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Preface

Constructing	production-quality	programs—programs

that	are	used	over	an	extended	period	of	time—is	well

known	to	be	extremely	difficult.	The	goal	of	this	book	is

to	improve	the	effectiveness	of	programmers	in	carrying

out	this	task.	I	hope	the	reader	will	become	a	better

programmer	as	a	result	of	reading	the	book.	I	believe	the

book	succeeds	at	improving	programming	skills	because

my	students	tell	me	that	it	happens	for	them.

What	makes	a	good	programmer?	It	is	a	matter	of

efficiency	over	the	entire	production	of	a	program.	The

key	is	to	reduce	wasted	effort	at	each	stage.	Things	that

can	help	include	thinking	through	your	implementation

before	you	start	coding,	coding	in	a	way	that	eliminates

errors	before	you	test,	doing	rigorous	testing	so	that

errors	are	found	early,	and	paying	careful	attention	to

modularity	so	that	when	errors	are	discovered,	they	can

be	corrected	with	minimal	impact	on	the	program	as	a

whole.	This	book	covers	techniques	in	all	these	areas.

Modularity	is	the	key	to	writing	good	programs.	It	is

essential	to	break	up	a	program	into	small	modules,	each

of	which	interacts	with	the	others	through	a	narrow,	well-

defined	interface.	With	modularity,	an	error	in	one	part

of	a	program	can	be	corrected	without	having	to	consider

all	the	rest	of	the	code,	and	a	part	of	the	program	can	be

understood	without	having	to	understand	the	entire

thing.	Without	modularity,	a	program	is	a	large	collection

of	intricately	interrelated	parts.	It	is	difficult	to

comprehend	and	to	modify	such	a	program,	and	also

difficult	to	get	it	to	work	correctly.

The	focus	of	this	book	therefore	is	on	modular	program

construction:	how	to	organize	a	program	as	a	collection	of

well-chosen	modules.	The	book	relates	modularity	to

abstraction.	Each	module	corresponds	to	an	abstraction,

such	as	an	index	that	keeps	track	of	interesting	words	in	a

large	collection	of	documents	or	a	procedure	that	uses	the



index	to	find	documents	that	match	a	particular	query.

Particular	emphasis	is	placed	on	object-oriented

programming—the	use	of	data	abstraction	and	objects	in

developing	programs.

The	book	uses	Java	for	its	programming	examples.

Familiarity	with	Java	is	not	assumed.	It	is	worth	noting,

however,	that	the	concepts	in	this	book	are	language

independent	and	can	be	used	to	write	programs	in	any

programming	language.

HOW	CAN	THE	BOOK	BE	USED?

Program	Development	in	Java	can	be	used	in	two	ways.

The	first	is	as	the	text	for	a	course	that	focuses	on	an

object-oriented	methodology	for	the	design	and

implementation	of	complex	systems.	The	second	is	use	by

computing	professionals	who	want	to	improve	their

programming	skills	and	their	knowledge	of	modular,

object-oriented	design.

When	used	as	a	text,	the	book	is	intended	for	a	second	or

third	programming	course;	we	have	used	the	book	for

many	years	in	the	second	programming	course	at	MIT,

which	is	taken	by	sophomores	and	juniors.	At	this	stage,

students	already	know	how	to	write	small	programs.	The

course	builds	on	this	material	in	two	ways:	by	getting

them	to	think	more	carefully	about	small	programs,	and

by	teaching	them	how	to	construct	large	programs	using

smaller	ones	as	components.	This	book	could	also	be

used	later	in	the	curriculum,	for	example,	in	a	software

engineering	course.

A	course	based	on	the	book	is	suitable	for	all	computer

science	majors.	Even	though	many	students	will	never	be

designers	of	truly	large	programs,	they	may	work	at

development	organizations	where	they	will	be

responsible	for	the	design	and	implementation	of

subsystems	that	must	fit	into	the	overall	structure.	The

material	on	modular	design	is	central	to	this	kind	of	a

task.	It	is	equally	important	for	those	who	take	on	larger

design	tasks.

WHAT	IS	THIS	BOOK	ABOUT?



Roughly	two-thirds	of	the	book	is	devoted	to	the	issues

that	arise	in	building	individual	program	modules.	The

remainder	of	the	book	is	concerned	with	how	to	use	these

modules	to	construct	large	programs.

Program	Modules

This	part	of	the	book	focuses	on	abstraction	mechanisms.

It	discusses	procedures	and	exceptions,	data	abstraction,

iteration	abstraction,	families	of	data	abstractions,	and

polymorphic	abstractions.

Three	activities	are	emphasized	in	the	discussion	of

abstractions.	The	first	is	deciding	on	exactly	what	the

abstraction	is:	what	behavior	it	is	providing	to	its	users.

Inventing	abstractions	is	a	key	part	of	design,	and	the

book	discusses	how	to	choose	among	possible

alternatives	and	what	goes	into	inventing	good

abstractions.

The	second	activity	is	capturing	the	meaning	of	an

abstraction	by	giving	a	specification	for	it.	Without	some

description,	an	abstraction	is	too	vague	to	be	useful.	The

specification	provides	the	needed	description.	This	book

defines	a	format	for	specifications,	discusses	the

properties	of	a	good	specification,	and	provides	many

examples.

The	third	activity	is	implementing	abstractions.	The	book

discusses	how	to	design	an	implementation	and	the

trade-off	between	simplicity	and	performance.	It

emphasizes	encapsulation	and	the	need	for	an

implementation	to	provide	the	behavior	defined	by	the

specification.	It	also	presents	techniques—in	particular,

the	use	of	representation	invariants	and	abstraction

functions—that	help	readers	of	code	to	understand	and

reason	about	it.	Both	rep	invariants	and	abstraction

functions	are	implemented	to	the	extent	possible,	which

is	useful	for	debugging	and	testing.

The	material	on	type	hierarchy	focuses	on	its	use	as	an

abstraction	technique—a	way	of	grouping	related	data

abstractions	into	families.	An	important	issue	here	is

whether	it	is	appropriate	to	define	one	type	to	be	a

subtype	of	another.	The	book	defines	the	substitution



principle—a	methodical	way	for	deciding	whether	the

subtype	relation	holds	by	examining	the	specifications	of

the	subtype	and	the	supertype.

This	book	also	covers	debugging	and	testing.	It	discusses

how	to	come	up	with	a	sufficient	number	of	test	cases	for

thorough	black	box	and	glass	box	tests,	and	it	emphasizes

the	importance	of	regression	testing.

Programming	in	the	Large

The	latter	part	of	Program	Development	in	Java	is

concerned	with	how	to	design	and	implement	large

programs	in	a	modular	way.	It	builds	on	the	material

about	abstractions	and	specifications	covered	in	the

earlier	part	of	the	book.

The	material	on	programming	in	the	large	covers	four

main	topics.	The	first	concerns	requirements	analysis—

how	to	develop	an	understanding	of	what	is	wanted	of	the

program.	The	book	discusses	how	to	carry	out

requirements	analysis	and	also	describes	a	way	of	writing

the	resulting	requirements	specification,	by	making	use

of	a	data	model	that	describes	the	abstract	state	of	the

program.	Using	the	model	leads	to	a	more	precise

specification,	and	it	also	makes	the	requirements	analysis

more	rigorous,	resulting	in	a	better	understanding	of	the

requirements.

The	second	programming	in	the	large	topic	is	program

design,	which	is	treated	as	an	iterative	process.	The

design	process	is	organized	around	discovering	useful

abstractions,	ones	that	can	serve	as	desirable	building

blocks	within	the	program	as	a	whole.	These	abstractions

are	carefully	specified	during	design	so	that	when	the

program	is	implemented,	the	modules	that	implement

the	abstractions	can	be	developed	independently.	The

design	is	documented	by	a	design	notebook,	which

includes	a	module	dependency	diagram	that	describes

the	program	structure.

The	third	topic	is	implementation	and	testing.	The	book

discusses	the	need	for	design	analysis	prior	to

implementation	and	how	design	reviews	can	be	carried

out.	It	also	discusses	implementation	and	testing	order.



This	section	compares	top-down	and	bottom-up

organizations,	discusses	the	use	of	drivers	and	stubs,	and

emphasizes	the	need	to	develop	an	ordering	strategy

prior	to	implementation	that	meets	the	needs	of	the

development	organization	and	its	clients.

This	book	concludes	with	a	chapter	on	design	patterns.

Some	patterns	are	introduced	in	earlier	chapters;	for

example,	iteration	abstraction	is	a	major	component	of

the	methodology.	The	final	chapter	discusses	patterns	not

covered	earlier.	It	is	intended	as	an	introduction	to	this

material.	The	interested	reader	can	then	go	on	to	read

more	complete	discussions	contained	in	other	books.

Barbara	Liskov
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1	Introduction

This	book	will	develop	a	methodology	for	constructing

software	systems.	Our	goal	is	to	help	programmers

construct	programs	of	high	quality—programs	that	are

reliable,	efficient,	and	reasonably	easy	to	understand,

modify,	and	maintain.

A	very	small	program,	consisting	of	no	more	than	a	few

hundred	lines,	can	be	implemented	as	a	single	monolithic

unit.	As	the	size	of	the	program	increases,	however,	such

a	monolithic	structure	is	no	longer	reasonable	because

the	code	becomes	difficult	to	understand.	Instead,	the

program	must	be	decomposed	into	a	number	of	small

independent	programs,	called	modules,	that	together

provide	the	desired	function.	We	shall	focus	on	this

decomposition	process:	how	to	decompose	large

programming	problems	into	small	ones,	what	kinds	of

modules	are	most	useful	in	this	process,	and	what

techniques	increase	the	likelihood	that	modules	can	be

combined	to	solve	the	original	problem.

Doing	decomposition	properly	becomes	more	and	more

important	as	the	size	of	the	program	increases	for	a

number	of	reasons.	First,	many	people	must	be	involved

in	the	construction	of	a	large	program.	If	just	a	few

people	are	working	on	a	program,	they	naturally	interact

regularly.	Such	contact	reduces	the	possibility	of

misunderstandings	about	who	is	doing	what	and	lessens

the	seriousness	of	the	consequences	should

misunderstandings	occur.	If	many	people	work	on	a

project,	regular	communication	becomes	impossible

because	it	consumes	too	much	time.	Instead,	the	program

must	be	decomposed	into	pieces	that	the	individuals	can

work	on	independently	with	a	minimum	of	contact.

The	useful	life	of	a	program	(its	production	phase)	begins

when	it	is	delivered	to	the	customer.	Work	on	the

program	is	not	over	at	this	point,	however.	The	code	will

probably	contain	residual	errors	that	will	need	attention,



and	program	modifications	will	often	be	required	to

upgrade	the	program’s	serviceability	or	to	provide

services	better	matched	to	the	user’s	needs.	This	activity

of	program	modification	and	maintenance	is	likely	to

consume	more	than	half	of	the	total	effort	put	into	the

project.

For	modification	and	maintenance,	it	is	rarely	practical	to

start	from	scratch	and	reimplement	the	entire	program.

Instead,	one	must	retrofit	modifications	within	the

existing	structure,	and	it	is	therefore	important	that	the

structure	accommodate	change.	In	particular,	the	pieces

of	the	program	must	be	independent,	so	that	a	change	to

one	piece	can	be	made	without	requiring	changes	to	all

pieces.

Finally,	most	programs	have	a	long	lifetime.

Programmers	often	have	to	deal	with	programs	long	after

they	have	first	worked	on	them.	Moreover,	there	is	likely

to	be	substantial	turnover	of	personnel	over	the	life	of

any	project,	and	program	modification	and	maintenance

are	typically	done	by	people	other	than	the	original

implementors.	All	of	these	factors	require	that	programs

be	structured	in	such	a	way	that	they	can	be	understood

easily.

In	the	methodology	we	shall	describe	in	this	book,

programs	will	be	developed	by	means	of	problem

decomposition	based	on	a	recognition	of	useful

abstractions.	Decomposition	and	abstraction,	the	two

key	concepts	in	this	book,	form	our	next	subject.

1.1	DECOMPOSITION	AND	ABSTRACTION

The	basic	paradigm	for	tackling	any	large	problem	is

clear—we	must	“divide	and	rule.”	Unfortunately,	merely

deciding	to	follow	Machiavelli’s	dictum	still	leaves	us	a

long	way	from	solving	the	problem	at	hand.	Exactly	how

we	choose	to	divide	the	problem	is	of	overriding

importance.

