Startina with
Erlana

Watter Cazzola

Startina with Erlana
Seauential Proaramming in Erlana (Overview)

Walter Cazzola

Dipartimento di Informatica
Universita deali Studi di Milano
e-mail: cazzola@di.unimi.it
twitter: @w_cazzola

Slide | of 2

Kevin Manca

Kevin Manca

Erlana
A Few of History

)) 98] — the Ericsson CS Lag has Been founded.
Startina with
Eiege [981-198L

afeer Cozzolo — a lot of work to decide which paradiam would Be Better to
use in the telecommunication domain;

— conclusions: doesn't exist the perfect paradiam But several
characteristics should Be mixed.

a few Of history

987 Erlana is Born
— the name is after the Danish mathematician Aaner Krarup
Erlana But could also mean Ericsson languace.
[987-199I
— the JAM («Joe's Arstract Machine») virtual machine (inspired
By the Prolog WAM) has reen implemented (in C);
— In 998 it has eeen replaced By BEAM (Boadan/BjSrn's Er-
lang Arstract Machine»).

30+ VYears

[996 — Open Telecom Platform (OTP) has Been released.
1998
— Ericsson stops to develop Erlana But not to use it
— Erlana Becomes open source

Slide 2 of I — since 2006 the BEAM supports multi-core processors

Kevin Manca

Kevin Manca

Erlana
Overview

Starting with
Erana

Walter Cazzola

characteristics

— asynchroNous messaGe exchanae;

— NoN shared memory

Erlana is a dynamically typed functional lancuace.

Erlana supports distrirution, fault tolerance and hot-swapping
(dynamic SW updating).

Slide 3 of 12

Kevin Manca

Kevin Manca

My First Erlana Proaram
Aaain a Factoriallll

Startina with
Erlana

Watter Cazzola -module(fact).
-export([fact/1]1).

fact(0) -> 1;
fact(N) -> Nxfact(N-1)

The proaram must Be run throuch the BEAM shell

[12:56] cazzola@mangog:~/1p/erlang>erl
Erlang/OTP 24 [erts-12.3.2.6] [source] [64-bit] [smp:16:16] [async-threads:1] [jit]

Eshell V12.3.2.6 (abort with ~G)
1> c(fact).
{ok, fact}

2> fact:fact(7).

5040

3> fact:fact(100).
9332621544394415268169923885626670049071596826438162146859296389521759999322991560894146
3976156518286253697920827223758251185210916864000000000000000000000000

Akternatively it could Be run as a script via escript or throush
native compilation via HiPE.

Slide 4+ of 2

Kevin Manca

Kevin Manca

Seauential Erlana Overview
Numpgers and Atoms

Startina with
Erlana

Watter Cazzola

— Bdbval is used to store Nnumwkers in Base «B»;

— $char is used for ascii values.

1> cazzola@di.unimi.it.
’cazzola@di.unimi.it’
2> 'Walter Cazzola’.
'Walter Cazzola’

3> 'Walter™M

3> Cazzola'.
'Walter\nCazzola’

— atoms start with lowercase letter But can contain any charagter;

— i# Quoted they can start By uppercase letters.

Slide S of 12

Seaquential Erlana Overview
Tuples and Lists

1> {123, "walter", cazzola}.

Starting with {123, "walter", cazzola}

Erlana 2> {}.

{

Watter Cazzola 3> {abc, {’Walter’, ’'Cazzola'}, 3.14}.
{abc,{’'Walter’,’'Cazzola’},3.14}
4> {{1,2},3}=={1,{2,3}}.
false

— used to store a fixed numpser of items;
— tuples of any size, type and complexity are allowed.

3> [1][2]].

[1,2]

4> [{1,2},0k, [1].

[{1,2},0k,[]]

5> length([{1,2},0k,[1]).

3

6> [{1,2},0k, [1]==[{1,2},0k, []].
true

7> A=[$W,$a,$1,$t,%e,$r], B=[$C,$a,$z,$z,%0,$1,%al.
"Cazzola"

8> A++" "++B.

"Walter Cazzola"

9> A--B.

"Wter"

— used to store a variagle numper of items;

Siide b o8 2. — lists are dynamically sized.

Seaquential Erlana Overview
Assianmvents + Pattern Matching

Startina with

Erlana > A =1

1

Walter Cazzola 2> A = 2.
** exception error: no match of right hand side value 2

— are just name BindinGs to values and cannot Be modified;
— start with an uppercase letter and _ is an anonywous variagle.

— the BiNdinGgs are created via pattern matching.

3> [B|L]l=[a,b,c].

[a,b,c]

4> {A,B,L}.

{1,a,[b,cl}

5> {X,X}={B,B}.

{a,a}

6> {Y,Y}={X,b}.

%% exception error: no match of right hand side value a,b

pattern matching

7> 1=A.

1

8> 1=Z.

* 1: variable 'Z’ is unbound

9> {A1l, _, [B1|-1, {B1}} = {abc, 23, [22,x], {22}}.
{abc,23,[22,x],{22}}

10> Al.

abc

11> Bl.

22

Slide 7 of 2

Startina with
Erlana

Watter Cazzola

functions

Slide 8 of 12

Seaquential Erlana Overview
Functions = Modules

name(pattern;;, pattern;;, ..., patternin) [when guard;] -> body; ;
name(patterny;, patterny,, ..., patternyn) [when guard,] -> body, ;

name(patterny;, patterng,, ..., patterngn) [when guardi] -> bodyj .

— dlauses are scanned sequenttially unttil a8 match is found;

— when a match is found all the variaegles in the head Become Bound;

-module(ex_module).
-export([double/1]).

double(X) -> times(X, 2).
times(X, N) -> X % N.

— double can re called from outside the module, times is local to the
Mmodule;

— double/1 means the function double with one argument (n@te that
double/1 and double/2 are two different functions).

Seauential Erlana Overview

Guard Sequences

Sterting with Each clause in function definition can Be uarded By a auard
nene seQuence.

— 3 quard is a8 seQuence a1, Go, ..., G, Of Guard expressions;

Watter Cazzola

— 38 @uard expression is a sukset Of Erlang expressions to auarantee
to Be free Of side-effects;

— 3 Gguard seuence is true when all the Guard expressions evaluate to
true.
Valid auard expression are:
the atom true and other constants;

@uards

— calls to some euit-in functions (BIFs);

|

arithmetic and BoOOlean expressions; and

— short-cireuit expressions (andalso/orelse).

