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Errors in Concurrent Programs
Error Handling on Exit

When two processes are related
– the errors of one affect the behavior of the other process;
– the BIF link function helps to monitor.

A is linked to B

A B

7B dies

A B

{’EXIT’, B, Why}

an exit signal is sent to A
A

If A is linked to B
– when B dies an exit signal is sent to A;
– the signal is a message like {’EXIT’, Pid, _}.
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Errors in Concurrent Programs
Error Handling on Exit

-module(dies).
-export([on_exit/2]).

on_exit(Pid, Fun) ->
spawn(fun() ->

process_flag(trap_exit, true),
link(Pid),
receive
{’EXIT’, Pid, Why} -> Fun(Why)

end
end).

1> F = fun() -> receive X -> list_to_atom(X) end end.
#Fun<erl_eval.20.67289768>
2> Pid = spawn(F).
<0.35.0>
3> dies:on_exit(Pid, fun(Why) -> io:format("~p died with:~p~n",[Pid, Why]) end).
<0.37.0>
4> Pid ! hello.
<0.35.0> died with:{badarg,[{erlang,list_to_atom,[hello]}]}

=ERROR REPORT==== 9-Nov-2011::17:50:20 ===
Error in process <0.35.0> with exit value: badarg,[{erlang,list_to_atom,[hello]}]}
hello
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Errors in Concurrent Programs
Details of Error Handling

Links
– defines an error propagation path between two processes;
– if a process dies an exit signal is sent to the other process;
– the set of processes linked to a given process is called link set.

Exit Signals
– they are generated by a process when it dies;
– signals are broadcast to all processes in the link set of the dying

process;
– the exit signal contains an argument explaining why the process died

(exit(Reason) or implicitly set).
– when a process «naturally dies» the exit reason is normal;
– exit signals can be explicitly sent via exit(Pid, X): the sender does

not die («fake death»).

System Processes
– a non system process that receives a exit signal dies too;
– a system process receives the signal as a normal message in its

mailbox;
– process_flag(trap_exit, true) transform a process into a system

process.
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Errors in Concurrent Programs
Details of Error Handling (Cont’d)

Receiver’s Behavior
trap_exit Exit Signal Action

true kill dies & broadcasts it to its link set
true X adds {’EXIT’, Pid, X} to the mailbox
false normal continues & the signal vanishes
false kill dies & broadcasts it to its link set
false X dies & broadcasts it to its link set

Alternatives
– I don’t care if a process I create crashes.

Pid = spawn(fun() ->... end)

– I want to die if a process I create crashes.
Pid = spawn_link(fun() ->... end)

– I want to handle errors if a process I create crashes
process_flag(trap_exits, true),
Pid = spawn_link(fun() ->... end).
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Errors in Concurrent Programs
Going into Details of Error Handling

-module(edemo1).
-export([start/2]).

start(Bool, M) ->
A = spawn(fun() -> a() end),
B = spawn(fun() -> b(A, Bool) end),
C = spawn(fun() -> c(B, M) end),
sleep(1000), status(b, B), status(c, C).

a() -> process_flag(trap_exit, true), wait(a).
b(A, Bool) -> process_flag(trap_exit, Bool), link(A), wait(b).
c(B, M) -> link(B),
case M of
{die, Reason} -> exit(Reason);
{divide, N} -> 1/N, wait(c);
normal -> true

end.

This starts 3 processes: A, B and C
– A will trap exits and watch for exits from B;
– B will trap exits if Bool is true and
– C will die with exit reason M.
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Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

wait(Prog) ->
receive
Any ->

io:format("Process ~p received ~p~n", [Prog, Any]),
wait(Prog)

end.

sleep(T) ->
receive
after T -> true
end.

status(Name, Pid) ->
case erlang:is_process_alive(Pid) of
true -> io:format("process ~p (~p) is alive~n", [Name, Pid]);
false -> io:format("process ~p (~p) is dead~n", [Name, Pid])

end.

This starts 3 processes: A, B and C
– wait/1 just prints any message it receives;
– sleep/1 awakes the invoking process after a period of time;
– status/2 prints the aliveness of the invoing process.
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Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

1> edemo1:start(false, {die,normal}).
process b (<0.48.0>) is alive
process c (<0.49.0>) is dead
ok

A is linked to B B is linked to C

A B C

7exit(normal)

A is linked to B

A B

– B is not a system process;
– when C dies with normal signal, B doesn’t die.
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Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

1> edemo1:start(false, {die, abc}).
Process a received {’EXIT’,<0.40.0>,abc}
process b (<0.40.0>) is dead
process c (<0.41.0>) is dead
ok

A is linked to B B is linked to C

A B C

7exit(abc)

A is linked to B

A B

7exit(abc)

– B is not a system process;
– when C evaluates exit(abc), process B dies;
– when B exits rebroadcasts the unmodified exit signal to its link set
– A traps the exit signal and convert it to the error message
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Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

6> edemo1:start(false, {divide,0}).
Process a received {’EXIT’,<0.56.0>,{badarith,[{edemo1,c,2}]}}

=ERROR REPORT==== 11-Nov-2011::18:03:29 ===
Error in process <0.57.0> with exit value: {badarith,[{edemo1,c,2}]}

process b (<0.56.0>) is dead
process c (<0.57.0>) is dead
ok

A is linked to B B is linked to C

A B C

7{badarith, . . . }

A is linked to B

A B

7{badarith, . . . }

– B is not a system process;
– when C tries to divide by zero an error occurs and C dies with a

{badarith, ...} error;
– B receives this and dies and the error is propagated to A.
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Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

1> edemo1:start(false, {die, kill}).
Process a received {’EXIT’,<0.60.0>,killed}
process b (<0.60.0>) is dead
process c (<0.61.0>) is dead
ok

A is linked to B B is linked to C

A B C

7exit(kill)

A is linked to B

A B

7exit(killed)

– B is not a system process;
– the exit reason kill causes B to die, and the error is propagated to

its link set.
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Errors in Concurrent Programs
Going into Details of Error Handling (Cont’d)

8> edemo1:start(true, {divide,0}).
Process b received {’EXIT’,<0.65.0>,{badarith,[{edemo1,c,2}]}}

=ERROR REPORT==== 11-Nov-2011::18:16:47 ===
Error in process <0.65.0> with exit value: {badarith,[{edemo1,c,2}]}

process b (<0.64.0>) is alive
process c (<0.65.0>) is dead
ok

A is linked to B B is linked to C

A B C

7{badarith, . . . }
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– in all cases, B traps the error;
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Errors in Concurrent Programs
Monitors: Unidirectional Links

Links are symmetric
– i.e., if A dies, B will sent an exit signal and vice versa;
– to prevent a process from dying, we have to make it a system

process that is not alway desirable.

A monitor is an asymmetric link
– if A monitors B and B dies A will be sent an exit signal but
– if A dies B will not be sent a signal.

A can create a monitor for B calling erlang:monitor(process, B)

– if B dies with exit reason Reason a ’DOWN’ message

{’DOWN’, Ref, process, B, Reason}

is sent to A (Ref is the reference to the monitor).
– the monitor is unidirectional:

– to repeat the above call will create several, independent monitors and
each one will send a ’DOWN’ message when B terminates.
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