Our	goal	in	decomposing	a	program	is	to	create	modules

that	are	themselves	small	programs	that	interact	with	one

another	in	simple,	well-defined	ways.	If	we	achieve	this



goal,	different	people	will	be	able	to	work	on	different

modules	independently,	without	needing	much

communication	among	themselves,	and	yet	the	modules

will	work	together.	In	addition,	during	program

modification	and	maintenance,	it	will	be	possible	to

modify	some	of	the	modules	without	affecting	all	of	the

others.

When	we	decompose	a	problem,	we	factor	it	into

separable	subproblems	in	such	a	way	that

Each	subproblem	is	at	the	same	level	of	detail.

Each	subproblem	can	be	solved	independently.

The	solutions	to	the	subproblems	can	be	combined	to

solve	the	original	problem.

Sorting	using	merge	sort	is	an	elegant	example	of

problem	solving	by	decomposition.	It	breaks	the	problem

of	sorting	a	list	of	arbitrary	size	into	the	two	simpler

problems	of	sorting	a	list	of	size	two	and	merging	two

sorted	lists	of	arbitrary	size.

Decomposition	is	a	time-honored	and	useful	technique	in

many	disciplines.	From	Babbage’s	day	onward,	people

have	recognized	the	utility	of	such	things	as	macros	and

subroutines	as	decomposition	devices	for	programmers.

It	is	important	to	recognize,	however,	that	decomposition

is	not	a	panacea	and	when	used	improperly,	it	can	have	a

harmful	effect.	Furthermore,	large	or	poorly	understood

problems	are	difficult	to	decompose	properly.	The	most

common	problem	is	creating	individual	components	that

solve	the	stated	subproblems	but	do	not	combine	to	solve

the	original	problem.	This	is	one	of	the	reasons	why

system	integration	is	often	difficult.

For	example,	imagine	creating	a	play	by	assembling	a

group	of	writers,	giving	each	a	list	of	characters	and	a

general	plot	outline,	and	asking	each	of	them	to	write	a

single	character’s	lines.	The	authors	might	accomplish

their	individual	tasks	admirably,	but	it	is	highly	unlikely

that	their	combined	efforts	will	be	an	admirable	play.	It

would	probably	lack	any	sort	of	coherence	or	sense.

Individually	acceptable	solutions	simply	cannot	be

•	

•	

•	



expected	to	combine	properly	if	the	original	task	has	been

divided	in	a	counterproductive	way.

Abstraction	is	a	way	to	do	decomposition	productively	by

changing	the	level	of	detail	to	be	considered.	When	we

abstract	from	a	problem,	we	agree	to	ignore	certain

details	in	an	effort	to	convert	the	original	problem	to	a

simpler	one.	We	might,	for	example,	abstract	from	the

problem	of	writing	a	play	to	the	problem	of	deciding	how

many	acts	it	should	have,	or	what	its	plot	will	be,	or	even

the	sense	(but	not	the	wording)	of	individual	pieces	of

dialog.	After	this	has	been	done,	the	original	problem	(of

writing	all	of	the	dialog)	remains,	but	it	has	been

considerably	simplified—perhaps	even	to	the	point	where

it	could	be	turned	over	to	another	or	even	several	others.

(Alexandre	Dumas	père	churned	out	novels	in	this	way.)

The	paradigm	of	abstracting	and	then	decomposing	is

typical	of	the	program	design	process:	decomposition	is

used	to	break	software	into	components	that	can	be

combined	to	solve	the	original	problem;	abstractions

assist	in	making	a	good	choice	of	components.	We

alternate	between	the	two	processes	until	we	have

reduced	the	original	problem	to	a	set	of	problems	we

already	know	how	to	solve.

1.2	ABSTRACTION

The	process	of	abstraction	can	be	seen	as	an	application

of	a	many-to-one	mapping.	It	allows	us	to	forget

information	and	consequently	to	treat	things	that	are

different	as	if	they	were	the	same.	We	do	this	in	the	hope

of	simplifying	our	analysis	by	separating	attributes	that

are	relevant	from	those	that	are	not.	It	is	crucial	to

remember,	however,	that	relevance	often	depends	upon

context.	In	the	context	of	an	elementary	school	classroom

we	learn	to	abstract	both	 ×3	and	5	+	3	to	the	concept

we	represent	by	the	numeral	8.	Much	later	we	learn,

often	under	unpleasant	circumstances,	that	on	many

computing	machines	this	abstraction	can	get	us	into	a

world	of	trouble.

For	example,	consider	the	structure	shown	in	Figure	1.1,



in	which	the	concept	is	“mammal.”	All	mammals	share

certain	characteristics,	such	as	the	fact	that	females

produce	milk.	At	this	level	of	abstraction,	we	focus	on

these	common	characteristics	and	ignore	the	differences

between	the	various	types	of	mammals.

At	a	lower	level	of	abstraction,	we	might	be	interested	in

particular	instances	of	mammals.	However,	even	here	we

can	abstract	by	considering	not	individuals,	or	even

species,	but	groups	of	related	species.	At	this	level,	we

would	have	groupings	such	as	primates	or	rodents.	Here

again,	we	are	interested	in	common	characteristics	rather

than	the	differences	between,	say,	humans	and

chimpanzees.	Such	differences	are	relevant	at	a	still	lower

level	of	abstraction.

Figure	1.1	An	abstraction	hierarchy

The	abstraction	hierarchy	of	Figure	1.1	comes	from	the

field	of	zoology,	but	it	might	well	appear	in	a	program

that	implemented	some	zoological	application.	A	more

specifically	computer-oriented	example	that	is	useful	in

many	programs	is	the	concept	of	a	“file.”	Files	abstract

from	raw	storage	and	provide	long-term,	online	storage

of	named	entities.	Operating	systems	differ	in	their

realizations	of	files;	for	example,	the	structure	of	the

filenames	differs	from	system	to	system,	as	does	the	way

in	which	the	files	are	stored	on	secondary	storage	devices.

In	this	book,	we	are	interested	in	abstraction	as	it	is	used

in	programs	in	general.	The	most	significant

development	to	date	in	this	area	is	high-level	languages.

By	dealing	directly	with	the	constructs	of	a	high-level

language,	rather	than	with	the	many	possible	sequences

of	machine	instructions	into	which	they	can	be

translated,	the	programmer	achieves	a	significant



simplification.

In	recent	years,	however,	programmers	have	become

dissatisfied	with	the	level	of	abstraction	generally

achieved	even	in	high-level	language	programs.	Consider,

for	example,	the	program	fragments	in	Figure	1.2.	At	the

level	of	abstraction	defined	by	the	programming

language,	these	fragments	are	clearly	different:	if	there	is

an	occurrence	of	e	in	a,	one	fragment	finds	the	index	of

the	first	occurrence	and	the	other,	the	index	of	the	last.	If

e	does	not	occur	in	a,	one	sets	i	to	a.length	and	the	other	to

−1.	It	is	not	improbable,	however,	that	both	were	written

to	accomplish	the	same	goal:	to	set	found	to	false	if	there	is

no	occurrence	of	e	in	a	and,	otherwise,	to	set	found	to	true

and	z	to	the	index	of	some	occurrence	of	e	in	a.	If	this	is

what	we	want,	it	is	not	evident	from	the	program

fragments	by	themselves.

One	approach	to	dealing	with	this	problem	lies	in	the

invention	of	“very-high-level	languages”	built	around

some	fixed	set	of	relatively	general	data	structures	and	a

powerful	set	of	primitives	that	can	be	used	to	manipulate

them.	For	example,	suppose	a	language	provided	isIn
and	indexOf	as	primitive	operations	on	arrays.	Then	we
could	accomplish	the	task	outlined	in	Figure	1.2	simply

by	writing

Figure	1.2	Two	program	fragments

			//	search	upwards
			found	=	false;
			for	(int	i	=	0;	i	<	a.length;	i++)
						if	(a[i]	==	e)	{
									z	=	i;
									found	=	true;
						}

			//	search	downwards
			found	=	false;
			for	(int	i	=	a.length-1;	i	>=	0;	i--)
						if	(a[i]	==	e)	{
									z	=	i;
									found	=	true;
						}

			found	=	a.isIn(e);
			if	(found)
						z	=	a.indexOf(e);

The	flaw	in	this	approach	is	that	it	presumes	that	the



designer	of	the	programming	language	will	build	into	the

language	most	of	the	abstractions	that	users	of	the

language	will	want.	Such	foresight	is	not	given	to	many;

and	even	if	it	were,	a	language	containing	so	many	built-

in	abstractions	might	well	be	so	unwieldy	as	to	be

unusable.

A	preferable	alternative	is	to	design	into	the	language

mechanisms	that	allow	programmers	to	construct	their

own	abstractions	as	they	need	them.	One	common

mechanism	is	the	use	of	procedures.	By	separating

procedure	definition	and	invocation,	a	programming

language	makes	two	important	methods	of	abstraction

possible:	abstraction	by	parameterization	and

abstraction	by	specification.	These	abstraction

mechanisms	are	summarized	in	Sidebar	1.1.

Sidebar	1.1	Abstraction	Mechanisms

Abstraction	by	parameterization	abstracts	from	the	identity	of	the	data	by	replacing	them	with
parameters.	It	generalizes	modules	so	that	they	can	be	used	in	more	situations.

Abstraction	by	specification	abstracts	from	the	implementation	details	(how	the	module	is
implemented)	to	the	behavior	users	can	depend	on	(what	the	module	does).	It	isolates	modules
from	one	another’s	implementations;	we	require	only	that	a	module’s	implementation	supports
the	behavior	being	relied	on.

1.2.1	Abstraction	by	Parameterization

Abstraction	by	parameterization,	through	the

introduction	of	parameters,	allows	us	to	represent	a

potentially	infinite	set	of	different	computations	with	a

single	program	text	that	is	an	abstraction	of	all	of	them.

For	example,

x	*	x	+	y	*	y

describes	a	computation	that	adds	the	square	of	the	value

stored	in	the	variable	x	to	the	square	of	the	value	stored

in	the	variable	y.

On	the	other	hand,	the	lambda	expression

λ	x,	y:	int.	(x	*	x	+	y	*	y)

describes	the	set	of	computations	that	square	the	value

stored	in	some	integer	variable,	which	we	shall

temporarily	refer	to	as	x,	and	add	to	it	the	square	of	the

value	stored	in	another	integer	variable,	which	we	shall

•	

•	



temporarily	call	y.	In	such	a	lambda	expression,	we	refer

to	x	and	y	as	the	formal	parameters	and	x	*	x	+	y	*	y	as

the	body	of	the	expression.	We	invoke	a	computation	by

binding	the	formal	parameters	to	arguments	and	then

evaluating	the	body.	For	example,

λ	x,	y:	int.	(x	*	x	+	y	*	y)(w,	z)

is	identical	in	meaning	to

w	*	w	+	z	*	z

In	more	familiar	notation,	we	might	denote	the	previous

lambda	expression	by

			int	squares	(int	x,	y)	{
							return	x	*	x	+	y	*	y;
			}

and	the	binding	of	actual	to	formal	parameters	and

evaluation	of	the	body	by	the	procedure	call

			u	=	squares	(w,	z);

Programmers	often	use	abstraction	by	parameterization

without	even	noticing	that	they	are	doing	so.	For

example,	suppose	we	need	a	procedure	that	sorts	an	array

of	integers	a.	At	some	time	in	the	future,	we	shall
probably	have	to	sort	some	other	array,	perhaps	even

somewhere	else	in	this	same	program.	It	is	highly

unlikely,	however,	that	every	array	we	need	to	sort	will	be

named	a;	we	therefore	invoke	abstraction	by
parameterization	to	generalize	the	procedure	and	thus

make	it	more	useful.

Abstraction	by	parameterization	is	an	important	means

of	achieving	generality	in	programs.	A	sort	routine	that

works	on	any	array	of	integers	is	much	more	generally

useful	than	one	that	works	only	on	a	particular	array	of

integers.	By	further	abstraction,	we	can	achieve	even

more	generality.	For	example,	we	might	define	a	sort
abstraction	that	works	on	arrays	of	reals	as	well	as	arrays

of	integers,	or	even	one	that	works	on	arraylike	structures

in	general.

