handling (Cont’d)

Errors in
Concurrency

wait(Prog) ->
receive
Any ->
io:format("Process ~p received ~p~n", [Prog, Any])
wait(Prog)
end.

\Walter Cazzols

sleep(T) ->
receive
after T -> true
end.

status(Name, Pid) ->
case erlang:is_process_alive(Pid) of
true -> io:format("process ~p (~p) is alive~n", [Name, Pidl);
false -> io:format("process ~p (~p) is dead~n", [Name, Pid])
end.

This starts 3 processes: A, B and C
— wait/1 just prints any messace it receives;
— sleep/1 awakes the iNVOking process after a period of tinve;

— status/2 prints the aliveness of the invoing process.

Slide 7 of 4+

Kevin

Kevin
Privileged (System process)

Kevin

Kevin Manca

Errors in Concurrent Proarams
QGoing into Details of Error Handling (Cont’d)

Errors in
Concurrency
1> edemol:start(false, {die,normal}).

process b (<0.48.0>) is alive
process c (<0.49.0>) is dead
ok

Watter Cazzola

B is linked to C
-

exit(normal)

— B is not a system process;
— when C dies with normal signal, B doesn’t die.

Slide & of 4+

Kevin

Kevin
Privileged (System process)

Kevin

Kevin Manca

Errors in Concurrent Proarams
Going into Details of Error Handlina (Cont'd)

Errors in 1> edemol:start(false, {die, abc}).
Coneurrency Process a received {’EXIT’,<0.40.0>,abc}
Watter Cazzola process b (<0.40.0>) is dead
process c¢ (<0.41.0>) is dead
ok

& é"&/

N7] N
oV
--------- \X%V e |
Alis linked to B %Qr‘:ﬁ B is linked to C
-~

exit(age)

@

=% W

— B is not a system process;
— when C evaluates exit(abc), process B dies;
— when B exits rerroadeasts the unwoditied exit sianal to its link set

ﬁ — A traps the exit signal and convert it to the error messaae
lide 9 of

Errors in Concurrent Proarams
GoinG into Details of Error Handling (Cont’d)

Ervors in 6> edemol:start(false, {divide,0}).
Coneurrency Process a received {’EXIT’,<0.56.0>,{badarith,[{edemol,c,2}]1}}

\Watter Cazzola =ERROR REPORT==== 11-Nov-2011::18:03:29 ===
Error in process <0.57.0> with exit value: {badarith,[{edemol,c,2}]1}

process b (<0.56.0>) is dead
process ¢ (<0.57.0>) is dead
1

) _/\%
Ais linked to B y‘i% B is linked to C

i&adar\’tk

— B is not a system process;

— when C tries to divide By zero an error oceurs and C diesywith 3
{badarith, ...} error;

— B receives this and dies and the error is propaaated to A.

Slide 1O of 4+

Errors in Concurrent Proarams
QGoing into Details of Error Handlina (Cont’d)

Errors in 6> edemol:start(false, {divide,0}).
Coneurrency Process a received {’EXIT’,<0.56.0>,{badarith,[{edemol,c,2}]1}}
Walter Cazzola =ERROR REPORT: = 11-Nov-2011::18:03:29
Error in process <0.57.0> with exit value: {badarith,[{edemol,c,2}1}
process b (<0.56.0>) is dead

process c (<0.57.0>) is dead
ok

Fo

Ais linked to B z—ﬁn — B is linked to C
-

feadarith, ...3

{eadarith, ... %

— B is not a system process;

— when C tries to divide By zero an error occurs and C diesywith a
{badarith, ...} error;

— B receives this and dies and the error is propaaated to A

Slide 1O of 4+

Errors in Concurrent Proarams
GoinG into Details of Error Handling (Cont’d)

Errors in

Concurrency 1> edemol:start(false, {die, kill}).
Process a received {’EXIT’,<0.60.0>,killed}
process b (<0.60.0>) is dead

process ¢ (<0.61.0>) is dead

ok

Walter Cazzola

g _________

Ais linked to B P B is linked to C
-
exit(kil

ﬁ Alis linked to B
s

zx\’c(kmed\

— B is not a system process;

— the exit reason kill causes B to die, and the error is propaaated to
its link set.

Slide I of 4+

Errors in Concurrent Proarams
Going into Details of Exrror Handliing (Cont’d)

Errors in 8> edemol:start(true, {divide,0}).
Coneurrency Process b received {’EXIT’,<0.65.0>,{badarith,[{edemol,c,2}1}}
\Watter Cazz0la =ERROR REPORT==== 11-Nov-2011::18:16:47
Error in process <0.65.0> with exit value: {badarith,[{edemol,c,2}]}
process b (<0.64.0>) is alive

process ¢ (<0.65.0>) is dead
ok

A is linked to B % B is linked to C
iaadarltk 3

A

— B is a system process;
— in all cases, ® traps the error;

- — the error is never propaaated to A
Slide - of I+

Errors in Concurrent Proarams
Monitors: Unidirectional Links

Errors in

Concurrency L"\ks are SyMME'triC
Watter C PR i i It si i
At s — e, if A dies, B will sent an exit sianal and vice verss;

— 1o prevent a process £rom dying, we have toO make it a system
process that is not alway desirasle.

monitors

A mMmonNitor is an asymmetric link
— i A monitors B and B dies A will e sent an exit sianal But

— it A dies B will not Be sent a signal.

A can create 38 monitor £or B calling erlang:monitor(process, B)
— i# B dies with exit reason Reason a 'DOWN’ messace
{’'DOWN’, Ref, process, B, Reason}
is sent to A (Ref is the reference to the monitor).
— the monitor is unidirectional:

— to repeat the arove call will create several, independent monital s Bhd
each one will send a 'DOWN’ messace when B terminates

Slide I3 of 4+

References

Errors in
Concurrency

Watter Cazzola

> Gul Agha.
Actors: A Model of Concurrent Computation in Distrieuted Systems.

References MIT Press, CaMBr‘idc-.e, 1986.

> Joe Armstrona.
Proaramming Erlana: Software for a Concurrent \World.
The Praamatic Bookshelf, fifth edition, 20071

> Francesco Cesarini and Simon J. Thompson.

Erlana Proarammina: A Concurrent Approach to Software Devel-
opment.

OReilly, June 20089.

Slide 4 of 4+

	Error Handling
	links
	monitors

	References