Permitted BIFs are:

is_atom/1 is_binary/1 is_bitstring/1 is_float/1 is_function/2
is_function/1 is_integer/1 is_list/1 is_number/1 is_pid/1
is_port/1 is_record/2 is_record/3 is_reference/1 is_tuple/1
abs/1 bit_size/1 byte_size element/2 float/1

hd/1 length/1 node/0 node/1 round/1
self/1 size/l tv/1 trunc/1 tuple_size/1

Slide 9 of 2

\ Seaquential Erlanag Overview

g Map, Firter < Reduce

1
42

DR
K\\“"{“
2)
@ \

Startina with
Erlana

Watter Cazzola -module(mfr).

-export([map/2,filter/2, reduce/2]).

map(_, [1) -> [1;

map(F, [H|TL]) -> [F(H)|map(F,TL)].
filter(_, [1) -> [1;

filter(P, [H|TL]) -> filter(P(H), P, H, TL).
filter(true, P, H, L) -> [H|filter(P, L)I;
filter(false, P, _, L) -> filter(P, L)
reduce(F, [H|TL]) -> reduce(F, H, TL)
reduce(-, Q, [1) ->Q;

reduce(F, Q, [H|TL]) -> reduce(F, F(Q,H), TL)

@uards

1> mfr:map(fun(X) -> X«X end, [1,2,3,4,5,6,7]).
[1,4,9,16,25,36,49]
2> mfr:filter(fun(X) -> (X rem 2)==0 end, [1,2,3,4,5,6,7]).

[2,4,6]
3> mfr:reduce(fun(X,Y) -> X+Y end, [1,2,3,4,5,6,7]).
28

They are availagle in the module lists.

Slide 1O of 12

Seaquential Erlana Overview

List Comprehensions

Startina with

i [X||Qualifiery, ..., Qualifier_n]

Watter Cazzola

M is an expression, each Qualifier is a cenerator or a firter

— @enerators are in the form Pattern <- ListExpr where ListExpr
evaluates to a list;

— filters are either predicates or BOOlean expressions.

-module(sort).
-export([gsort/2]).

gsort(_, [1) -> [1;
gsort(P, [Pivot|TL]) ->
gsort(P, [X||X<-TL, P(X,Pivot)]) ++ [Pivot] ++ qsort(P, [X||X<-TL, not P(X,Pivot)]).

comprehensions _module(prime) .
-export([primes/1]).
primes(N) when N>1 -> [X|| X <- lists:seq(2,N),

(Llength([Y || Y <- lists:seq(2, trunc(math:sqrt(X))), ((X rem Y) == 0)]) == 0)1;
primes(_) -> [].

1> sort:qsort(fun(X,Y) -> X<Y end, [13,1,-1,8,9,0,3.14]).
[-1,0,1,3.14,8,9,13]
2> sort:qsort(fun(X,Y) -> X>Y end, [13,1,-1,8,9,0,3.14]).
[13,9,8,3.14,1,0,-1]

3> prime:primes(100).
[2,3,5,7,11,13,17,19,23,29,31, 37,41, 43,47,53,59,61,67,71,73,79,83,89,97]

Slide Il of 12

Actor Model Concurrency
Traditional (Shared-State) Concurrency

Actor Model
Crsry Threads are the traditional way of offering concurrency
in Erlana
e @ — the execution of the proaram is split up into concurrently runnina
tasks;

— such tasks operate on shared memory

shared-state
Several proelems

— race conditions with update Oss

T (withdraw(16)) | T, (withdraw(10)) | Balance
if (balance - amount >= 0) 5€
if (balance - amount >= 0) 5€
balance -= amount; s5€
balance -= amount; -S€
— deadlocks
P P2
lock(A) lock(B)

lock(B) lock(A)

Erlana (and also Scala via the Akka lierary) taskes a different
approach to concurrency: the Actor Model.

Slide 22 of IS

Actor Model Concurtrency

Overview

Actor Model Each oBject is an actor.
Concurrency . R - o
in Erana — it has 8 maileox and a Behavior;

Welter Cazzola — actors communicate throuch messaces Bubfered in 8 maileox.

Computation is data-driven, upon receiving a message an actor
sheredstate — can send 3 NnuUmBer Of messaaes to Other actors;
— ean create a numeer of actors; and
— @an assume a different Behavior for desling with the next messace
N its mailzox
Note that,
— all communications are performed asynchronously;

— the sender does Not wait £Or a messaae 10O Be received upon sending
It;

— NO Guarantees agout the receiving order put they will eventually ge
delivered

— there is NnO shared state retween actors

— information agout internal state are requested/provided py (ESSEERS;
— also internal state manipulation happens throuagh messaces

— actors run concurrently and are implemented as lightweiaht user=
space threads

Slide 3 of IS

Actor Model Concurrency
Transaction Overview

Actor Model
Concurrency
in Erlang mailBox

| 2

Watter Cazzola

new
shared-state actor eZhaviog
¢
\
Tosk === M «
new task
’ T M
P 7 N+
’
, 1
& 1
4

’ 1
1

new message / | New actor
» Y
| m r rH |
Wi, M

Slide 4+ of IS

Concurrency in Erlang
Overview

Actor Model
Concurrency
in Erlana

\Walter Cazzola

Three rasic elements form the foundation for concurrency
— a BuUit-in function (spawn()) tO create new actors;

conaurrency

— an operator (1) to send a messaae to another actor; and

— 3 mechanism to pattern-match messaae from the actor’s mailzox

Slide S of IS

Concurrency in Erlang
Spawning New Processes.

Actor Model
Concurrency
in Erlang

Watter Cazzola

pid <0.36.0>

pid <0.36.0>

pid <0.37.0>

Pid = spawn(demo, loop, [3,al)

Slide £ of IS

Concurrency in Erlang
My First Erlana Process.

Actor Model -module(processes_demo) .

Concurrency
in Erlana -export([start/2, loop/2]1).

., start(N,A) -> spawn (processes_demo, loop, [N,A]).

loop(0,A) -> io:format("~p(~p) ~p~n", [A, self(), stopsl);
loop(N,A) -> io:format("~p(~p) ~p~n", [A, self(), N]), loop(N-1,A).