Abstraction	by	parameterization	is	an	extremely	powerful

mechanism.	Not	only	does	it	allow	us	to	describe	a	large



(even	infinite)	number	of	computations	relatively	simply,

but	it	is	easily	and	efficiently	realizable	in	programming

languages.	Nonetheless,	it	is	not	a	sufficiently	powerful

mechanism	to	describe	conveniently	and	fully	the

abstraction	that	the	careful	use	of	procedures	can

provide.

1.2.2	Abstraction	by	Specification

Abstraction	by	specification	allows	us	to	abstract	from

the	computation	(or	computations)	described	by	the	body

of	a	procedure	to	the	end	that	procedure	was	designed	to

accomplish.	We	do	this	by	associating	with	each

procedure	a	specification	of	its	intended	effect	and	then

considering	the	meaning	of	a	procedure	call	to	be	based

on	this	specification	rather	than	on	the	procedure’s	body.

Figure	1.3	The	sqrt	procedure

			float	sqrt	(float	coef)	{
									//	REQUIRES:	coef	>	0
									//	EFFECTS:	Returns	an	approximation	to	the	square	root	of	coef
							float	ans	=	coef/2.0;
							int	i	=	1;
							while	(i	<	7)	{
								ans	=	ans	-	((ans	*	ans	-	coef)/(2.0*ans));
								i	=	i	+	1;
							}
							return	ans;
			}

We	are	making	use	of	abstraction	by	specification

whenever	we	associate	with	a	procedure	a	comment	that

is	sufficiently	informative	to	allow	others	to	use	that

procedure	without	looking	at	its	body.	A	good	way	to

write	such	comments	is	to	use	pairs	of	assertions.	The

requires	assertion	(or	precondition)	of	a	procedure

specifies	something	that	is	assumed	to	be	true	on	entry	to

the	procedure.	In	practice,	what	is	most	often	asserted	is

a	set	of	conditions	sufficient	to	ensure	the	proper

operation	of	the	procedure.	(This	is	often	simply	the

vacuous	assertion	“true.”)	The	effects	assertion	(or

postcondition)	specifies	something	that	is	supposed	to	be

true	at	the	completion	of	any	invocation	of	the	procedure

for	which	the	precondition	was	satisfied.

Consider,	for	example,	the	sqrt	procedure	in	Figure	1.3.
Because	a	specification	is	provided,	we	can	ignore	the

body	of	the	procedure	and	take	the	meaning	of	the



procedure	call	y	=	sqrt(x)	to	be	“If	x	is	greater	than
zero	when	the	procedure	is	invoked,	then	after	the

execution	of	the	procedure,	y	is	an	approximation	to	the
square	root	of	x.”	Notice	that	the	requires	and	effects
assertions	permit	us	to	say	nothing	about	the	value	of	y	if
x	is	not	greater	than	zero.	This	is	important,	since	a	user
might	otherwise	quite	reasonably	assume	that	sqrt(0)
returned	a	meaningful	answer.

In	using	a	specification	to	reason	about	the	meaning	of	a

procedure	call,	we	follow	two	distinct	rules:

1.	After	the	execution	of	the	procedure,	we	can	assume

that	the	postcondition	holds	provided	the

precondition	held	when	the	call	was	made.

2.	We	can	assume	only	those	properties	that	can	be

inferred	from	the	postcondition.

The	two	rules	mirror	the	two	benefits	of	abstraction	by

specification.	The	first	asserts	that	users	of	the	procedure

need	not	bother	looking	at	the	body	of	the	procedure	in

order	to	use	it.	They	are	thus	spared	the	effort	of	first

understanding	the	details	of	the	computations	described

by	the	body	and	then	abstracting	from	these	details	to

discover	that	the	procedure	really	does	compute	an

approximation	to	the	square	root	of	its	argument.	For

complicated	procedures,	or	even	simple	ones	using

unfamiliar	algorithms,	this	is	a	nontrivial	benefit.

The	second	rule	makes	it	clear	that	we	are	indeed

abstracting	from	the	procedure	body,	that	is,	omitting

some	supposedly	irrelevant	information.	This	insistence

on	forgetting	information	is	what	distinguishes

abstraction	from	decomposition.	By	examining	the	body

of	sqrt,	users	of	the	procedure	could	gain	a	considerable
amount	of	information	that	cannot	be	gleaned	from	the

postcondition	and	therefore	should	not	be	relied	on—for

example,	that	sqrt(4)	will	return	+2.	In	the
specification,	however,	we	are	saying	that	this

information	about	the	returned	result	is	to	be	ignored.

We	are	thus	saying	that	the	procedure	sqrt	is	an
abstraction	representing	the	set	of	all	computations	that

return	“an	approximation	to	the	square	root	of	x.”



In	this	book,	abstraction	by	specification	will	be	the

major	method	used	in	program	construction.	Abstraction

by	parameterization	will	be	taken	almost	for	granted;

abstractions	will	have	parameters	as	a	matter	of	course.

1.2.3	Kinds	of	Abstractions

Abstraction	by	parameterization	and	by	specification	are

powerful	methods	for	program	construction.	They	enable

us	to	define	three	different	kinds	of	abstractions:

procedural	abstraction,	data	abstraction,	and	iteration

abstraction.	In	general,	each	procedural,	data,	and

iteration	abstraction	will	incorporate	both	methods

within	it.

For	example,	sqrt	is	like	an	operation:	it	abstracts	a
single	action	or	task.	We	shall	refer	to	abstractions	that

are	operationlike	as	procedural	abstractions.	Note	that

sqrt	incorporates	both	abstraction	by	parameterization
and	abstraction	by	specification.

Procedural	abstraction	is	a	powerful	tool.	It	allows	us	to

extend	the	virtual	machine	defined	by	a	programming

language	by	adding	a	new	operation.	This	kind	of

extension	is	most	useful	when	we	are	dealing	with

problems	that	are	conveniently	decomposable	into

independent	functional	units.	However,	it	is	often	more

fruitful	to	think	of	adding	new	kinds	of	data	objects	to	the

virtual	machine.

The	behavior	of	the	data	objects	is	expressed	most

naturally	in	terms	of	a	set	of	operations	that	are

meaningful	for	those	objects.	This	set	includes	operations

to	create	objects,	to	obtain	information	from	them,	and

possibly	to	modify	them.	For	example,	push	and	pop	are
among	the	meaningful	operations	for	stacks,	integers

need	the	usual	arithmetic	operations,	and	a	bank	account

object	in	a	banking	system	would	have	operations	to

deposit	and	withdraw	money.	Thus	a	data	abstraction

(or	data	type)	consists	of	a	set	of	objects	and	a	set	of

operations	characterizing	the	behavior	of	the	objects.

As	an	example,	consider	MultiSets.	MultiSets	are
like	ordinary	sets	except	that	elements	can	occur	more

than	once	in	a	MultiSet.	MultiSet	operations	might



include	empty,	insert,	delete,	numberOf,	and	size.
These	operations	create	an	empty	MultiSet,	add	and
delete	elements	from	a	MultiSet,	tell	how	many	times	a
particular	element	occurs	in	a	MultiSet,	and	tell	how
many	elements	are	in	a	MultiSet,	respectively.	The
operations	might	be	implemented	within	the	runtime

environment	of	the	programming	language	by	calls	to

various	procedures.	Programmers	using	MultiSets,
however,	need	not	worry	about	how	these	procedures	are

implemented.	To	them	empty,	insert,	delete,
numberOf,	and	size	are	abstractions	defined	by	such
statements	as

The	size	of	the	MultiSet	insert(s,	e)	is	equal
to	size(s)	+	1.

For	all	e,	the	numberOf	times	e	occurs	in	the
MultiSet	empty(	)	is	0.

The	key	thing	to	notice	is	that	each	of	these	statements

deals	with	more	than	one	operation.	We	do	not	present

independent	definitions	of	each	operation,	but	rather

define	them	by	showing	how	they	relate	to	one	another.

The	emphasis	on	the	relationships	among	operations	is

what	makes	a	data	abstraction	something	more	than	just

a	set	of	procedures.	The	importance	of	this	distinction	is

discussed	throughout	this	book.

In	addition	to	procedural	and	data	abstraction,	we	shall

also	deal	with	iteration	abstraction.	Iteration	abstraction

is	used	to	avoid	having	to	say	more	than	is	relevant	about

the	flow	of	control	in	a	loop.	A	typical	iteration

abstraction	might	allow	us	to	iterate	over	all	the	elements

of	a	MultiSet	without	constraining	the	order	in	which
the	elements	are	to	be	processed.

Sidebar	1.2	Kinds	of	Abstractions

Procedural	abstraction	allows	us	to	introduce	new	operations.

Data	abstraction	allows	us	to	introduce	new	types	of	data	objects.

Iteration	abstraction	allows	us	to	iterate	over	items	in	a	collection	without	revealing	details	of
how	the	items	are	obtained.

Type	hierarchy	allows	us	to	abstract	from	individual	data	types	to	families	of	related	types.

Finally,	we	shall	sometimes	abstract	groups	of	data

•	
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abstractions	into	type	families.	All	members	of	the	family

have	operations	in	common;	these	common	operations

are	defined	in	the	supertype,	the	type	that	is	the	ancestor

of	all	the	others,	which	are	its	subtypes.	For	example,

there	might	be	a	family	of	types	that	provide	the	ability	to

read	from	input	streams.	The	supertype	would	provide

basic	operations	to	open	a	stream,	to	read	a	character	or
a	string,	and	to	close	a	stream.	The	subtypes	will	then
provide	additional	operations,	for	example,	allowing	data

to	be	streamed	from	a	file.	Type	families	abstract	from

the	details	that	distinguish	members	of	a	family	from	one

another,	to	their	commonalities.	They	allow

programmers	to	ignore	the	differences	most	of	the	time.

Sidebar	1.2	summarizes	the	kinds	of	abstractions.

1.3	THE	REMAINDER	OF	THE	BOOK

This	book	is	concerned	with	how	to	do	program

decomposition	based	on	abstraction.	Our	emphasis	will

be	on	data	abstraction.	We	believe	that	while	procedural

and	iteration	abstraction	have	valuable	roles	to	play,	it	is

data	abstraction	that	most	often	provides	the	primary

organizational	tool	in	the	programming	process.	Data

abstraction	is	the	basis	of	object-oriented	programming

and	design.

However,	before	we	can	decompose	intelligently,	we	need

a	thorough	understanding	of	the	kinds	of	abstractions	we

are	aiming	for.	The	next	several	chapters	are	concerned

with	this	topic.	Since	we	will	be	using	Java	as	our

implementation	mechanism,	we	begin	by	providing	a

brief	introduction	to	Java	and	the	way	it	supports	object-

oriented	programming.	Then	we	discuss	the	various

kinds	of	abstractions—what	they	are,	how	to	specify	their

behavior,	and	how	to	implement	them	in	Java.

Our	discussion	shall	emphasize	how	to	get	things	right:

how	to	develop	a	good	abstraction,	how	to	specify	it

clearly,	and	how	to	implement	it	correctly.	Our	programs

ultimately	will	consist	of	many	modules,	each

corresponding	to	the	implementation	of	an	abstraction.

Unless	each	of	these	modules	works	individually	as



required,	the	program	as	a	whole	will	not	function

properly.	Therefore,	understanding	how	to	program	at

the	module	level—called	programming	in	the	small—is

essential	to	achieving	our	ultimate	goal	of	developing

complete	programs—called	programming	in	the	large.

The	latter	portion	of	the	book	focuses	on	programming	in

the	large	and	in	particular	on	the	use	of	abstractions	in

program	construction.	We	discuss	the	phases	of	program

construction,	how	to	do	program	design,	and	how	to

carry	on	into	implementation.	The	book	concludes	with	a

discussion	of	a	number	of	techniques,	called	design

patterns,	for	organizing	the	structure	of	a	program	to

improve	its	flexibility	or	performance.

EXERCISES

1.1	Describe	an	abstraction	hierarchy	with	which	you	are

familiar.

1.2	Select	a	procedure	that	you	have	written	or	used	and

discuss	how	it	supports	abstraction	by	specification

and	by	parameterization.



