
Functional

Programming

Walter Cazzola

FP

Introduction

ń-calculus

ML/OCaML

Introduction

functions

scope

high-order

functions

Pattern Matching

recursion

tail recursion

Hanoi’s Towers

References

Slide 1 of 23

Functional Programming

An Introduction

Walter Cazzola

Dipartimento di Informatica

Università degli Studi di Milano

e-mail: cazzola@di.unimi.it
twitter: @w_cazzola

Functional

Programming

Walter Cazzola

FP

Introduction

ń-calculus

ML/OCaML

Introduction

functions

scope

high-order

functions

Pattern Matching

recursion

tail recursion

Hanoi’s Towers

References

Slide 2 of 23

Functional Programming
Overview

What is functional programming?

– Functions are first class (objects).

– That is, everything you can do with “data” can be done with functions

themselves (such as passing a function to another function).

– Recursion is used as a primary control structure.

– In some languages, no other “loop” construct exists.

– There is a focus on list processing.

– Lists are often used with recursion on sub-lists as a substitute for

loops.

– “Pure” functional languages eschew side-effects.

– This excludes assignments to track the program state.

– This discourages the use of statements in favor of expression evalua-

tions.

Whys

– All these characteristics make for more rapidly developed, shorter,

and less bug-prone code.

– A lot easier to prove formal properties of functional languages

and programs than of imperative languages and programs.

Functional

Programming

Walter Cazzola

FP

Introduction

ń-calculus

ML/OCaML

Introduction

functions

scope

high-order

functions

Pattern Matching

recursion

tail recursion

Hanoi’s Towers

References

Slide 3 of 23

Functional Programming
Overview

The basic idea is to model everything as a «mathematical function».

There are only two linguistic constructs:

– abstraction, used to define the function;

– application, used to call it.

No state concept

– this means no assignments are allowed

– variables are just names.

E.g., in f (x) = x + 1 the name f is irrelevant,

– the function g(x) = x + 1 represents the same function;

– it can be referred as x 7→ x + 1.

Functional

Programming

Walter Cazzola

FP

Introduction

ń-calculus

ML/OCaML

Introduction

functions

scope

high-order

functions

Pattern Matching

recursion

tail recursion

Hanoi’s Towers

References

Slide 4 of 23

Functional Programming
ń-Calculus [Church and Kleene ∼1930].

ń-expressions are made of constants, variables, ń, . and paren-
thesis

1. if x is a variable or a constant then x is a ń-expression;

2. if x is a variable and M is a ń-expression then λx .M is a ń-expression;

3. if M,N are ń-expressions then (MN) is a ń-expression.

Abstraction & Application
ń-calculus provides only two basic operations: abstraction and
application

– λx .x + 1 is an example of abstraction that defines the successor;

– (λx .x + 1)7 is an example of application that calculates the successor
of 7;

– application is left-associative, i.e., MNP ≡ (MN)P .

Binding, Free and Bound Variables

– in λx .xy x is a bound variable whereas y is unbound (free)

– in λx .λy .xy (for short λxy .xy) both variables are bound;

– in (λx .M)y , all the occurrences of x in M are replaced by y (denoted
as M[x/y]) and brings to M[x/y] as a result

– e.g., (λx.x + 1)7 → x + 1[x/7] → 7 + 1 → 8.

Functional

Programming

Walter Cazzola

FP

Introduction

ń-calculus

ML/OCaML

Introduction

functions

scope

high-order

functions

Pattern Matching

recursion

tail recursion

Hanoi’s Towers

References

Slide 5 of 23

Functional Programming
ML [Milner et al. ∼1970]

ML is a general-purpose functional programming language de-
veloped by Robin Milner et al. in the 70ies.

– ML is the acronym for metalanguage, since it is an abstraction on

polymorphic ń-calculus.

Features of ML include:

– a call-by-value evaluation strategy, first-class functions, parametric

polymorphism,

– static typing, type inference, algebraic data types, pattern matching,

and exception handling.

ML uses eager evaluation, which means that all subexpressions
are always evaluated.

– lazy evaluation can be achieved through the use of closures.

We will use OCaML (http://caml.inria.fr).

Functional

Programming

Walter Cazzola

FP

Introduction

ń-calculus

ML/OCaML

Introduction

functions

scope

high-order

functions

Pattern Matching

recursion

tail recursion

Hanoi’s Towers

References

Slide 6 of 23

Functional Programming
ML/OCaML [Leroy et al. ∼1980]

OCaML is an implementation of ML with extra functionality

(object-orientation, modules, imperative statements, . . .).