1> processes_demo:start(7,a),processes_demo:start(5,b),processes_demo:start(3,c).
a(<0.73.0>) 7

b(<0.74.0>)
a(<0.73.0>)
c(<0.75.0>)
b(<0.74.0>)
<0.75.0>
a(<0.73.0>)
c(<0.75.0>)
b(<0.74.0>)
a(<0.73.0>)
c(<0.75.0>)
b(<0.74.0>)
a(<0.73.0>)
c(<0.75.0>)
b(<0.74.0>)
a(<0.73.0>)
b(<0.74.0>)
a(<0.73.0>)
a(<0.73.0>)

A wWow

NFOWNRFRARWNWG

returns the PID of the process.

Slide 7 of IS

Concurrency in Erlang

Sending a8 Messace.

Actor Model Every actor is characterized By:

Concurrency .) o
in Erlana — an address which identifies the actor and

Watter C . .
srter Cozzole — 3 maileox where the delivered messages But not cleared yet are
stored;

Messages are sorted on arrival time (not on sending time).

To send a message to an actor:
— has to know the address (pid) of the target actor;

— to send its address (pid) to the taraet with the messace if a reply
is Nnecessary; and

— to use the send (1) primitive.

Exp; | Expa
— Exp; must identify an actor;

— Expy any valid Erlana expression; the result of the send expression
is the one of Expy;

— the sendinag never fails also when the target actor doesn’t'exist or
is unreachagle;

— the sending operation never Block the sender.

Slide 8 of IS

Concurrency in Erlana

R eceiving a8 Messace.

Actor Model The receiving operation uses pattern matching.
Concurrency
in Erlana

receive
Any -> do_something(Any)
end

— the actor pick out of the mailrox the oldest messaae matching Any;
— It is Blocked waiting for a messaae when the Queue is empty.

\Walter Cazzola

receive
{Pid, something} -> do_something(Pid)
end

— the actor tries to pick out the oldest messaae that matches
{Pid, something};
— if it fails the actor is Blocked waiting £or such a8 messace

receive

receive
Patterny [when GuardSeqy] -> Body; ;

Patternp [when GuardSegqn]l -> Bodyp
[after Expry -> Bodyy]
end

— rules definition and evaluation is Quite similar to the functions;

— when No pattern matches the mailgox the actor waits instead of
raising an exception,

— 10 avoid waiting forever the clause after can Be used, after Expry,
ms the actor is woke up.

Slide 9 of IS

Concurrency in Erlang
Converting Some Temperatures.

Actor Model
Concurrency

in Erlanc -module(converter).

-export([t_converter/0]).

Watter Cazzola
t_converter() ->

receive
{toF, C} -> io:format("~p °C is ~p °F~ [C, 32+Cx9/5]), t_converter();
{toC, F} -> io:format("~p °F is ~p °C~ [F, (F-32)%5/9]), t_converter()
{stop} -> io:format("Stoppin: Dk
Other -> io:format("Unknown: ~p~n", [Other]), t_converter(

end.

recelve 1> Pid = spawn(converter, t_converter, []).

4 <0.39.0>
2> Pid ! {toC, 32}.
32 °F is 0.0 °C
{toC,32}
3> Pid ! {toF, 100}.
100 °C is 212.0 °F
{toF,100}
4> Pid ! {stop}.
Stopping!
{stop}
5> Pid ! {toF, 100}.
{toF,100}

Slide IO o IS

Concurrency in Erlana

Caleulating Some Areas.

Actor Model
c -module(area_server)
oneurrency

i S -export([loop/0]).

Watter Cazzola Loop() '?
receive

{rectangle, Width, Ht} ->
io:format("Area of rectangle is ~p~n",[Width x Ht]),
loop();
{circle, R} ->
io:format("Area of circle is ~p~n", [3.14159 * R * R]),
loop();
Other ->
io:format("I don’t know how to react to the message ~p~n",[Other]),
receive loop()

heduling

1> Pid = spawn(fun area_server:loop/0).
<0.34.0>

2> Pid ! {rectangle, 30, 40}.

Area of rectangle is 1200

{rectangle, 30,40}

4> Pid ! {circle, 40}.

Area of circle is 5026.544

{circle, 40}

5> Pid ! {triangle,22,44}.

I don’t know what the area of a {triangle,22,44} is
{triangle, 22,44}

Slide Il of I5

Concurrency in Erlana
Actor Scheduling in Exrlana.

Actor Model
Concurrency
in Erlana

faci=geazzen Actors are not processes and are not dealt By the operating
system

— the BEAM uses a preemptive scheduler

— when an actor run £or a too Iong period of time or when it enters
3 receive statement with NO messace availakle, the actor is halted
and placed on a schedulinGg Queue;

e, Actors and the rest of the system

— OS processes and actors have different schedulers and lonag running
Erlana applications do not interfere with the execution of the OS
processes (N0 one will Become unresponsive)

— the BEAM supports symmetric multiprocessing (SMP)

— ie, it ean run processes in parallel on multiple CPUs
— But it cannot run lichtweiaht processes (actors) in parallel onawultiple
CPUs

Slide 122 of IS

Concurrency in Erlang
Timina the Spawning Process.

Actor Model
Concurrency
in Erlana

-module(processes) .
-export([max/1]) .

max(N) ->
Max = erlang:system info(process_limit),
io:format("Maximum allowed processes:~p~n",[Max]),
statistics(runtime), statistics(wall_clock),
L = for(1, N, fun() -> spawn(fun() -> wait() end) end),
{_, Timel} = statistics(runtime), {_, Time2} = statistics(wall_clock),
lists:foreach(fun(Pid) -> Pid ! die end, L),
1 = Timel * 1000 / N, U2 = Time2 * 1000 / N,
io:format("Process spawn time = ~p (~p) microseconds~n", [Ul, U2]).

Walter Cazzola

wait() -> receive die -> void end.

for(N, N, F) -> [F()I;

for(I, N, F) -> [F()|for(I+1, N, F)].
schedulina

1> processes:max(20000) .

Maximum allowed processes:32768

Process spawn time = 2.5 (3.4) microseconds

ok

2> processes:max(40000) .

Maximum allowed processes:32768

=ERROR REPORT: 8-Nov-2011::14:24:32
Too many processes

[16:48] cazzola@surtur:~/1p/erlang>erl +P 100000
1> processes:max(50000) .