2	Understanding	Objects	in	Java

Java	is	an	object-oriented	language.	This	means	that

most	of	the	data	manipulated	by	programs	are	contained

in	objects.	Objects	contain	both	state	and	operations;	the

operations	are	called	methods.	Programs	interact	with

objects	by	invoking	their	methods.	The	methods	provide

access	to	the	state,	allowing	using	code	to	observe	the

current	state	of	an	object	or	to	modify	it.	Sidebar	2.1

provides	information	about	the	origins	of	Java.

This	chapter	provides	some	basic	information	about	Java

and	its	support	for	object-oriented	programming	and

design.	We	shall	concentrate	primarily	on	the	language

semantics,	that	is,	on	the	meaning	of	constructs	in	the

language.	For	a	complete,	detailed	description	of	the

language,	you	should	consult	a	Java	text	or	reference

manual.	A	Java	reference	manual	is	available	online.

2.1	PROGRAM	STRUCTURE

Java	programs	are	made	up	of	classes	and	interfaces.

Classes	are	used	in	two	different	ways:	to	define

collections	of	procedures	(this	use	is	discussed	in	Chapter

3)	and	to	define	new	data	types,	such	as	MultiSet	(this
use	is	discussed	in	Chapter	5).	Interfaces	are	also	used	to

define	new	data	types.

Sidebar	2.1	Origins	of	Java

Java	is	a	successor	to	a	number	of	languages,	including	Lisp,	Simula67,	CLU,	and	SmallTalk.

Java	is	superficially	similar	to	C	and	C++	because	its	syntax	is	borrowed	from	them.	However,
at	a	deeper	level	it	is	very	different	from	these	languages.

The	majority	of	the	content	of	both	classes	and	interfaces

consists	of	definitions	of	methods.	A	class	that	defines	a

group	of	procedures	provides	a	method	for	each

procedure;	for	example,	a	class	providing	procedures	that

manipulate	integer	arrays	might	contain	a	method	to	sort

an	array	and	another	method	to	search	an	array	for	a

match	with	a	particular	integer.	A	class	or	interface	that

•	
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defines	a	data	type	provides	methods	for	the	operations

associated	with	the	objects	of	that	type.	For	example,	in

the	case	of	a	MultiSet,	there	might	be	an	insert
method	to	add	an	integer	in	the	MultiSet	and	a
numberOf	method	to	determine	how	many	times	a	given
integer	appears	in	the	MultiSet.

An	example	of	a	class	that	defines	a	group	of	procedures

is	given	in	Figure	2.1.	(Comments	begin	with	the	//
symbol	and	continue	to	the	end	of	the	line.)	Such

methods	are	named	by	indicating	their	class	and	then

their	method	name.	Here	are	examples	of	calls	of	the

methods	in	class	Num:

			int	x	=	Num.gcd(15,	6);
			if	(Num.isPrime(y))	…

A	method	takes	zero	or	more	arguments	and	returns	a

single	result.	Its	header	indicates	this	information.	The

arguments	are	often	referred	to	as	the	formal	parameters

or	formals	of	the	call.	For	example,	gcd	has	two	formals,
x	and	y,	both	of	which	are	integers;	it	returns	an	integer
result.	A	method	may	also	terminate	by	throwing	an

exception.	Exceptions	will	be	discussed	in	detail	in

Chapter	4.

Because	Java	requires	that	every	method	have	a	result,	a

special	form	is	used	when	there	is	no	result.	Such	a

method	indicates	that	its	return	type	is	void.	For
example,	suppose	the	Arrays	class	provides	routines
that	are	useful	in	manipulating	arrays,	among	them	a	way

of	sorting	arrays:

Figure	2.1	The	Num	class

			public	class	Num	{
									//	class	providing	useful	numeric	routines
		
							public	static	int	gcd	(int	n,	int	d)	{
									//	REQUIRES:	n	and	d	to	be	greater	than	zero
									//	the	gcd	is	computed	by	repeated	subtraction
									while	(n	!=	d)
												if	(n	>	d)	n	=	n	-	d;	else	d	=	d	-	n;
									return	n;
							}
			
		
							public	static	boolean	isPrime(int	p)	{
									//	implementation	goes	here
							}
			}



			public	static	void	sort	(int[	]	a)

(The	form	int[	]	indicates	that	the	argument	is	an
array	of	integers	of	unspecified	length.)	This	method

doesn’t	return	a	result;	instead,	it	sorts	its	argument

array	in	place.	It	can	be	called	as	follows:

			Arrays.sort(a);	//	a	call;	assume	a	is	an	array	of	ints

2.2	PACKAGES

Classes	and	interfaces	are	grouped	into	packages.

Packages	serve	two	purposes.	First,	they	are	an

encapsulation	mechanism;	they	provide	a	way	to	share

information	within	the	package	while	preventing	its	use

on	the	outside.

Each	class	and	interface	has	a	declared	visibility.	Only

classes	and	interfaces	declared	to	be	public	can	be	used

by	code	in	other	packages—for	example,	the	Num	class	in
Figure	2.1	can	be	used	outside	its	package.	The	remaining

definitions	can	be	used	only	within	the	package.

In	addition,	the	declarations	within	a	class	have	a

declared	visibility.	Only	entities	declared	to	be	public,

such	as	the	gcd	and	isPrime	methods	in	the	Num	class,
are	accessible	to	code	in	other	packages.	Other	kinds	of

declared	visibility	limit	the	code	that	can	access	the	entity

—for	example,	to	just	its	class	or	just	its	package;	the

details	will	be	discussed	in	later	chapters.

The	other	use	of	packages	is	for	naming.	Each	package

has	a	hierarchical	name	that	distinguishes	it	from	all

other	packages.	Classes	and	interfaces	within	the	package

have	names	that	are	relative	to	the	package	name.	This

means	that	there	are	no	name	conflicts	between	classes

and	interfaces	defined	in	different	packages.

Code	in	a	package	can	refer	to	other	classes	and

interfaces	of	its	own	package	by	using	their	class	or

interface	name.	For	example,	if	the	mathRoutines
package	contains	the	class	Num,	code	within	that	package
can	refer	to	that	class	by	using	the	name	Num.	Definitions
in	other	packages	can	be	referred	to	using	their	fully

qualified	names—that	is,	their	name	appended	to	their



package’s	hierarchical	name.	For	example,	the	fully

qualified	name	for	the	Num	class	might	be
mathRoutines.Num.	It	is	also	possible	to	use	short
names	to	refer	to	definitions	in	other	packages	by	using

the	import	statement,	to	either	import	all	public

definitions	from	a	package,	or	to	import	specific	public

definitions	from	a	package.	In	either	case,	the	imported

definition	can	be	referred	to	using	its	class	or	interface

name.

One	problem	with	short	names	is	the	possibility	of	name

conflicts.	For	example,	suppose	two	packages	both	define

classes,	named	Num.	In	this	case,	if	code	uses	both
classes,	it	cannot	use	a	short	name	for	each.	Either	it

could	use	a	fully	qualified	name	for	each	or	it	could

import	one	of	the	classes	and	use	a	long	name	for	the

other.

Sometimes	there	is	a	conflict	between	encapsulation	and

naming.	It	is	convenient	to	group	many	definitions	in	the

same	package	because	then	code	outside	the	package	has

access	to	all	of	them	by	importing	the	whole	package.	But

this	kind	of	grouping	may	be	wrong	from	the	point	of

encapsulation	because	code	within	a	package	can

sometimes	access	internal	information	of	other

definitions	within	that	package.	In	general,	such	a

conflict	should	be	resolved	in	favor	of	encapsulation.

2.3	OBJECTS	AND	VARIABLES

All	data	are	accessed	by	means	of	variables.	Local

variables,	such	as	those	declared	within	methods,	reside

on	the	runtime	stack;	space	is	allocated	for	them	when

the	method	is	called	and	deallocated	when	the	method

returns.

Figure	2.2	Objects	and	variables



Every	variable	has	a	declaration	that	indicates	its	type.

Primitive	types,	such	as	int	(integers),	boolean,	and
char	(characters),	define	sets	of	values,	such	as	3,
false,	or	c.	All	other	types	define	sets	of	objects.	Some
object	types	will	be	provided	for	you,	in	packages	defined

by	others.	One	such	package	is	java.lang,	which
provides	a	number	of	useful	types	such	as	String;	the
types	defined	by	this	package	can	be	used	without

importing	the	package.	Others	you	will	define	yourselves.

Chapter	5	describes	how	to	define	new	types.

Variables	of	primitive	types	contain	values.	For	example,

the	following:

			int	i	=	6;

stores	the	value	6	in	variable	i.	Variables	of	all	other
types,	including	strings	and	arrays,	contain	references	to

objects	that	reside	on	the	heap.	Objects	are	created	on	the

heap	by	use	of	the	new	operator.	Thus,

			int[]a=new	int[3];

causes	space	for	a	new	array	of	integers	object,	with	room

for	three	integers,	to	be	allocated	on	the	heap	and	a

reference	to	the	new	object	to	be	stored	in	a.

Local	variables	can	be	initialized	when	they	are	declared.

They	must	be	initialized	before	their	first	use.

Furthermore,	if	the	compiler	cannot	prove	that	a	variable

is	initialized	before	first	use,	it	will	cause	compilation	to

fail.

Objects	and	variables	are	illustrated	in	Figure	2.2a,	which

shows	the	stack	and	heap	after	processing	the	following



declarations:

			int	i	=	6;
			int	j;	//	uninitialized
			int	[	]	a	=	{1,3,5,7,9};	//	creates	a	5-element	array
			int	[	]	b	=	new	int[3];
			String	s	=	"abcdef";	//	creates	a	new	string
			String	t	=	null;

Here	all	variables	except	j	have	been	given	an	initial
value.	Variable	t	has	been	initialized	to	null;	this	special
value	provides	a	way	of	initializing	a	variable	that	will

eventually	refer	to	an	object.

This	example	shows	a	number	of	object	creations.	Strings

are	created	by	indicating	their	content;	thus,	s	refers	to	a
string	object	containing	“abcdef”.	Arrays	can	be
created	similarly,	by	indicating	their	elements;	thus,	a
refers	to	a	five-element	array.	The	assignment	to	b	shows
the	usual	way	of	creating	a	new	object,	by	calling	the

built-in	new	operator.	This	operator	creates	an	object	of
the	indicated	class	on	the	heap	and	then	initializes	it	by

running	a	special	kind	of	method,	called	a	constructor,

for	that	class.	For	example,	the	array	constructor

initializes	each	element	of	a	new	array	of	integers	to	0.
Thus,	b	refers	to	a	three-element	array	of	integers,	where
each	element	of	the	array	is	0.

Every	object	has	an	identity	that	is	distinct	from	that	of

every	other	object.	That	is,	when	an	object	is	created	by	a

call	to	new,	or	through	use	of	the	special	forms	such	as
“abcdef”	for	strings	and	{1,3,5,7,9}	for	arrays,
what	is	obtained	is	an	object	that	is	distinct	from	any

other	object	in	existence.

An	assignment

			v=e;

copies	the	value	obtained	by	evaluating	the	expression	e
into	the	variable	v.	If	the	expression	evaluates	to	a
reference	to	an	object,	the	reference	is	copied.	This

situation	is	illustrated	in	Figure	2.2	b,	which	shows	the

results	of	the	following	assignments:

			j	=	i;
			b	=	a;



			t	=	s;

Note	that	in	the	case	of	the	string	and	array	variables,	we

now	have	two	variables	pointing	to	the	same	object.	Thus,

assignment	involving	references	causes	variables	to	share

objects.

The	==	operator	can	be	used	to	determine	whether	two
variables	contain	the	same	value.	This	operator	is	used

primarily	for	primitive	types—for	example,	to	compare

two	ints,	as	in	j==i,	or	to	determine	whether	a	variable
that	might	refer	to	an	object	instead	contains	null,	such
as	t	==	null.	It	can	also	be	used	to	determine	whether
two	variables	refer	to	the	same	object;	in	the	situation	in

Figure	2.2a,	for	example,	a==b	will	not	be	true,	whereas
in	the	situation	in	Figure	2.2	b,	a==b	is	true.

Objects	in	the	heap	continue	to	exist	as	long	as	they	are

reachable	from	some	variable	on	the	stack,	either	directly

or	via	a	path	through	other	objects.	When	an	object	is	no

longer	reachable,	its	storage	becomes	available	for

reclamation	by	the	garbage	collector.	For	example,	in	the

state	shown	in	Figure	2.2	b,	the	array	formerly	referred	to

by	b	is	no	longer	reachable	and	is	therefore	available	for
reclamation	by	the	garbage	collector.