OCaML comes with

– an interpreter (ocaml) and

– a compiler (ocamlc).

let main() = print_string("Hello World in ML Style!!!\n");;
main();;

[12:28]cazzola@surtur:~/lp/ml>ocamlc -o helloworld helloworld.ml
[12:28]cazzola@surtur:~/lp/ml>ls
helloworld* helloworld.cmi helloworld.cmo helloworld.ml
[12:28]cazzola@surtur:~/lp/ml>helloworld
Hello World in ML Style!!!
[12:28]cazzola@surtur:~/lp/ml>rlwrap ocaml

Objective Caml version 4.12.0

let main() = print_string("Hello World in ML Style!!!\n");;
val main : unit -> unit = <fun>
main();;
Hello World in ML Style!!!
- : unit = ()
^D
[12:29]cazzola@surtur:~/lp/ml>

Functional

Programming

Walter Cazzola

FP

Introduction

ń-calculus

ML/OCaML

Introduction

functions

scope

high-order

functions

Pattern Matching

recursion

tail recursion

Hanoi’s Towers

References

Slide 7 of 23

Functional Programming
ML Functions

ML derives directly from ń-calculus:

– functions are defined independently of their name

let succ = fun x -> x+1;;
let succ x = x+1;;

functions can be aliased

let succ’ = succ;;

– calls are simply the application of the arguments to the function

succ 2;;
(fun x -> x+1) 2;;

[DING!]cazzola@surtur:~/lp/ml>ocaml
Objective Caml version 4.12.0

let succ = fun x -> x+1;;
val succ : int -> int = <fun>
succ 7;;
- : int = 8
succ -1;;
Error: This expression has type int -> int

but an expression was expected of type int

Functional

Programming

Walter Cazzola

FP

Introduction

ń-calculus

ML/OCaML

Introduction

functions

scope

high-order

functions

Pattern Matching

recursion

tail recursion

Hanoi’s Towers

References

Slide 8 of 23

Functional Programming
Name Scope

Scoping

– a new binding to a name hides the old bind;

– static binding is used in function definition (closure).

– i.e., a triplet: args list, function body and environment (x, x+y, [5/y]).

[17:01]cazzola@surtur:~/lp/ml>ocaml
Objective Caml version 4.12.0

let f x = 5;;
val f : ’a -> int = <fun>
let f x = 7;;
val f : ’a -> int = <fun>
f 1;;
- : int = 7
let y = 5;;
val y : int = 5
let addy = fun x -> x+y;;
val addy : int -> int = <fun>
addy 8;;
- : int = 13
let y=10;;
val y : int = 10
addy 8;;
- : int = 13
(fun x -> x+y) 8;;
- : int = 18
[17:57]cazzola@surtur:~/lp/ml>

http://caml.inria.fr

Functional

Programming

Walter Cazzola

FP

Introduction

ń-calculus

ML/OCaML

Introduction

functions

scope

high-order

functions

Pattern Matching

recursion

tail recursion

Hanoi’s Towers

References

Slide 9 of 23

Functional Programming
High-Order Functions

In ML functions are first class citizens

– i.e., they can be used as values;

– when passed to a function this is an high-order function.

let compose f g x = f (g x);;
let compose (f, g) x = f (g x);;

[15:30]cazzola@surtur:~/lp/ml>ocaml

let compose f g x = f (g x);;
val compose : (’a -> ’b) -> (’c -> ’a) -> ’c -> ’b = <fun>
let compose’ (f,g) x = f (g x);;
val compose’ : (’a -> ’b) * (’c -> ’a) -> ’c -> ’b = <fun>

let succ = fun x -> x +1;;
val succ : int -> int = <fun>
let plus1 = compose succ;;
val plus1 : (’_a -> int) -> ’_a -> int = <fun>
let plus1’ = compose’ succ;;
Error: This expression has type int -> int

but an expression was expected of type (’a -> ’b) * (’c -> ’a)

let plus2 = plus1 succ;;
val plus2 : int -> int = <fun>
let plus2’= compose’(succ, succ);;
val plus2’ : int -> int = <fun>
plus2 7;;
- : int = 9
plus2’ 7;;
- : int = 9

Functional

Programming

Walter Cazzola

FP

Introduction

ń-calculus

ML/OCaML

Introduction

functions

scope

high-order

functions

Pattern Matching

recursion

tail recursion

Hanoi’s Towers

References

Slide 10 of 23

Functional Programming
Functions & Pattern Matching

Functions can be defined by pattern matching.

match expression with
| pattern when boolean expression -> expression
| pattern when boolean expression -> expression

Patterns can contain

– constants, tuples, records, variant constructors and variable names;

– a catchall pattern denoted _ that matches any value; and

– sub-patterns containing alternatives, denoted pat1|pat2 .