Maximum allowed processes:100000

Process spawn time = 3.2 (3.74) microseconds

ok

Slide I3 of IS

Concurrency in Erlang

Giving a Name to the Actors.

A e Erlana provides a mechanism to render puglic the pid Of a process
Coneurrency to all the other processes.
in Erlana .

— register(an_atom, Pid)

— unregister(an_atom)

— whereis(an_atom) ->Pid|undefined

— registered()
Once recistered

— it is possiele t0 send a messace to it directly (name!msg).

Watter Cazzola

-module(clock) .

-export([start/2, stop/0]).

start(Time, Fun) -> register(clock, spawn(fun() -> tick(Time, Fun) end)).
stop() -> clock ! stop.

named actors

tick(Time, Fun) ->
receive
stop -> void
after
Time -> Fun(), tick(Time, Fun)
end.

5> clock:start(5000, fun() -> io:format("TICK ~p~n",[erlang:now()]) end).
true
TICK 1320,769016,673190

TICK 1320,7696021,678451
TICK 1320,769026,679120
7> clock:stop().

stop

Slide 4+ of IS

Errors in Concurrent Proarams
Error Handling on Exit

Errors in
Concurrency

When two processes are related

\Walter Cazzola

an exit sianal is sent to A

[# Ais linked to B

Slide 2- of I+

Kevin Manca

Kevin Manca

Kevin Manca

Errors in Concurrent Proarams
Error Handliina on Exit

Errors in
Concurrency

-module(dies).

Walter C. |
erter Cozzold -export([on_exit/2]).

on_exit(Pid, Fun) ->

spawn (fun() ->
process_flag(trap_exit, true),
link(Pid),
receive

{'EXIT’, Pid, Why} -> Fun(Why)

end

end) .

1> F = fun() -> receive X -> list_to_atom(X) end end.
#Fun<erl_eval.20.67289768>

2> Pid = spawn(F).

<0.35.0>

3> dies:on_exit(Pid, fun(Why) -> io:format("~p died with:~p~n",[Pid, Why]) end).
<0.37.0>

4> Pid ! hello.
<0.35.0> died with:{badarg, [{erlang,list_to_atom, [hello]}]}

=ERROR REPORT: 9-Nov-2011::17:50:20

Error in process <0.35.0> with exit valu badarg, [{erlang, list_to_atom, [hello]}1}
hello

Slide 3 of 4+

Kevin Manca

Kevin Manca

Kevin Manca

Errors in Concurrent Proarams

Details of Error Handling

Errors in L| Nks

Concurrency

— defines an error propaaation path Between two processes;

Walter Cazzola . R . R .
e — i# a process dies an exit signal is sent to the other process;

— the set of processes linked tO a8 Given process is called link set.

Exit Signals
— they are cenerated By a process when it dies;

— signals are Broadecast to all processes in the link set of the dyina
process;

— the exit signal contains an araument explaining why the process died
(exit(Reason) or implicitly set).

— when a process «naturally dies» the exit reason is normal;
— exit signals can e explicitly sent via exit(Pid, X): the sender does
not die («fake death»).
System Processes
— 3 NON system process that receives a exit sianal dies too;

— 3 system process receives the sianal as a Nnormal messa&e In its
MailBox;

— process_flag(trap_exit, true) transform a process into a system

process.
Slide 4 of 4

Kevin Manca

Kevin Manca

Kevin Manca

Errors in Concurrent Proarams
Details of Exrror Handling (Cont'd)

Errors in
Concurrency

R eceiver’s Behavior
\Walter Cazzola

trap_exit Exit Signal Action

true Kill dies + Broadeasts it to its link set
true M adds {’EXIT’, Pid, X} tO the mailrox
false normal continues < the sianal vanishes

false Kill dies % Broadeasts it to its link set
false ~ dies + Broadeasts it to its link set
Privileged (System process)
Arternatives

Slide S of 4

Kevin

Kevin
Privileged (System process)

Kevin

Kevin Manca

Errors in Concurrent Proarams
QGoing into Details of Error Handling

Errors in
Concurrency

Walter Cazzola -module(edemol) .
-export([start/2]).
start(Bool, M) ->
A = spawn(fun() -> a() end),
B = spawn(fun() -> b(A, Bool) end),
C = spawn(fun() -> c(B, M) end),
sleep(1000), status(b, B), status(c, C).

a() -> process_flag(trap_exit, true), wait(a).
b(A, Bool) -> process_flag(trap_exit, Bool), link(A), wait(b).
c(B, M) -> link(B),
case M of
{die, Reason} -> exit(Reason);
{divide, N} -> 1/N, wait(c);
normal -> true
end.

This starts 3 processes: A, B and C
= A will trap exits and watch for exits from B;
= B will trap exits i£ Bool is true and
= C will die with exit reason M.

Slide £ of 4+

Kevin

Kevin
Privileged (System process)

Kevin

Kevin Manca

Errors in Concurrent Proarams
GoinG into Details of Error Handling (Cont’d)

Errors in
Concurrency

wait(Prog) ->
receive
Any ->
io:format("Process ~p received ~p~n", [Prog, Any])
wait(Prog)
end.

\Walter Cazzols

sleep(T) ->
receive
after T -> true
end.

status(Name, Pid) ->
case erlang:is_process_alive(Pid) of
true -> io:format("process ~p (~p) is alive~n", [Name, Pidl);
false -> io:format("process ~p (~p) is dead~n", [Name, Pid])
end.

This starts 3 processes: A, B and C
— wait/1 just prints any messace it receives;
— sleep/1 awakes the iNVOking process after a period of tinve;

— status/2 prints the aliveness of the invoing process.

Slide 7 of 4+

Kevin

Kevin
Privileged (System process)

Kevin

Kevin Manca

Errors in Concurrent Proarams
QGoing into Details of Error Handling (Cont’d)

Errors in
Concurrency
1> edemol:start(false, {die,normal}).

process b (<0.48.0>) is alive
process c (<0.49.0>) is dead
ok

Watter Cazzola

B is linked to C
-

exit(normal)

— B is not a system process;
— when C dies with normal signal, B doesn’t die.