2.3.1	Mutability

All	objects	are	either	immutable	or	mutable.	The	state	of

an	immutable	object	never	changes,	while	the	state	of	a

mutable	object	can	change.

Strings	are	immutable:	there	are	no	String	methods
that	cause	the	state	of	a	String	object	to	change.	For
example,	strings	have	a	concatenation	operator	+,	but	it
does	not	modify	either	of	its	arguments;	instead,	it

returns	a	new	string	whose	state	is	the	concatenation	of

the	states	of	its	arguments.	If	we	did	the	following

assignment	to	t	with	the	state	shown	in	Figure	2.2	b:

			t	=	t	+	“g”;

the	result	as	shown	in	Figure	2.2	c	is	that	t	now	refers	to
a	new	String	object	whose	state	is	“abcdefg”	and	the
object	referred	to	by	s	is	unaffected.



On	the	other	hand,	arrays	are	mutable.	The	assignment

			a[i]	=	e;

causes	the	state	of	array	a	to	change	by	replacing	its	i
element	with	the	value	obtained	by	evaluating	expression

e.	(The	modification	occurs	only	if	i	is	in	bounds	for	a;
otherwise,	an	exception	is	thrown.)

If	a	mutable	object	is	shared	by	two	or	more	variables,

modifications	made	through	one	of	the	variables	will	be

visible	when	the	object	is	used	through	the	other	variable.

For	example,	suppose	the	shared	array	in	Figure	2.2b	is

modified	by

Sidebar	2.2	Mutability	and	Sharing

An	object	is	mutable	if	its	state	can	change.	For	example,	arrays	are	mutable.

An	object	is	immutable	if	its	state	never	changes.	For	example,	strings	are	immutable.

An	object	is	shared	by	two	variables	if	it	can	be	accessed	through	either	of	them.

If	a	mutable	object	is	shared	by	two	variables,	modifications	made	through	one	of	the	variables
will	be	visible	when	the	object	is	used	through	the	other.

			b[0]	=	i;

This	causes	the	zero 	element	of	the	array	to	contain	6

(instead	of	the	1	it	used	to	contain),	as	shown	in	Figure

2.2	c.	Furthermore,	the	change	is	visible	when	the	array	is

used	later,	via	either	variable	b	or	variable	a;	for	example,
in

			if	(a[0]	==	i)	…

the	expression	will	evaluate	to	true,	and	therefore,	the

then	branch	will	be	executed.

Sidebar	2.2	summarizes	mutability	and	sharing.

2.3.2	Method	Call	Semantics

An	attempt	to	call	a	method,	e.m(…),	first	evaluates	e	to
obtain	the	class	or	object	whose	method	is	being	called.

Then	the	expressions	for	the	arguments	are	evaluated	to

obtain	actual	parameter	values;	this	evaluation	happens

left	to	right.	Next	an	activation	record	is	created	for	the

call	and	pushed	onto	the	stack;	the	activation	record

contains	room	for	the	formal	parameters	of	the	method
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(as	discussed	earlier,	the	formals	are	the	variables

declared	in	the	method	header)	and	any	other	local

storage	the	method	requires.	Then	the	actual	parameters

are	assigned	to	the	formals;	this	kind	of	parameter

passing	is	called	call	by	value.	Finally,	control	is

dispatched	to	the	called	method	e.m;	Section	2.5
discusses	how	this	works.

Just	as	was	the	case	for	assignment	to	variables,	if	an

actual	parameter	value	is	a	reference	to	an	object,	that

reference	is	assigned	to	the	formal.	This	means	that	the

called	procedure	shares	objects	with	its	caller.

Furthermore,	if	these	objects	are	mutable,	and	the	called

procedure	changes	their	state,	these	changes	are	visible

to	the	caller	when	it	returns.

Figure	2.3	Method	call

For	example,	suppose	the	Arrays	class	mentioned
earlier	contained	a	method,	multiples,	that	multiplies
each	element	of	its	array	argument	a	by	its	multiplier
argument	m:

			public	static	void	multiples	(int	[	]	a,	int	m)	{
							if	(a	==	null)	return;
							for	(int	i	=	0;	i	<	a.length;	i++)	a[i]	=	a[i]*m;
			}

This	method	works	on	any	size	array;	it	uses	a.length
to	determine	the	length	of	the	array.	Figure	2.3	shows

what	happens	when	the	method	is	called	by	the	following

code:

			int	[	]	b	=	{1,3,5,7,9};
Arrays.multiples(b,	2);

Figure	2.3a	shows	the	situation	just	before	the	call.

Figure	2.3b	shows	the	situation	just	after	the	call	has

occurred;	the	stack	now	contains	the	activation	record	for



the	call,	and	the	formals	have	been	initialized	to	contain

the	actuals.	Thus,	the	formal	a	of	Arrays.multiples
refers	to	the	same	array	as	b	does.	Finally,	Figure	2.3c
shows	the	situation	just	after	Arrays.multiples
returns.	At	this	point,	the	activation	record	created	for

the	call	has	been	discarded.	However,	the	argument	array

has	been	modified,	and	this	modification	is	visible	to	the

caller	through	variable	b.

In	a	call	e.m	in	which	e	is	supposed	to	evaluate	to	an
object,	it	is	possible	that	e	might	instead	evaluate	to
null	and	thus	not	refer	to	any	object.	If	this	happens,	the
call	is	not	made,	but	instead	the

NullPointerException	is	raised	(exceptions	are
discussed	in	Chapter	4).

2.4	TYPE	CHECKING

Java	is	a	strongly	typed	language,	which	means	that	the

Java	compiler	checks	the	code	to	ensure	that	every

assignment	and	every	call	is	type	correct.	If	a	type	error	is

discovered,	compilation	fails	with	an	error	message.

Type	checking	depends	on	the	fact	that	every	variable

declaration	gives	the	type	of	the	variable,	and	the	header

of	every	method	and	constructor	defines	its	signature:

the	types	of	its	arguments	and	results	(and	also	the	types

of	any	exceptions	it	throws).	This	information	allows	the

compiler	to	deduce	an	apparent	type	for	any	expression.

And	this	deduction	then	allows	it	to	determine	the

legality	of	an	assignment.

For	example,	consider

			int	y	=	7;
			int	z	=	3;
			int	x	=	Num.gcd	(z,	y);

When	the	compiler	processes	the	call	to	Num.gcd,	it
knows	that	Num.gcd	requires	two	integer	arguments,
and	it	also	knows	that	expressions	z	and	y	are	both	of
type	int.	Therefore,	it	knows	the	call	of	gcd	is	legal.
Furthermore,	it	knows	that	gcd	returns	an	int,	and
therefore	it	knows	that	the	assignment	to	x	is	legal.

Java	has	an	important	property:	legal	Java	programs



(that	is,	those	accepted	by	the	compiler)	are	guaranteed

to	be	type	safe.	This	means	that	there	cannot	be	any	type

errors	when	the	program	runs:	it	is	not	possible	for	the

program	to	manipulate	data	belonging	to	one	type	as	if	it

belonged	to	a	different	type.	Type	safety	is	achieved	by

three	mechanisms:	compile-time	type	checking,

automatic	storage	management,	and	array	bounds

checking.	Type	safety	is	summarized	in	Sidebar	2.3.

2.4.1	Type	Hierarchy

Java	types	are	organized	into	a	hierarchy	in	which	a	type

can	have	a	number	of	supertypes;	we	say	the	type	is	a

subtype	of	each	of	its	supertypes.	(Other	texts	may	use

the	term	superclass	[subclass]	to	mean	supertype

[subtype];	in	addition,	some	texts	say	a	type	extends

another	type	to	mean	it	is	a	subtype	of	the	other	type.)

Type	hierarchy	provides	a	way	of	abstracting	from	the

differences	among	subtypes	to	their	common	behavior,

which	is	captured	by	their	supertype.

Sidebar	2.3	Type	Safety

One	important	difference	between	Java	and	C	and	C++	is	that	Java	provides	type	safety.	This
is	accomplished	by	three	mechanisms:

•	Java	is	a	strongly	typed	language.	This	means	that	type	errors	such	as	using	a	pointer	as
an	integer	are	detected	by	the	compiler.

•	Java	provides	automatic	storage	management	for	all	objects.	In	C	and	C++,	programs
manage	storage	for	objects	in	the	heap	explicitly.	Explicit	management	is	a	major	source	of
errors	such	as	dangling	references,	in	which	storage	is	deallocated	while	a	program	still
refers	to	it.

•	Java	checks	all	array	accesses	to	ensure	they	are	within	bounds.

These	techniques	ensure	that	type	mismatches	cannot	occur	at	runtime.	In	this	way	an
important	source	of	errors	is	eliminated	from	your	code.

The	subtype	relation	is	transitive:	if	R	is	a	subtype	of	S,
and	S	is	a	sub-type	of	T,	then	R	is	a	subtype	of	T.	The
relation	is	also	reflexive:	type	S	is	a	subtype	of	itself.

If	S	is	a	subtype	of	T,	its	objects	are	intended	to	be	usable
in	any	context	that	expects	to	use	objects	belonging	to	T.
For	S	objects	to	be	usable,	they	must	have	all	the	methods
that	T	objects	have;	this	requirement	is	enforced	by	the
Java	compiler.	In	addition,	all	the	method	calls	must

behave	the	same	way	on	S	and	T	objects;	this
requirement	is	not	enforced	by	Java,	nor	could	it	be,

since	it	requires	processing	beyond	the	abilities	of	a

•	

•	



compiler	(it	requires	proving	that	the	two	programs

behave	in	the	same	way).	We	will	discuss	this

requirement	in	greater	detail	in	Chapter	7	when	we

discuss	how	to	define	sub-	and	supertypes.	For	now,	you

will	only	make	use	of	predefined	type	hierarchies,	and

you	can	assume	that	subtypes	are	defined	properly.

The	special	type	Object	is	at	the	top	of	the	type
hierarchy	in	Java;	all	object	types,	including	String	and
array	types,	are	subtypes	of	this	type.	This	means	all

objects	have	certain	methods—namely,	the	ones	specified

for	Object.	For	example,	Object	methods	include
equals	and	toString,	with	the	following	headers:

						boolean	equals	(Object	o)
						String	toString	(	)

Object	and	its	methods	will	be	discussed	further	in

Chapter	5.

Since	objects	of	a	subtype	behave	like	those	of	a

supertype,	it	makes	sense	to	allow	them	to	be	referred	to

by	a	variable	whose	declared	type	is	a	supertype.	This

usage	is	permitted	by	Java:	an	assignment	v	=	e	is	legal
if	the	type	of	e	is	a	subtype	of	the	type	of	v.	For	example,
the	following	is	legal:

						Object	o1	=	a;
						Object	o2	=	s;

Here	a	is	an	array,	and	s	is	a	string,	as	shown	in	Figure

2.2.

An	implication	of	the	assignment	rule	is	that	the	actual

type	of	an	object	obtained	by	evaluating	an	expression	is

a	subtype	of	the	apparent	type	of	the	expression	deduced

by	the	compiler	using	declarations.	For	example,	the

apparent	type	of	o2	is	Object,	but	its	actual	type	is
String.

Type	checking	is	always	done	using	the	apparent	type.

This	means,	for	example,	that	any	method	calls	made

using	the	object	will	be	determined	to	be	legal	based	on

the	apparent	type.	Therefore	only	Object	methods	like
equals	can	be	called	on	o2;	string	methods	like	length



(which	returns	a	count	of	the	number	of	characters	in	the

string)	cannot	be	called:

						if	(o2.equals(“abc”))	//	legal
						if	(o2.length(	))	//	illegal

Furthermore,	the	following	is	illegal:

						s	=	o2;	//	illegal

because	the	apparent	type	of	o2	is	not	a	subtype	of
String.	Compilation	will	fail	when	the	program	contains
illegal	code	as	in	these	examples.

Sometimes	a	program	needs	to	determine	the	actual	type

of	an	object	at	runtime,	for	example,	so	that	a	method	not

provided	by	the	apparent	type	can	be	called.	This	can	be

done	by	casting.	For	example,

						if	((String)	o2.length(	))	//	legal
						s	=	(String)	o2;//	legal

The	use	of	a	cast	causes	a	check	to	occur	at	runtime;	if
the	check	succeeds,	the	indicated	computation	is	allowed,

and	otherwise,	the	ClassCastException	will	be
raised.	In	the	example,	the	casts	check	whether	o2’s
actual	type	is	the	same	as	the	indicated	type	String;
these	checks	succeed,	and	therefore,	the	assignment	in

the	first	statement	or	the	method	call	in	the	second

statement	is	allowed.