When a pattern matches

– the corresponding expression is returned.

– the (optional) when clause is a guard on the matching; it filters out

undesired matchings.

let invert x =
match x with
| true -> false
| false -> true ;;

let invert’ = function
true -> false | false -> true ;;

Functional

Programming

Walter Cazzola

FP

Introduction

ń-calculus

ML/OCaML

Introduction

functions

scope

high-order

functions

Pattern Matching

recursion

tail recursion

Hanoi’s Towers

References

Slide 11 of 23

Recursion
Definition: Recursive Function

A function is called recursive when it is defined through itself.

Example: Factorial.

– 5! = 5 * 4 * 3 * 2 * 1

– Note that: 5! = 5 * 4!, 4! = 4 * 3! and so on.

Potentially a recursive computation.

From the mathematical definition:

n! =

{
1 if n=0,

n*(n-1)! otherwise.

When n=0 is the base of the recursive computation (axiom)

whereas the second step is the inductive step.

Functional

Programming

Walter Cazzola

FP

Introduction

ń-calculus

ML/OCaML

Introduction

functions

scope

high-order

functions

Pattern Matching

recursion

tail recursion

Hanoi’s Towers

References

Slide 12 of 23

Recursion
What in ML?

Still, a function is recursive when its execution implies another
invocation to itself.

– directly, i.e. in the function body there is an explicit call to itself;

– indirectly, i.e. the function calls another function that calls the func-

tion itself (mutual recursion).

let rec fact(n) = if n<=1 then 1 else n*fact(n-1);;

let main() =
print_endline("fact(5) : - "^string_of_int(fact(5)));
print_endline("fact(7) : - "^string_of_int(fact(7)));
print_endline("fact(15) : - "^string_of_int(fact(15)));
print_endline("the largest admissible integer is ;- "^string_of_int(max_int));
print_endline("fact(25) : - "^string_of_int(fact(25)));;

main();;

[11:31]cazzola@surtur:~/lp/ml>ocamlc -o fact fact.ml
[11:31]cazzola@surtur:~/lp/ml>fact
fact(5) : - 120
fact(7) : - 5040
fact(15) : - 1307674368000
the largest admissible integer is ;- 4611686018427387903
fact(25) : - -2188836759280812032
[11:31]cazzola@surtur:~/lp/ml>

Functional

Programming

Walter Cazzola

FP

Introduction

ń-calculus

ML/OCaML

Introduction

functions

scope

high-order

functions

Pattern Matching

recursion

tail recursion

Hanoi’s Towers

References

Slide 13 of 23

Recursion
Execution: What’s Happen?

[11:45]cazzola@surtur:~/lp/ml>ocaml
Objective Caml version 4.12.0

let rec fact(n) =
if n<=1
then 1
else n*fact(n-1);;

val fact : int -> int = <fun>
fact 4;;
- : int = 24
[11:46]cazzola@surtur: /lp/ml>

It runs fact(4):

– a new frame with n = 4 is pushed on

the stack;

– n is greater than 1;

– it calculates 4*fact(3)6, it returns

24

It runs fact(3):
– a new frame with n = 3 is pushed on

the stack;

– n is greater than 1;

– it calculates 3*fact(2)2, it returns 6

It runs fact(2):
– a new frame with n = 2 is pushed on

the stack;

– n is greater than 1;

– it calculates 2*fact(1)1, it returns 2

It runs fact(1):
– a new frame with n = 1 is pushed on

the stack;

– n is equal to 1;

– it returns 1

Functional

Programming

Walter Cazzola

FP

Introduction

ń-calculus

ML/OCaML

Introduction

functions

scope

high-order

functions

Pattern Matching

recursion

tail recursion

Hanoi’s Towers

References

Slide 14 of 23

Recursion
Side Notes on the Execution.

At any invocations the run-time environment creates an acti-
vation record or frame used to store the current values of:

– local variables, parameters and the location for the return value.

To have a frame for any invocation permits to:

– trace the execution flow;

– store the current state and restore it after the execution;

– avoid interferences on the local calculated values.

Warning:

Without any stopping rule, the inductive step will be applied “for-
ever”.

– Actually, the inductive step is applied until the memory reserved by

the virtual machine is full.