Slide & of 4+

Kevin

Kevin
Privileged (System process)

Kevin

Kevin Manca

Errors in Concurrent Proarams
Going into Details of Error Handlina (Cont'd)

Errors in 1> edemol:start(false, {die, abc}).
Coneurrency Process a received {’EXIT’,<0.40.0>,abc}
Watter Cazzola process b (<0.40.0>) is dead
process c¢ (<0.41.0>) is dead
ok

& é"&/

N7] N
oV
--------- \X%V e |
Alis linked to B %Qr‘:ﬁ B is linked to C
-~

exit(age)

@

=% W

— B is not a system process;
— when C evaluates exit(abc), process B dies;
— when B exits rerroadeasts the unwoditied exit sianal to its link set

ﬁ — A traps the exit signal and convert it to the error messaae
lide 9 of

Errors in Concurrent Proarams
GoinG into Details of Error Handling (Cont’d)

Ervors in 6> edemol:start(false, {divide,0}).
Coneurrency Process a received {’EXIT’,<0.56.0>,{badarith,[{edemol,c,2}]1}}

\Watter Cazzola =ERROR REPORT==== 11-Nov-2011::18:03:29 ===
Error in process <0.57.0> with exit value: {badarith,[{edemol,c,2}]1}

process b (<0.56.0>) is dead
process ¢ (<0.57.0>) is dead
1

) _/\%
Ais linked to B y‘i% B is linked to C

i&adar\’tk

— B is not a system process;

— when C tries to divide By zero an error oceurs and C diesywith 3
{badarith, ...} error;

— B receives this and dies and the error is propaaated to A.

Slide 1O of 4+

Errors in Concurrent Proarams
QGoing into Details of Error Handlina (Cont’d)

Errors in 6> edemol:start(false, {divide,0}).
Coneurrency Process a received {’EXIT’,<0.56.0>,{badarith,[{edemol,c,2}]1}}
Walter Cazzola =ERROR REPORT: = 11-Nov-2011::18:03:29
Error in process <0.57.0> with exit value: {badarith,[{edemol,c,2}1}
process b (<0.56.0>) is dead

process c (<0.57.0>) is dead
ok

Fo

Ais linked to B z—ﬁn — B is linked to C
-

feadarith, ...3

{eadarith, ... %

— B is not a system process;

— when C tries to divide By zero an error occurs and C diesywith a
{badarith, ...} error;

— B receives this and dies and the error is propaaated to A

Slide 1O of 4+

Errors in Concurrent Proarams
GoinG into Details of Error Handling (Cont’d)

Errors in

Concurrency 1> edemol:start(false, {die, kill}).
Process a received {’EXIT’,<0.60.0>,killed}
process b (<0.60.0>) is dead

process ¢ (<0.61.0>) is dead

ok

Walter Cazzola

g _________

Ais linked to B P B is linked to C
-
exit(kil

ﬁ Alis linked to B
s

zx\’c(kmed\

— B is not a system process;

— the exit reason kill causes B to die, and the error is propaaated to
its link set.

Slide I of 4+

Errors in Concurrent Proarams
Going into Details of Exrror Handliing (Cont’d)

Errors in 8> edemol:start(true, {divide,0}).
Coneurrency Process b received {’EXIT’,<0.65.0>,{badarith,[{edemol,c,2}1}}
\Watter Cazz0la =ERROR REPORT==== 11-Nov-2011::18:16:47
Error in process <0.65.0> with exit value: {badarith,[{edemol,c,2}]}
process b (<0.64.0>) is alive

process ¢ (<0.65.0>) is dead
ok

A is linked to B % B is linked to C
iaadarltk 3

A

— B is a system process;
— in all cases, ® traps the error;

- — the error is never propaaated to A
Slide - of I+

Errors in Concurrent Proarams
Monitors: Unidirectional Links

Errors in

Concurrency L"\ks are SyMME'triC
Watter C PR i i It si i
At s — e, if A dies, B will sent an exit sianal and vice verss;

— 1o prevent a process £rom dying, we have toO make it a system
process that is not alway desirasle.

monitors

A mMmonNitor is an asymmetric link
— i A monitors B and B dies A will e sent an exit sianal But

— it A dies B will not Be sent a signal.

A can create 38 monitor £or B calling erlang:monitor(process, B)
— i# B dies with exit reason Reason a 'DOWN’ messace
{’'DOWN’, Ref, process, B, Reason}
is sent to A (Ref is the reference to the monitor).
— the monitor is unidirectional:

— to repeat the arove call will create several, independent monital s Bhd
each one will send a 'DOWN’ messace when B terminates

Slide I3 of 4+

Distriruted Proaramming
Whys

Distrisution in
Erana

Walter Cazzola

Performance
— tO speed up proarams By arranaing that different parts of the
Proaram are run in parallel on different machines.
R eliarility
— tO0 make fault tolerant systems By structuring the system to ee
replicated on several machines: if one fails the computation contin-
ues on another machine.
Scalarility
— resources on a single machine tend to Be exhausted;

— t0 add another computer means to dourle the resources.

Intrinsically Distrieuted Applications
— ea, chat systems, multi-user aames, ...

Slide 2 of 2

Distriruted Proaranmming in Erlang
Models of Distrirution

Distrigution in
Erlana

Watter Cazzola
Erlana provides two models of distrisution: distriruted Erlang
and socket Based distrigution

Distriruted Erlana

— applications run on a set of tightly coupled computers called Erlana
nodes;

— Processes ean Be spawned on every node, and

— apart from the spawning all things still work as always

Socket-Based Distrirution
— It can run in an untrusted environment;
— less powerful (restricted connections);

— fine arained control on what can e executed on a node.

Slide 3 of 2

Distriruted Proaramming in Erlana
Our First Distriruted Proaram: a Name Server

Distrisution in
Erana -module(kvs).

-export([start/0, store/2, lookup/1]).

start() -> register(kvs, spawn(fun() -> loop() end)).

store(Key, Value) -> rpc({store, Key, Value}).

lookup(Key) -> rpc({lookup, Key}).

Walter Cazzola

name server rpC(O) -
kvs ! {self(), Q},
receive
{kvs, Reply} -> Reply
end.
loop() ->

receive
{From, {store, Key, Value}} -> put(Key, {ok, Value}), From ! {kvs, true}, loop();

{From, {lookup, Key}} -> From ! {kvs, get(Key)}, loop()
end.

The name server reply to the protocol
— start() that starts the server with the reaistered name kvs;
— lookup(Key) returns the value associated to the Key into theslame
server; and
— store(Key, Value) associate the Value to the Key into th& name
server.