Sidebar	2.4	Type	Hierarchy

Java	supports	type	hierarchy,	in	which	one	type	can	be	the	supertype	of	other	types,	which	are
its	subtypes.	A	subtype’s	objects	have	all	the	methods	defined	by	the	supertype.

All	object	types	are	subtypes	of	Object,	which	is	the	top	of	the	type	hierarchy.	Object	defines
a	number	of	methods,	including	equals	and	toString.	Every	object	is	guaranteed	to	have
these	methods.

The	apparent	type	of	a	variable	is	the	type	understood	by	the	compiler	from	information
available	in	declarations.	The	actual	type	of	an	object	is	its	real	type—the	type	it	receives	when
it	is	created.

Java	guarantees	that	the	apparent	type	of	any	expression	is	a	supertype	of	its	actual	type.

Sidebar	2.4	summarizes	this	discussion.

2.4.2	Conversions	and	Overloading

The	determination	of	type	correctness	is	actually	not	as

simple	as	described	previously,	for	two	reasons.	First,

Java	allows	certain	implicit	conversions	of	a	value	of	one

•	

•	

•	

•	



type	to	a	value	of	another	type.	Implicit	conversions

involve	only	the	primitive	types.	For	example,	Java	allows

chars	to	be	widened	to	numeric	types.	Thus,	the
assignment	to	n	in	the	following	is	legal:

						char	c	=	′a′;
						int	n	=	c;

In	general,	conversions	involve	computation—that	is,

they	cause	the	production	of	a	new	value	(of	the	variable’s

type)	that	is	then	assigned	to	the	variable.	After	the

compiler	determines	the	conversion	needed	to	make	the

assignment	legal,	it	generates	the	code	needed	to	produce

the	new	value.	You	can	learn	what	conversions	are	legal,

and	what	computations	they	involve,	by	consulting	a	Java

text.

In	addition,	Java	allows	overloading.	This	means	that

there	can	be	several	method	definitions	with	the	same

name.	Most	languages	allow	overloaded	definitions	of

operators;	for	example,	+	is	defined	for	both	integers	and

floats.	Java	allows	overloading	of	operators,	but	in

addition,	it	allows	programmers	to	overload	method

names	as	well.

For	example,	consider	a	class	C	with	the	following
methods:

			static	int	comp(int,	long)	//	defn.	1
			static	float	comp(long,	int)	//	defn.	2
			static	int	comp(long,	long)	//	defn.	3

This	class	provides	three	overloaded	definitions	of	comp.

When	there	are	overloaded	definitions,	several	of	them

might	work	for	a	particular	call.	For	example,	suppose

you	have	the	declarations

						int	x;
						long	y;
						float	z;

In	Java,	an	int	can	be	widened	to	a	long,	and	also	a
float	can	be	widened	to	a	long.	Therefore	a	call
C.comp(x,	y)	could	go	to	either	the	first	definition	of
comp	(since	here	the	types	match	exactly)	or	the	third
definition	of	comp	(by	widening	x	to	a	long).	The	second



definition	is	not	possible	since	it	isn’t	possible	to	widen	a

long	to	an	int.

The	rule	used	to	determine	which	method	to	call	when

there	are	several	choices,	as	in	this	example,	is	“most

specific.”	A	method	m1	is	more	specific	than	another
method	m2	if	any	legal	call	of	m1	would	also	be	a	legal	call
of	m2	if	more	conversions	were	done.	For	example,	the
first	definition	of	comp	would	be	selected	for	the	call
C.comp(x,	y)	since	it	is	more	specific	than	the	third
definition.

If	there	is	no	most	specific	method,	a	compile	time	error

occurs.	For	example,	all	three	definitions	are	possible

matches	for	the	call	C.comp(x,	x).	However,	none	of
these	is	most	specific,	and	therefore,	the	call	is	illegal.

The	programmer	can	resolve	the	ambiguity	in	a	case	like

this	by	making	the	conversion	explicit;	for	example,

C.comp((long)	x,	x)	selects	the	second	definition.

Overloading	decisions	also	take	into	account	assignments

from	sub-	to	supertypes.	For	example,	consider

			void	foo	(T	a,	int	x)	//	defn.	1
			void	foo	(S	b,	long	y)	//	defn.	2

Then	C.foo(e,	3),	where	S	is	a	subtype	of	T	and	e	is	a
variable	of	type	S,	is	not	legal	since	neither	definition	is
most	specific.

2.5	DISPATCHING

When	a	method	is	called	on	some	object,	it	is	essential

that	the	call	go	to	the	code	provided	by	that	object	for

that	method,	because	only	that	code	can	do	the	right

thing.	For	example,	consider

			String	t	=	“ab”;
			Object	o	=	t	+	“c”;	//	concatenation
			String	r	=	“abc”;
			boolean	b	=	o.equals(r);

Here	the	intention	is	to	find	out	whether	o’s	value	is	the
string	”abc”.	This	desire	will	be	satisfied	if	the	call	goes
to	the	string’s	code	for	equals,	since	this	will	compare
the	values	of	the	two	strings.	If	instead	the	call	goes	to



Object’s	code	for	equals,	we	will	only	learn	whether	o
and	r	are	the	very	same	object.

The	problem	is	that	the	compiler	doesn’t	necessarily

know	what	code	to	call	at	compile	time	because	it	only

knows	the	apparent	type	of	the	object	and	not	its	actual

type.	This	is	illustrated	in	the	example:	the	compiler	only

knows	that	o	is	an	Object.	If	the	apparent	type	were
used	to	determine	the	code	to	call,	the	wrong	result

would	happen;	for	example,	b	would	contain	false
because	o	and	r	are	distinct	objects.

Therefore,	we	need	a	way	to	dispatch	a	method	call	to	the

code	of	the	actual	object.	This	requires	a	runtime

mechanism	since	the	compiler	cannot	figure	out	what	to

do	at	compile	time.

Figure	2.4	illustrates	one	way	that	dispatching	works.

Each	object	contains	a	reference	to	a	dispatch	vector.	The

dispatch	vector	contains	an	entry	for	each	of	the	object’s

methods.	The	compiler	generates	code	to	access	the

location	in	the	vector	that	points	to	the	code	of	the

method	being	called	and	branch	to	that	code.	The	figure

shows	the	situation	for	object	o;	a	call	to	the	equals
method	would	branch	to	the	code	referred	to	by	the	first

location	in	the	table,	and	thus	the	call	will	go	to	the

implementation	provided	by	String.

Figure	2.4	Dispatching.

2.6	TYPES

This	section	describes	a	few	object	types	that	are

nonstandard	(i.e.,	they	don’t	appear	in	other	languages)

and	that	we	will	use	throughout	the	book.

2.6.1	Primitive	Object	Types

Primitive	types	like	int	and	char	are	not	subtypes	of



Object,	and	their	values,	such	as	3	and	c,	cannot	be
used	in	contexts	where	objects	are	required.	For	example,

such	values	cannot	be	stored	in	Vectors;	Vectors	are
discussed	in	Section	2.6.2.

Primitive	values	can	be	used	in	contexts	requiring	objects

by	wrapping	them	in	objects.	Each	primitive	type	has	an

associated	object	type	(e.g.,	Integer	for	int,
Character	for	char).	Such	a	type	provides	a
constructor	for	producing	one	of	its	objects	by	wrapping	a

value	of	the	associated	primitive	type,	and	a	method	to	do

the	reverse	transformation.	For	example,	for	Integer
we	have

						public	Integer(int	x)	//	the	constructor
						public	int	intValue(	)	//	the	method

These	types	also	provide	methods	to	produce	objects	of

their	associated	types	from	strings.	Thus,	will	return	the

int	described	by	string	s.	For	example,	if	s	is	the	string
”1024”,	n	will	contain	the	integer	1024.	If	s	cannot	be
interpreted	as	an	integer,	the	method	will	throw

NumberFormatException.

			int	n	=	Integer.parseInt(s);

The	primitive	object	types	have	a	number	of	other	useful

methods;	consult	a	Java	text	to	learn	about	them.	They

are	defined	in	the	package	java.lang.	This	package
defines	a	number	of	types	that	are	so	central	to	Java	that

the	package	can	be	used	without	needing	to	import	it.	For

example,	the	types	String	and	Object	are	defined	in
java.lang.

2.6.2	Vectors

Vectors	are	extensible	arrays;	they	are	empty	when	first

created	and	can	grow	and	shrink	on	the	high	end.	Vectors

are	defined	in	the	java.util	package.	Here	we	discuss
some	of	their	methods;	for	more	information,	consult	a

Java	text.

Like	an	array,	a	vector	contains	elements	numbered	from

zero	up	to	one	less	than	its	current	length.	The	length	of	a

vector	can	be	determined	by	calling	its	size	method.



Each	element	in	the	vector	has	the	apparent	type

Object.	This	means	that	vectors	can	be	heterogeneous:
different	elements	of	a	vector	can	be	objects	of	different

types.	However,	vectors	typically	are	used	in	a	more

limited	ways,	so	that	all	elements	of	a	vector	are	of	the

same	type	or	of	a	few	closely	related	types.

When	a	vector	is	created,	it	is	empty,	and	its	length	is

zero;	for	example,

			Vector	v	=	new	Vector(	);			//	creates	a	new,	empty	Vector
			if	(v.size(	)==	0)	//	true

A	vector	can	be	made	to	grow	by	using	the	add	method	to
add	an	element	to	its	high	end;	for	example,

			v.add(“abc”);

This	method	increases	the	size	of	the	vector	by	1	and

stores	its	argument	in	the	new	location.

Vector	elements	can	be	accessed	for	legal	indices.	The

get	method	fetches	the	indexed	element;	for	example,

			String	s	=	(String)	v.get(0);

Note	that	get	returns	an	Object,	and	the	using	code
must	then	cast	the	result	to	the	appropriate	type.	If	the

given	index	is	not	within	bounds,	get	throws	the
IndexOutOfBoundsException.

			String	t	=	(String)	v.get(1);	//	throws	IndexOutOfBoundsException

The	set	method	is	used	to	change	a	particular	element;
for	example,

			v.set(0,	“def”);	//	now	v	contains	the	single	element	“def”

Finally,	the	vector	can	be	caused	to	shrink	by	using	the

remove	method;	for	example,

			v.remove(0);

Because	all	elements	of	a	vector	must	belong	to	types	that

are	subtypes	of	Object,	vectors	cannot	contain	elements
of	primitive	types	such	as	int	and	char.	Such	values	can
be	stored	in	a	vector	by	using	the	associated	object	types.



For	example,

			v.add(3);	//	a	compile	time	error
			v.add(new	Integer(3));	//	legal

To	use	such	an	element	later	it	must	be	both	cast	and

converted	to	a	value;	for	example,

			int	x	=	((Integer)	v.get(2)).intValue(	);

2.7	STREAM	INPUT/OUTPUT

The	package	java.io	provides	a	number	of	types	of
input	and	output	streams.	These	facilities	are	briefly

described	here;	more	detail	can	be	found	in	a	Java	text.

Input/output	(I/O)	is	done	using	character	streams.

Input	is	done	using	objects	that	belong	to	type	Reader	or
one	of	its	subtypes.	For	example,	BufferedReader
objects	can	be	used	to	read	characters	from	a	stream.

(The	term	buffered	indicates	that	input	is	done	in	larger

chunks	than	individual	characters,	and	the	data	are	then

kept	in	a	buffer	until	they	are	used.)	The	content	of	a	file

can	be	read	by	using	subtype	FileReader;	for	example,

			FileReader	in	=	new	FileReader(filename);

where	the	string,	filename,	is	the	pathname	of	the	file.

Output	occurs	on	objects	of	type	Writer	or	a	subtype	of
this	type.	Subtype	PrintWriter	can	be	used	to	print
values	and	objects	to	an	output	device,	while	subtype

FileWriter	can	be	used	to	send	output	to	a	file.