Functional

Programming

Walter Cazzola

FP

Introduction

ń-calculus

ML/OCaML

Introduction

functions

scope

high-order

functions

Pattern Matching

recursion

tail recursion

Hanoi’s Towers

References

Slide 15 of 23

Recursion
Case Study: Fibonacci Numbers

Leonardo Pisano, known as Fibonacci, in 1202 in his book “Liber

Abaci” faced the (quite unrealistic) problem of determining:

«how many pairs of rabbits can be produced from a

single pair if each pair begets a new pair each month

and every new pair becomes productive from the second

month on, supposing that no pair dies»

to introduce a sequence whose i-th member is the sum of the

2 previous elements in the sequence. The sequence will be soon

known as the Fibonacci numbers.

Functional

Programming

Walter Cazzola

FP

Introduction

ń-calculus

ML/OCaML

Introduction

functions

scope

high-order

functions

Pattern Matching

recursion

tail recursion

Hanoi’s Towers

References

Slide 16 of 23

Recursion
Case Study: Fibonacci Numbers (Cont’d)

Fibonacci numbers are recursively defined:

f(n) =


0 if n=0,

1 if n=1 or n=2,

f(n-1) + f(n-2) otherwise.

The implementation comes forth from the definition:

open List;;
let rec fibo(n) = if n<=1 then n else fibo(n-1) + fibo(n-2);;

let main() =
let in’s = [5; 7; 15; 25; 30] in
for i=0 to List.length in’s -1 do
print_endline(
"fibo("^string_of_int(nth in’s i)^") :- "^string_of_int(fibo(nth in’s i)));

done;;
main();;

[16:08]cazzola@surtur:~/lp/ml>ocamlc -o fibo fibo.ml
[16:14]cazzola@surtur:~/lp/ml>fibo
fibo(5) :- 5
fibo(7) :- 13
fibo(15) :- 610
fibo(25) :- 75025
fibo(30) :- 832040
[16:14]cazzola@surtur:~/lp/ml>

Functional

Programming

Walter Cazzola

FP

Introduction

ń-calculus

ML/OCaML

Introduction

functions

scope

high-order

functions

Pattern Matching

recursion

tail recursion

Hanoi’s Towers

References

Slide 17 of 23

Recursion
Recursion Easier & More Elegant

The recursive solution is more intuitive:

let rec fibo(n) = if n<=1 then n else fibo(n-1) + fibo(n-2);;

The iterative solution is more cryptic:

let fibo(n) =
let fib’ = ref 0 and fib’’= ref 1 and fib = ref 1 in
if n<=1 then n
else
(for i=2 to n do
fib := !fib’ + !fib’’;
fib’ := !fib’’;
fib’’ := !fib;

done;
!fib);;

But . . .

Functional

Programming

Walter Cazzola

FP

Introduction

ń-calculus

ML/OCaML

Introduction

functions

scope

high-order

functions

Pattern Matching

recursion

tail recursion

Hanoi’s Towers

References

Slide 18 of 23

Recursion
Tail Recursion

The iterative implementation is more efficient:

[18:22]cazzola@surtur:~/lp/ml>time time_ifibo 50
fibo(50) :- 12586269025
0.000u 0.006s 0:00.00 0.0% 0+0k 0+0io 0pf+0w
[18:22]cazzola@surtur:~/ml/lp>time time_rfibo 50
fibo(50) :- 12586269025
1605.211u 1.688s 26:48.62 99.8% 0+0k 0+0io 0pf+0w
[18:49]cazzola@surtur:~/lp/ml>

The overhead is mainly due to the creation of the frame but

this also affects the occupied memory.

This can be avoided with a tail recursive solution:

let rec trfiboaux n m fib_m’ fib_m =
if (n=m) then fib_m
else (trfiboaux n (m+1) fib_m (fib_m’+fib_m));;

let fibo n = if n<=1 then 1 else trfiboaux n 1 0 1;;

[16:59]cazzola@surtur:~/lp/ml>time trfibo 50
fibo(50) :- 12586269025
0.000u 0.005s 0:00.00 0.0% 0+0k 0+0io 0pf+0w
[16:59]cazzola@surtur:~/lp/ml>

Functional

Programming

Walter Cazzola

FP

Introduction

ń-calculus

ML/OCaML

Introduction

functions

scope

high-order

functions

Pattern Matching

recursion

tail recursion

Hanoi’s Towers

References

Slide 19 of 23

The Towers of Hanoi
Definition (Édouard Lucas, 1883)

Problem Description

There are 3 available pegs and several holed disks that should be

stacked on the pegs. The diameter of the disks differs from disk

to disk each disk can be stacked only on a larger disk.

The goal of the game is to move all the disks, one by one, from

the first peg to the last one without ever violate the rules.