Slide 4 of 12

Distrisution in
Erlana

Watter Cazzola

Slide S of 2

Distriruted Proaramming in Erlana
Our First Distrieuted Proaram: a Name Server (Cont'd)

Seaquential Execution

1> kvs:start().

true

2> kvs:store({location, walter}, "Genova").
true

3> kvs:store(weather, sunny).

true

4> kvs:lookup(weather).

{ok, sunny}

5> kvs:lookup({location, walter}).
{ok, "Genova"}

6> kvs:lookup({location, cazzola}).
undefined

Distriruted But on Localhost

[15:58] cazzola@surtur:~/1p/erlang>erl -sname sif
(sif@surtur)1> kvs:start().
true

(sif@surtur)2> kvs:lookup(weather).
{ok, sunny}

[15:58] cazzola@surtur:~/1p/erlang>erl -sname amora
(amora@surtur)1>

rpc:call(sif@surtur, kvs, store, [weather, sunnyl).
true
(amora@surtur)2>

rpc:call(sif@surtur, kvs, lookup, [weather]).
{ok, sunny}

Distriruted on two separate computers (surtur and thor)

[16:31]cazzola@surtur:~/1p/erlang> ssh thor
[16:32] cazzola@thor:~>erl -name sif -setcookie abc
(sif@thor)1> kvs:start().

true

(sif@thor)2> kvs:lookup(weather).

{ok,warm}

[16:32]cazzola@surtur:>erl -name amora -setcookie aby
(amora@surtur)1>

rpc:call(sif@thor, kvs, store, [weather, warm]).
true
(amora@surtur)2>

rpc:call(sif@thor, kvs, lookup, [weather]).
{ok,warm}

Kevin
Sullo stesso nodo della VM
di Erlang

Kevin Manca

Kevin Manca

Kevin
user fun fun:fun dict

Distriruted Proaramming in Erlana
Distrirution Primitives

Distrigution in
Erlana

\Watter Cazzola Node is the central conecept.

— it is a self-contained Erlana system VM with its own address space
and own set Of processes;

— the access 10 a single NOde is secured By a cOOkie system

— each Nnode has a cookie and
— it must re the same of any node to which the node talks;
— the cookie is set when the VM starts or using erlang:set_cookie

— the set of nodes with the same cookie define a cluster

Primitives for writing distrieuted proarams are:
— spawn(Node, Mod, Func, ArglList)->Pid
— spawn_link(Node, Mod, Func, ArglList)->Pid
— disconnect_node(Node)->bools() | ignored
— monitor_node(Node, Flag)->true

— {RegName, Node}!Msg

Slide £ of 12

Distriruted Proaranmming in Erlang
An Example of Distriruted Spawning

Distrisution in
Erlana -module(ddemo)

-export([rpc/4, start/1]).

Watter Cazzola
start(Node) -> spawn(Node, fun() -> loop() end).
rpc(Pid, M, F, A) ->
Pid ! {rpc, self(), M, F, A},
receive
{Pid, Response} -> Response
end.
loop() ->
receive
{rpc, Pid, M, F, A} ->
Pid ! {self(), (catch apply(M, F, A))}
loop()
end.

[19:01]cazzola@surt ~/1p/erlang>erl -name sif -setcookie abc
(sif@surtur.di.unimi.it)1> Pid = ddemo:start(’amora@thor.di.unimi.it’).

<8745.43.0>
(sif@surtur.di.unimi.it)3> ddemo:rpc(Pid, erlang, node, []).
'amora@thor.di.unimi.it’

> Macchina virtuale diversa -> Nodo =/= 0
Note

— Erlana provides specific ligraries with support for distrisution|ook
at: rpc and global.

Slide To# 2

Kevin

Kevin

Kevin
Macchina virtuale diversa -> Nodo =/= 0

Distrieuted Proaranmming in Erlang
The Cookie Protection System

Distrisution in
Erlana

Watter Cazzola

Two nodes to communicate MUST have the same maaic cookie.

Three ways to set the cookie:
| to store the cookie in $HOME/ .erlang.cookie

lp/erlang>echo "A Ma > ~/.erlang.cookie
[19:27]cazzola@surtu 1p/erlang>chmod 400 cookie

cookie system

2. throuch the option -setcookie

[19:27]cazzola@surtur:~/1p/erlang>erl -setcook

3. By using the BIE erlang:set_cookies

[19:34] cazzola@surtur:~/1p/erlang>erl -sname sif

(sif@surtur)l> erlang:set_cookie(node(), 'A Magic Cookie’).
true

Note that | and 3 are safer than 2 and the cookies never.wander
on the net in clear.

Slide 8 of 12

Distriruted Proaramming in Erlana
Socket Based Distrirution

Distrigution in
Erlana

Walter Cazzola

Proelem with spawn-Based distrigution
— the client can spawn any process on the server machine

— e, rpc:multicall(nodes(), os, cmd, ["cd /; rm -rf x"])

Spawn-gased distripution

— is perfect when you own all the machines and you want to control
them from a sinale machine; But

socket-Based

— is Nnot suited when different people own the machines and want to
control what is in execution on their machines.

Socket-rase distrirution

— will use a restricted form of spawn where the owner of a machine
has explicit control over what is run on his machine;

— 1lib_chan;

Slide 9 of 12

$HOME/.erlang_config/lib_chan.conf
$HOME/.erlang_config/lib_chan.conf

Distrieuted Proaramming in Erlana
Socket Based Distrirution: liz__chan.

Distrisution in
(= a8 .
rlena — that allows a user to explicitly control which processes are spawned

Walter Cazzola on his machines.

The intertace is as follows
— start_server()->true
this starts a server on local host, whose gehavior depends on $HOME/
.erlang_config/lib_chan.conf
— connect(Host, Port, S, P, ArgsC)->{ok, Pid}|{error, Why}
try to open the port Port on the host Host and then to activate
the service S protected Ry the password P.

The configuration tile contains tuples of the form:
— {port, NNNN}
this starts listening to port numeer NNNN
— {service, S, password, P, mfa, SomeMod, SomeFunc, SomeArgs}
— +this defines a service S protected By password P;
— When the connection is created By the connect call, the sénver
spawns
SomeMod: SomeFunc (MM, ArgC, SomeArgs)

— where MM is the Pid of a proxy process to send messaaes to the eligrt
and ArgsC comes from the client connect call.