Java	also	provides	some	predefined	objects	for	doing

standard	I/O;	these	objects	are	defined	in	class	System
of	package	java.lang:

			System.in						//	Standard	input	to	the	program.
			System.out					//	Standard	output	from	the	program.
			System.err					//	Error	output	from	the	program.

These	objects	are	not	character	stream	objects	(since	they

were	defined	in	Java	1.0,	before	character	streams,	which

were	introduced	in	Java	1.1,	had	been	invented).	In

particular,	System.in	is	an	InputStream,	while
System.out	and	System.err	are	PrintStreams.
However,	this	difference	need	not	concern	you	very	much



because	InputStreams	behave	like	Readers	(i.e.,	have
the	same	methods),	and	OutputStreams	are	similar	to
Writers.	Furthermore,	you	can	use	them	as	character
streams	by	wrapping	them;	for	example,

			PrintWriter	myOut	=	new	PrintWriter(System.out);
			BufferedReader	myIn	=	new	BufferedReader(System.in);

Most	methods	on	streams	do	error	checking	(e.g.,	to

check	for	end	of	file	when	data	is	being	input	from	a	file)

and	throw	IOException	if	an	error	is	detected.

2.8	JAVA	APPLICATIONS

There	are	two	kinds	of	Java	applications:	those	run	from

the	command	line	on	a	terminal,	and	those	run	by

interacting	with	a	user	interface.	We	will	discuss	the

latter	kind	of	application	in	Chapters	11	through	14.

Applications	that	run	from	the	command	line	provide	a

main	method.	This	method	takes	an	array	of	strings	as	an
argument:

			public	static	void	main(String[	])

where	the	argument	array	contains	the	command-line

arguments.

The	following	example	is	a	trivial	complete	program	that

prints	the	string	“Hello	world”	followed	by	a	newline
to	standard	output:

			public	class	HelloWorld	{
			
			
						public	static	void	main(String[	]	args)	{
									System.out.println("Hello	world");
						}
			}

Since	the	name	of	the	method	is	main,	the	program	can
be	run	from	the	command	line.

The	next	example	reads	an	integer	from	an	input	stream

and	prints	its	factorial	to	an	output	stream.	It	shows	how

to	read	and	write	integers	from	streams;	other	built-in

types	can	be	read/written	similarly.

			public	class	computeFactorial	{
			
			



						public	static	void	main	(String[	]	args)	{
									PrintWriter	out	=	new	PrintWriter(System.out);
									BufferedReader	in	=
															new	BufferedReader(new	InputStreamReader(System.in));
									PrintWriter	err	=	new	PrintWriter(System.err);
									out.println(“Enter	an	integer:	”);
									String	s	=	null;
									try	{
												s	=	in.readLine(	);
												int	n	=	Integer.parseInt(s);
												if	(n	>	0)	{
															out.print(n);
															out.print(“	!=	”);
															out.println(Num.fact(n));
												}	else	err.println(“input	not	positive”);
									}	catch	(Exception	e)	{	err.println(“bad	input”);	}
						}
			}

Note	that	the	code	does	not	check	directly	for	badly

formatted	input.	Instead,	it	relies	on	the	checking	done

within	the	call	to	the	Integer.parseInt	method;
recall	that	this	method	will	throw	the

NumberFormatException	if	there	is	a	formatting
problem.	If	this	exception,	or	IOException,	occurs,	it	is
handled	by	the	try-catch	construct	(as	discussed
further	in	Chapter	4),	and	the	code	produces	an

appropriate	error	message.

Although	these	examples	perform	a	single	computation

that	transforms	an	input	into	an	output	and	then

terminates,	more	generally	applications	run	for	a	long

time	and	interact	with	a	user	or	other	programs	to

determine	what	to	do.	We	will	discuss	long-lived

applications	in	Chapters	11	through	14.

EXERCISES

2.1	Consider	the	following	code:

						String	s1	=	“ace”;
						String	s2	=	“f”;
						String	s3	=	s1;
						String	s4	=	s3	+	s2;	//	concatenation

Illustrate	the	effect	of	the	code	on	the	heap	and	stack

by	drawing	a	diagram	similar	to	that	in	Figure	2.2.

2.2	Consider	the	code:

						int[]	a	=	{1,2,3};
						int[]	b	=	new	int[2];
						int[]	c	=	a;
						int	x	=	c[0];

Illustrate	the	effect	of	this	code	on	the	heap	and



stack	by	drawing	a	diagram	similar	to	that	in	Figure

2.2.

2.3	Extend	the	diagram	you	produced	in	question	2.2	to

show	the	effect	of	the	following	code:

						b[0]	=	x;
						a[1]	=	6;
						x	=	b[1];
						y	=	a[1];

2.4	Consider	the	routine:

						void	sums	(int[	]	z)	{
									if	(z	==	null	||	z.length	==	0)	return;
												for	(inti=1;i<	z.length;	i++)
															z[i]	=	z[i-1]	+	z[i];
									}

This	routine	modifies	its	argument	z	so	that	when
the	routine	returns,	each	element	z[i]	contains	the
sum	of	the	values	z[0],…,	z[i]	as	of	the	time	of
the	call.	Show	the	effect	of	the	following	code:

						int[	]	d	=	{2,	4,	6,	8};
						Arrays.sums(d);

by	providing	diagrams	similar	to	those	in	Figure	2.3.

Show	the	state	of	the	program	right	before	the	call	of

sums,	right	after	the	call	of	sums	starts	running,	and
right	after	sums	returns.

2.5	Consider	the	following	code:

						Object	o	=	“abc”;

For	each	of	the	following	statements,	indicate

whether	or	not	a	compile-time	error	will	occur,	and

for	those	statements	that	are	legal	at	compile	time,

indicate	whether	they	will	return	normally	or	by

throwing	an	exception;	if	the	return	is	normal,	also

indicate	the	result.

						boolean	b	=	o.equals(“a,	b,	c”);
						char	c	=	o.charAt(1);
						Object	o2	=	b;
						Strings	=	o;
						String	t	=	(String)	o;
						c	=	t.charAt(1);
						c	=	t.charAt(3);

2.6	Consider	the	following	code:



						int[	]	a	=	[1,2,3];
						Object	o	=	“123”;
						String	t	=	“12”;
						String	w	=	t	+	“3”;
						boolean	b	=	o.equals(a);
						boolean	b2	=	o.equals(t);
						boolean	b3	=	o.equals(w);
						boolean	b4	=	(o	==	w);

Show	the	effect	of	executing	this	code	by	means	of	a

diagram	similar	to	that	in	Figure	2.2.	Also	explain

how	the	the	code	arrived	at	the	results	in	b,	b1,	b2,
and	b3.

2.7	Consider	the	following	definitions:

						void	m	(Object	o,	long	x,	long	y)	//	defn	1
						void	m	(String	s,	int	x,	long	y)	//	defn	2
						void	m	(Object	o,	int	x,	long	y)	//	defn	3
						void	m	(String	s,	long	x,	int	y)	//	defn	4	

and	suppose	you	have	the	following	variable

declarations:

						Object	u;
						String	v;
						int	a;
						long	b;

For	each	of	the	following	calls,	determine	which

definitions	would	match	a	particular	call;	also	decide

whether	the	call	is	legal,	and	if	so,	which	of	the

preceding	definitions	is	selected:

						m(v,	a,	b);
						m(v,	a,	a);
						m(v,	b,	a);
						m(v,	b,	b);
						m(o,	b,	b);
						m(o,	a,	a);



3	Procedural	Abstraction

In	this	chapter,	we	discuss	the	most	familiar	kind	of

abstraction	used	in	programming,	the	procedural

abstraction,	or	procedure	for	short.	Anyone	who	has

introduced	a	subroutine	to	provide	a	function	that	can	be

used	in	other	programs	has	used	procedural	abstraction.

Procedures	combine	the	methods	of	abstraction	by

parameterization	and	specification	in	a	way	that	allows	us

to	abstract	a	single	action	or	task,	such	as	computing	the

greatest	common	demoninator	(gcd)	of	two	integers	or
sorting	an	array.

A	procedure	provides	a	transformation	from	input

arguments	to	output	arguments.	More	precisely,	it	is	a

mapping	from	a	set	of	input	arguments	to	a	set	of	output

results,	with	possible	modifications	of	the	inputs.	The	set

of	inputs	or	outputs,	or	both,	might	be	empty.	For

example,	gcd	has	two	inputs	and	one	output,	but	it	does
not	modify	its	inputs.	By	contrast,	a	sort	procedure
might	have	one	input	(the	array	to	be	sorted)	and	no

output,	and	it	does	modify	its	input	(by	sorting	it).

We	begin	with	the	benefits	of	abstraction	and,	in

particular,	of	abstraction	by	specification.	Next	we

discuss	specifications	and	why	they	are	needed.	Then	we

discuss	how	to	specify	and	implement	standalone

procedures;	these	are	procedures	that	are	independent	of

particular	objects.	We	conclude	with	some	general

remarks	about	their	design.

3.1	THE	BENEFITS	OF	ABSTRACTION

An	abstraction	is	a	many-to-one	map.	It	“abstracts”	from

“irrelevant”	details,	describing	only	those	details	that	are

relevant	to	the	problem	at	hand.	Its	realizations	must	all

agree	in	the	relevant	details	but	can	differ	in	the

irrelevant	ones.	Of	course,	distinguishing	what	is	relevant

from	what	is	irrelevant	is	not	always	easy.	A	major

portion	of	this	book	will	be	concerned	with	how	this	is

done.



In	abstraction	by	parameterization,	we	abstract	from	the

identity	of	the	data	being	used.	The	abstraction	is	defined

in	terms	of	formal	parameters;	the	actual	data	are	bound

to	these	formals	when	the	abstraction	is	used.	Thus,	the

identity	of	the	actual	data	is	irrelevant,	but	the	presence,

number,	and	types	of	the	actuals	are	relevant.

Parameterization	generalizes	abstractions,	making	them

useful	in	more	situations.	A	virtue	of	such	generalizations

is	that	they	decrease	the	amount	of	code	that	needs	to	be

written	and,	thus,	modified	and	maintained.

In	abstraction	by	specification,	we	focus	on	the	behavior

that	the	user	can	depend	on	and	abstract	from	the	details

of	implementing	that	behavior.	Therefore,	the	behavior

—“what”	is	done—is	relevant,	while	the	method	of

realizing	that	behavior—“how”	it	is	done—is	irrelevant.

For	example,	for	an	isPrime	procedure,	the	fact	that	the
procedure	determines	whether	or	not	its	argument	is	a

prime	is	relevant,	but	the	details	of	how	this	is

determined	are	irrelevant.

A	key	advantage	of	abstraction	by	specification	is	that	it

allows	us	to	change	to	another	implementation	without

affecting	the	meaning	of	any	program	that	uses	the

abstraction	(Figure	3.1).	For	example,	we	could	change

the	algorithm	used	to	implement	the	isPrime
procedure,	and	programs	using	isPrime	would	continue
to	run	correctly	with	this	new	implementation	(although

some	change	in	performance	might	be	noticed).	The

implementations	could	even	be	written	in	different

programming	languages,	provided	that	the	data	types	of

the	arguments	are	treated	the	same	in	these	languages.

For	example,	in	many	systems	implemented	in	higher-

level	languages,	it	is	common	to	implement	some

abstractions	in	machine	language	to	improve

performance.

Figure	3.1	The	general	structure	of	abstraction	by	specification



Sidebar	3.1	Benefits	of	Abstraction	by	Specification

Locality—The	implementation	of	an	abstraction	can	be	read	or	written	without	needing	to
examine	the	implementations	of	any	other	abstractions.

Modifiability—An	abstraction	can	be	reimplemented	without	requiring	changes	to	any
abstractions	that	use	it.

Abstraction	by	specification	provides	a	method	for

achieving	a	program	structure	with	two	advantageous

properties.	These	benefits	are	summarized	in	Sidebar	3.1.

The	first	property	is	locality,	which	means	that	the

implementation	of	one	abstraction	can	be	read	or	written

without	needing	to	examine	the	implementation	of	any

other	abstraction.	To	write	a	program	that	uses	an

abstraction,	a	programmer	need	understand	only	its

behavior,	not	the	details	of	its	implementation.