Functional

Programming

Walter Cazzola

FP

Introduction

ń-calculus

ML/OCaML

Introduction

functions

scope

high-order

functions

Pattern Matching

recursion

tail recursion

Hanoi’s Towers

References

Slide 20 of 23

The Towers of Hanoi
The Recursive Algorithm

3-Disks Algorithm

n-Disks Algorithm

Base: n=1, move the disk from the source (S) to the

target (T);

Step: move n-1 disks from S to the first free peg (F),

move the last disk to the target peg (T), finally

move the n-1 disks from F to T.

Functional

Programming

Walter Cazzola

FP

Introduction

ń-calculus

ML/OCaML

Introduction

functions

scope

high-order

functions

Pattern Matching

recursion

tail recursion

Hanoi’s Towers

References

Slide 21 of 23

The Towers of Hanoi
ML/OCaML Implementation

type peg = string*string*string ;;
type pegs = {mutable src: peg; mutable trg: peg; mutable aux:peg} ;;

let nth(x,y,z) n = match n with 1 -> x | 2 -> y | 3 -> z ;;
let set_nth(x,y,z) w n = match n with 1 -> (w,y,z) | 2 -> (x,w,z) | 3 -> (x,y,w) ;;

let set_nth_peg ps p n =
match n with 1 -> ps.src <- p| 2 -> ps.trg <- p | 3 -> ps.aux <- p ;;

let nth_peg ps n = match n with 1 -> ps.src | 2 -> ps.trg | 3 -> ps.aux ;;

let top(x,y,z) =
match x,y,z with "0","0","0" -> 3 | "0","0", _ -> 2 | "0", _, _ -> 1 | _, _, _ -> 0 ;;

let p:pegs={src=("1","2","3"); trg=("0","0","0"); aux=("0","0","0")} in
let rec display ps n =
if n <4 then (print_endline(" "^nth ps.src n^" "^nth ps.trg n^"

"^nth ps.aux n);display ps (n+1);)
and move ps source target =
let s=(top (nth_peg ps source))+1 and t= top (nth_peg ps target) in (
set_nth_peg ps (set_nth (nth_peg ps target) (nth (nth_peg ps source) s) t) target;
set_nth_peg ps (set_nth (nth_peg ps source) "0" s) source;
display ps 1;)

and move_disks ps disks source target aux =
if disks <=1 then (
print_endline("moving from "^string_of_int(source)^" to "^string_of_int(target));
move ps source target;)

else (
move_disks ps (disks-1) source aux target;
print_endline("moving from "^string_of_int(source)^" to "^string_of_int(target));
move ps source target;
move_disks ps (disks-1) aux target source;

);
in (print_endline("Start!!!");display p 1; move_disks p 3 1 3 2;) ;;

Functional

Programming

Walter Cazzola

FP

Introduction

ń-calculus

ML/OCaML

Introduction

functions

scope

high-order

functions

Pattern Matching

recursion

tail recursion

Hanoi’s Towers

References

Slide 22 of 23

The Towers of Hanoi
3-Disks Run

[16:21]cazzola@surtur:~/lp/ml>ocamlc -o hanoi2 hanoi2.ml
[16:21]cazzola@surtur:~/lp/ml>hanoi2
Start!!! moving from 1 to 2 moving from 1 to 3 moving from 2 to 3
1 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 1 0 0 0 2
3 0 0 3 2 1 0 2 3 1 0 3

moving from 1 to 3 moving from 3 to 2 moving from 2 to 1 moving from 1 to 3
0 0 0 0 0 0 0 0 0 0 0 1
2 0 0 0 1 0 0 0 0 0 0 2
3 0 1 3 2 0 1 2 3 0 0 3

[16:21]cazzola@surtur:~/lp/ml>

Functional

Programming

Walter Cazzola

FP

Introduction

ń-calculus

ML/OCaML

Introduction

functions

scope

high-order

functions

Pattern Matching

recursion

tail recursion

Hanoi’s Towers

References

Slide 23 of 23

References

▶ Davide Ancona, Giovanni Lagorio, and Elena Zucca.

Linguaggi di Programmazione.

Città Studi Edizioni, 2007.

▶ Greg Michaelson.

An Introduction to Functional Programming through λ-Calculus.

Addison-Wesley, 1989.

▶ Larry c. Paulson.

ML for the Working Programmer.

Cambridge University Press, 1996.

	FP
	Introduction
	λ-calculus

	ML/OCaML
	Introduction
	functions
	scope
	high-order functions
	Pattern Matching
	recursion
	tail recursion
	Hanoi's Towers

	References