Slide IO of 1

$HOME/.erlang_config/lib_chan.conf
$HOME/.erlang_config/lib_chan.conf
Kevin Manca

Distriruted Proaramming in Erlana
Socket Based Distrirution: lis__chan in action.

Distrisution in
Erlana me_up, notUsed}

Weliear Emee -module(mod_name_server) .

-export([start_me_up/3]1).
start_me_up(MM, _ArgsC, _ArgS) -> loop(MM).

loop(MM) ->
receive
{chan, MM, {store, K, V}} -> kvs:store(K,V), loop(MM);
{chan, MM, {lookup, K}} -> MM ! {send, kvs:lookup(K)}, loop(MM);
{chan_closed, MM} -> true
end.

1> kvs:start().

true

2> lib_chan:start_server().
Starting a port server on 12340...
true

3> kvs:lookup(joe).

{ok,"writing a book"}

1> {ok, Pid} = lib_chan:connect("localhost", 12340, nameServer, "ABXy45",
{ok, <0.43.0>}

2> lib_chan:cast(Pid, {store, joe, "writing a book"}).

{send, {store, joe,"writing a book"}}

3> lib_chan:rpc(Pid, {lookup, joe}).

{ok,"writing a book"}

4> lib_chan:rpc(Pid, {lookup, jim}).

undefined

Slide | of 122

$HOME/.erlang_config/lib_chan.conf
$HOME/.erlang_config/lib_chan.conf

IR.C lite
The Architecture

Erlana in
Action

Walter Cazzola

Client Server

Messages

architecture.

Server ;

Slide 2 of |l

Kevin
Client

Kevin
Messages

Kevin
Group

Kevin
Server

R.C lite

The Architecture (Cont'd)

Erlana in

Action The IR.C-lite system is composed of
“Weliar @b — 3 dient nodes running on different machines and

— a single server node on another machine.
architecture

Such components perform the followina functions:
— the chat clients send/receive messages to/$from the aroup control,
— the group controller manaces a sinale chat aroup;
— a8 message sent to the controller is Broadeast to all the aroup mempers

— the chat server tracks the aroup controllers and manaaes the join-
inG operation; and

— the middle-men take care of the transport of data (they hide the

sockets).
Ce Bl Mi1 Mi12 &
] . L] Mo greley, Nick, StrSS
frvsen, Nick, M_I2, Ser§
wsa posemnsess | e |
-—

Slide 3 of |l

R.C lite

The Client Implementation.

Erlana in -module(chat_client).
Action -export([start/1,connect/5]).

Walter Cazzola start(Nick) -> connect("localhost", 2223, "AsDT67aQ", "general", Nick)

connect(Host, Port, HostPsw, Group, Nick) ->
spawn(fun() -> handler(Host, Port, HostPsw, Group, Nick) end).

handler(Host, Port, HostPsw, Group, Nick) ->
Sl process_flag(trap_exit, true),
start_connector(Host, Port, HostPsw),
disconnected(Group, Nick).

— It makes itself into a system process;

— it then spawns a connection process (which tries to connect to
the server);

— it waits for a connection event in disconnected.

disconnected(Group, Nick) ->
receive
{connected, MM} -> % from the connection process
io:format("connected to server\nsending data\n"),
lib_chan_mm:send (MM, {login, Group, Nick}),
wait_login_response(MM);
{status, S} -> io:format("~p~n",[S]), disconnected(Group, Nick);
Other ->
io:format("chat_client disconnected unexpected:~p~n",[Other]),
disconnected(Group, Nick)
end.

Slide 4 of Il

IRC lite

The Client Implementa

Erlana in
Action start_connector(Host, Port, Pwd) ->
S = self(), spawn_link(fun() -> try_to_connect(S, Host, Port, Pwd) end).

Note that

Walter Cazzola

S=self(), spawn_link(fun() -> try_to_connect(S, ...) end)

Cliervt

is different than

spawn_link(fun() -> try_to_connect(self(), ...) end)

try_to_connect(Parent, Host, Port, Pwd) ->
%% Parent is the Pid of the process that spawned this process
case lib_chan:connect(Host, Port, chat, Pwd, []1) of
{error, _Why} ->
Parent ! {status, {cannot, connect, Host, Port}},
sleep(2000),
try_to_connect(Parent, Host, Port, Pwd);
{ok, MM} ->
lib_chan_mm:controller(MM, Parent),
Parent ! {connected, MM}, %% to disconnected
exit(connectorFinished)
end.

sleep(T) -> receive after T -> true end.

Slide S of |l

IRC lite

The Client Implementation (Cont’d).

Erana in
Action wait_login_response(MM) ->
receive
{chan, MM, ack} -> active(MM);
{’EXIT’, _Pid, connectorFinished} -> wait_login_response(MM);
Other ->
io:format("chat_client login unexpected:~p~n", [Other])
wait_login_response(MM)
end.

Walter Cazzola

active(MM) ->
receive

{msg, Nick, Str} ->
lib_chan_mm:send (MM, {relay, Nick, Str}),
active(MM);

{chan, MM, {msg, From, Pid, Str}} ->
io:format("~p@~p: ~p~n", [From,Pid,Strl),
active(MM);

{close, MM} -> exit(serverDied);

Other ->
io:format("chat_client active unexpected:~p~n",[Other]),
active (MM)

end.

active
— sends messages to the Group and vice versa and

— monitors the connection with the aroup

Slide £ of Il

RC lite

The Server Implementation: The Chat Controller.

Erlana in
Action

Walter Cazzola {port, 2223}.
{service, chat, password,"AsDT67aQ",mfa,chat_controller,start,[]}

— it uses lib_chan.

-module(chat_controller).
e AT -export([start/3]).
-import(lib_chan_mm, [send/2]1).

start(Mm, _, _) ->
process_flag(trap_exit, true),
io:format("chat_controller off we go ..

loop (MM) .

loop(MM) ->
receive
{chan, MM, Msg} -> %% when a client connects
chat_server ! {mm, MM, Msg},
Toop (MM) ;
{'EXIT’, MM, _Why} -> %% when the session terminates
chat_server ! {mm_closed, MM};

-~p~=n", [MM]),

Other ->
io:format("chat_controller unexpected message =~p (MM=~p)~n", [Other, MM1),
loop (MM)
end.

Slide T of Il

IR.C lite

The Server Implementation: The Chat Server.

Erlana in -module(chat_server).

AEHER start() -> start_server(), lib_chan:start_server("chat.conf").

\W
plceglCazzc. start_server() ->

register(chat_server,
spawn(fun() ->
process_flag(trap_exit, true),
Val = (catch server_loop([])),
io:format("Server terminated with:~p~n",[Vall)
end)).

server_loop(L) ->
receive
{mm, Channel, {login, Group, Nick}} ->
case lookup(Group, L) of
{ok, Pid} -> Pid ! {login, Channel, Nick}, server_loop(L);
error ->
Pid = spawn_link(fun() -> chat_group:start(Channel, Nick) end),
server_loop([{Group,Pid}|L])
end;
{mm_closed, _} -> server_loop(L);
{'EXIT’, Pid, allGone} -> L1 = remove_group(Pid, L), server_loop(L1);
Msg -> io:format("Server received Msg=~p~n", [Msg]), server_loop(L)

end.
lookup(G, [{G,Pid}|_-1) -> {ok, Pid};
lookup(G, [_|TI) -> lookup(G, T);
lookup(—,[1) -> error.
remove_group(Pid, [{G,Pid}|T]) -> io:format("~p removed~n",[G]), T;
remove_group(Pid, [H|TI]) -> [H|remove_group(Pid, T)1;
remove_group(—, []) -> [1.

Slide 8 of Il

RC lite

The Server Implementation: The Group Manacer.

Erlana in -module(chat_group).
Action -export([start/2]).
\Walter Cazzola start(C, Nick) ->
process_flag(trap_exit, true),
lib_chan_mm:controller(C, self()), lib_chan_mm:send(C, ack)
self() ! {chan, C, {relay, Nick, "I'm starting the group"}},
group_controller([{C,Nick}]1).

delete(Pid, [{Pid,Nick}|T], L) -> {Nick, lists:reverse(T, L)};
delete(Pid, [H|TI, L) -> delete(Pid, T, [H|L]);
delete(_, [1, L) => {"??7?2", L}.

arou manacer
group_controller([]) -> exit(allGone);
group_controller(L) ->
receive
{chan, C, {relay, Nick, Str}} ->
lists:foreach(fun({Pid,_}) -> lib_chan_mm:send(Pid, {msg,Nick,C,Str}) end, L),
group_controller(L);
{login, C, Nick} ->
1lib_chan_mm:controller(C, self()), lib_chan_mm:send(C, ack),
self() ! {chan, C, {relay, Nick, "I'm joining the group"}},
group_controller([{C,Nick}|L]);
{chan_closed, C} ->
{Nick, L1} = delete(C, L, [1),
self() ! {chan, C, {relay, Nick, "I'm leaving the group"}},
group_controller(L1);
Any ->
io:format("group controller received Msg=~p~n", [Anyl),
group_controller(L)
end.

Slide 9 of |l

\{“‘»R(:i‘,
R

IR.C lite

Chatting around ...

Erlana in 1> chat_server:start().
Action lib_chan starting:"chat.conf"

ConfigData=[{port,2223}, {service,chat,password,"AsDT67aQ",mfa,chat_controller,start,[]}]

Walter Cazzola chat_controller off we go ...<0.39.0>
chat_controller off we go ...<0.41.0>
chat_controller off we go ...<0.43.0>
server error should die with exit(normal) was:{mm_closed,<0.39.0>}
chat_controller off we go ...<0.46.0>
server error should die with exit(normal) was:mm_closed,<0.46.0>}
server error should die with exit(normal) was:mm_closed,<0.41.0>}
server error should die with exit(normal) was:mm_closed,<6.43.0>}

1> ChatDaemon = chat_client:start(walter). 1> ChatDaemon = chat_client:start(’walter cazzola’').
walter@<0.41.0; ’'m joining the group" ‘walter cazzola’@<0.43.0>: "I'm joining the group”
’'walter cazzola’@<0.43.0>: “I’'m joining the group” walter@<0.41.0>: "Hello World!!!"

2> ChatDaemon ! {msg, walter, "Hello World!!!"}. 2> ChatDaemon!{msg, ‘walter cazzola’,"Hello Walter!!!"}
{msg,walter,"Hello World!!!"} {msg, 'walter cazzola’,"Hello Walter!!!"}
walter@<0.41.0>: “Hello World!!!" 'walter cazzola’'@<0.43.0>: "Hello Walter!!!"

'walter cazzola’@<0.43.0>: "Hello Walter!!!" cazzola@<0.39.0>: "Hello Walter!!!™
cazzola@<0.39.0>: "Hello Walter!!!" cazzola@<0.39.0>: "I’'m leaving the group"
cazzola@<0.39.0>: "I'm leaving the group" cazzola@<0.46.0>: "I'm joining the group"
cazzola@<0.46.0>: "I’'m joining the group” cazzola@<0.46.0>: "I’'m leaving the group”
cazzola@<0.46.0>: "I’'m leaving the group” walter@<0.41.0>: "I'm leaving the group"

1> ChatDaemon = chat_client:start(cazzola).
cazzola@<0.39.0>: "I’'m starting the group"
walter@<0.41.60: 'm joining the group"

'walter cazzola’@<0.43.0>: "I’m joining the group"
walter@<0.41.0>: "Hello World!!!"

'walter cazzola’@<0.43.0>: “Hello Walter!!!"

2> ChatDaemon ! {msg, cazzola, "Hello Walter!!!"}
{msg, cazzola, "Hello Walter!!!"}

cazzola@<0.39.0>: “Hello Walter!!!"

3> ~C [21:35]cazzola@surtur:~/lp/erlang/chat>erl
1> ChatDaemon = chat_client:start(cazzola).
cazzola@<0.46.0>: "I'm joining the group"

Slide 1O of Il

References

Erlana in
Action

\Watter Cazzola

> Gul Acha.
Actors: A Model of Concurrent Computation in Distrieuted Systems.

MIT Press, Cameridae, 1986.

> Joe Armstrona.
Proaramming Erlana: Software for a Concurrent World.
The Praamatic Booksheld, fifth edition, 20071

References

> Francesco Cesarini and Simon Thompson

Erlana Proarammina: A Concurrent Approach to Software Devel-
opment.

OReilly, June 2009,

Slide Il of II