Locality	is	beneficial	both	when	a	program	is	being

written	and	later	when	someone	wants	to	understand	it

or	reason	about	its	behavior.	Because	of	locality,	different

abstractions	that	make	up	a	program	can	be	implemented

by	people	working	independently.	One	person	can

implement	an	abstraction	that	uses	another	abstraction

being	implemented	by	someone	else.	As	long	as	both

people	agree	on	what	the	used	abstraction	is,	they	can

work	independently	and	still	produce	programs	that	work

together	properly.	Also,	understanding	a	program	can	be

accomplished	one	abstraction	at	a	time.	To	understand

the	code	that	implements	one	abstraction,	it	is	necessary

to	understand	what	the	used	abstractions	are,	but	not	the

code	that	implements	them.	In	a	large	program,	the

amount	of	information	that	is	not	needed	can	be

enormous;	we	can	ignore	not	only	the	code	of	the	used

abstractions	but	also	the	code	of	any	abstractions	they

use,	and	so	on.

•	

•	



The	second	property	is	modifiability.	Abstraction	by

specification	helps	to	bound	the	effects	of	program

modification	and	maintenance.	If	the	implementation	of

an	abstraction	changes	but	its	specification	does	not,	the

rest	of	the	program	will	not	be	affected	by	the	change.	Of

course,	if	the	number	of	abstractions	that	must	be

reimplemented	is	large,	making	a	modification	will	still

be	a	lot	of	work.	As	will	be	discussed	later,	the	workload

can	be	reduced	by	identifying	potential	modifications

while	designing	the	program	and	then	trying	to	limit	their

effects	to	a	small	number	of	abstractions.	For	example,	if

the	effects	of	machine	dependencies	can	be	limited	to	just

a	few	abstractions,	the	result	will	be	software	that	can	be

transported	readily	to	another	machine.

Modifiability	leads	to	a	sensible	method	of	tuning

performance.	Programmers	are	notoriously	bad	at

predicting	where	time	will	actually	be	spent	in	a	complex

system,	probably	because	it	is	difficult	to	anticipate

where	bottlenecks	will	arise.	Since	it	is	unwise	to	invest

effort	in	inventing	techniques	that	avoid	nonexistent

bottlenecks,	a	better	method	is	to	start	with	a	simple	set

of	abstractions,	run	the	system	to	discover	where	the

bottlenecks	are,	and	then	reimplement	the	abstractions

that	are	bottlenecks.

3.2	SPECIFICATIONS

It	is	essential	that	abstractions	be	given	precise

definitions;	otherwise,	the	advantages	discussed	in

Section	3.1	cannot	be	achieved.	For	example,	we	can

replace	one	implementation	of	an	abstraction	by	another

only	if	everything	that	was	depended	on	by	users	of	the

old	implementation	is	supported	by	the	new	one.	The

entity	depended	on	and	supported	is	the	abstraction.

Therefore,	we	must	know	what	the	abstraction	is.

We	shall	define	abstractions	by	means	of	specifications,

which	are	written	in	a	specification	language	that	can	be

either	formal	or	informal.	The	advantage	of	formal

specifications	is	that	they	have	a	precise	meaning.

However,	we	shall	use	informal	specifications	in	this

book,	in	which	the	behavior	of	the	abstraction	is	given	in



English.	Informal	specifications	are	easier	to	read	and

write	than	formal	ones,	but	giving	them	a	precise

meaning	is	difficult	because	the	informal	specification

language	is	not	precise.	Despite	this,	informal

specifications	can	be	very	informative	and	can	be	written

in	such	a	way	that	readers	will	have	little	trouble

understanding	their	intended	meaning.

A	specification	is	distinct	from	any	implementation	of	the

abstraction	it	defines.	The	implementations	are	all

similar	because	they	implement	the	same	abstraction;

they	differ	because	they	implement	it	in	different	ways.

The	specification	defines	their	commonality.

A	specification	language	is	not	a	programming	language.

Thus,	our	spec-ifications	will	not	be	written	in	Java.

Furthermore,	specifications	are	usually	quite	different

from	programs	because	they	focus	on	describing	what	the

abstraction	is	rather	than	how	it	is	implemented.	This

allows	them	to	be	much	shorter	and	easier	to	read	than

the	corresponding	implementation.

3.3	SPECIFICATIONS	OF	PROCEDURAL
ABSTRACTIONS

The	specification	of	a	procedure	consists	of	a	header	and

a	description	of	effects.	The	header	gives	the	name	of	the

procedure,	the	number,	order,	and	types	of	its

parameters,	and	the	type	of	its	result;	it	also	lists	any

exceptions	thrown	by	the	procedure,	but	we	defer

discussion	of	exceptions	to	Chapter	4.	In	addition,	names

must	be	given	for	the	parameters.	For	example,	the

header	for	removeDupls	is

			void	removeDupls	(Vector	v);

while	the	header	of	sqrt	is

			float	sqrt	(float	x);

The	information	in	the	header	is	syntactic;	it	describes

the	“form”	of	the	procedure.	It	is	similar	to	a	description

of	the	“form”	of	a	mathematical	function,	as	in

			f	:	integer	 	integer	;



In	neither	case	is	the	meaning—what	the	procedure	or

the	function	does—described.	The	meaning	is	captured	in

the	semantic	part	of	the	specification,	in	which	the

behavior	of	the	procedure	is	described	in	English,

possibly	extended	with	convenient	mathematical

notation.	This	description	makes	use	of	the	names	of	the

inputs.

Figure	3.2	shows	a	template	of	a	procedure	specification.

The	semantic	part	of	a	specification	consists	of	three

parts:	the	requires,	modifies,	and	effects	clauses.	These

clauses	should	appear	in	the	order	shown,	although	the

requires	and	modifies	clauses	are	optional.	The	clauses

are	shown	as	comments	because	they	should	always

appear	in	your	code.

Figure	3.2	Specification	template	for	procedural	abstractions

			return_type	pname	(…)
						//	REQUIRES:	This	clause	states	any	constraints	on	use
						//	MODIFIES:	This	clause	identifies	all	modified	inputs
						//	EFFECTS:	This	clause	defines	the	behavior

The	clauses	describe	a	relation	between	the	procedure’s

inputs	and	results.	For	most	procedures,	the	inputs	are

exactly	the	parameters	that	are	listed	in	the	procedure

header.	However,	some	procedures	have	additional

implicit	inputs.	For	example,	a	procedure	might	read	a

file	and	write	some	information	on	System.out;	the	file
and	System.out	are	also	inputs	of	the	procedure.

The	requires	clause	states	the	constraints	under	which

the	abstraction	is	defined.	The	requires	clause	is	needed

if	the	procedure	is	partial—that	is,	if	its	behavior	is	not

defined	for	some	inputs.	If	the	procedure	is	total—that	is,

if	its	behavior	is	defined	for	all	type-correct	inputs—the

requires	clause	can	be	omitted.	In	this	case,	the	only

restrictions	on	a	legal	call	are	those	implied	by	the	header

—that	is,	the	number	and	types	of	the	arguments.

The	modifies	clause	lists	the	names	of	any	inputs

(including	implicit	inputs)	that	are	modified	by	the

procedure.	If	some	inputs	are	modified,	we	say	the

procedure	has	a	side	effect.	The	modifies	clause	can	be

omitted	when	no	inputs	are	modified.	The	absence	of	the



modifies	clause	means	that	none	of	the	inputs	is

modified.

Finally,	the	effects	clause	describes	the	behavior	of	the

procedure	for	all	inputs	not	ruled	out	by	the	requires

clause.	It	must	define	what	outputs	are	produced	and	also

what	modifications	are	made	to	the	inputs	listed	in	the

modifies	clause.	The	effects	clause	is	written	under	the

assumption	that	the	requires	clause	is	satisfied,	and	it

says	nothing	about	the	procedure’s	behavior	when	the

requires	clause	is	not	satisfied.

In	Java,	standalone	procedures	are	defined	as	static

methods	of	classes.	To	use	such	a	method,	it	is	necessary

to	know	its	class.	Therefore,	we	need	to	include	this

information	with	the	specification,	giving	us	the

expanded	template	shown	in	Figure	3.3.	We	have	simply

added	a	little	information	about	the	class:	its	name	and	a

brief	description	of	its	purpose.	Additionally,	the

specification	indicates	the	visibility	of	the	class	and	each

standalone	procedure;	the	visibility	of	the	class	and	the

procedures	usually	will	be	public,	so	that	the	standalone

procedures	can	be	used	in	other	packages.

Figure	3.3	Specification	template	for	class	providing	standalone

procedures

			visibility	cname	{
						//	OVERVIEW:	This	clause	defines	the	purpose	of	the	class	as	a	who
le.
			
						visibility	static	p1	…
						visibility	static	p2	…
			}

Figure	3.4	Standalone	procedure	specifications

			public	class	Arrays	{
						//	OVERVIEW:	This	class	provides	a	number	of	standalone	procedures
	that
						//			are	useful	for	manipulating	arrays	of	ints.
			
						public	static	int	search	(int[	]	a,	int	x)
									//	EFFECTS:	If	x	is	in	a,	returns	an	index	where	x	is	stored;
									//			otherwise,	returns	-1.
			
						public	static	int	searchSorted	(int[	]	a,	int	x)
									//	REQUIRES:	a	is	sorted	in	ascending	order
									//	EFFECTS:	If	x	is	in	a,	returns	an	index	where	x	is	stored;
									//			otherwise,	returns	-1.
			
						public	static	void	sort	(int[	]	a)
									//	MODIFIES:	a
									//	EFFECTS:	Rearranges	the	elements	of	a	into	ascending	order
									//			e.g.,	if	a	=	[3,	1,	6,	1]	before	the	call,	on	return	a	=	[1,	1,	3,	6].



			}

A	partial	specification	of	a	class,	Arrays,	which	provides
a	number	of	standalone	procedures	that	are	useful	for

manipulating	arrays	of	integers,	is	given	in	Figure	3.4.

Since	the	class	and	the	methods	are	public,	the
methods	can	be	used	by	code	outside	the	package

containing	the	class	definition.

In	the	specification,	we	can	see	that	search	and
searchSorted	do	not	modify	their	inputs,	but	sort
modifies	its	input,	as	indicated	in	the	modifies	clause.

Note	the	use	of	an	example	in	the	sort	specification.
Examples	can	clarify	a	specification	and	should	be	used

whenever	convenient.

Note	also	that	sort	and	search	are	total,	since	their
specifications	do	not	contain	a	requires	clause.

searchSorted,	however,	is	partial;	it	only	does	its	job	if
its	argument	array	is	sorted.	Note	that	the	effects	clause

does	not	state	what	searchSorted	does	if	the	argument
does	not	meet	this	constraint.	In	this	case,	the

implementor	can	do	whatever	is	convenient;	for	example,

the	implementation	could	even	run	forever.	Obviously,

this	is	not	a	very	desirable	situation,	and	therefore	you

should	avoid	the	use	of	the	requires	clause	as	much	as

possible.	This	issue	is	discussed	further	in	Section	3.5.

When	a	procedure	modifies	the	state	of	some	input,	the

specification	needs	to	relate	the	state	of	the	object	at

return	with	its	state	at	the	time	of	call.	This	is	what

happens	in	the	specification	of	sort.	Writing	such

specifications	can	be	simplified	by	having	notation	to

identify	these	different	states	explicitly.	We	will	make	use

of	the	following	notation:	the	name	of	a	formal	argument

—for	example,	x	denotes	its	state	at	the	time	of	call	and
x_post	denotes	its	state	at	return.	Thus,	an	alternative
way	of	writing	the	specification	for	sort	is

			public	static	void	sort	(int[	]	a)
						//	MODIFIES:	a
						//	EFFECTS:	Rearranges	the	elements	of	a	into	ascending	order.
						//			For	example,	if	a	=	[3,	1,	6,	1],	a_post	=	[1,	1,	3,	6].

Sometimes	a	procedure	must	produce	a	new	object.	For



example,	consider

			public	static	int[	]	boundArray	(int[	],	int	n)
						//	EFFECTS:	Returns	a	new	array	containing	the	elements	of	a	in	th
e
						//			order	they	appear	in	a	except	that	any	elements	of	a	that	are
						//			greater	than	n	are	replaced	by	n.

You	might	wonder	whether	boundArray	could	return	its
argument	array	if	none	of	its	elements	exceed	n.
However,	this	possibility	is	ruled	out	by	the	specification,

which	indicates	that	boundArray	must	return	a	new
object.	And	obviously	this	requirement	is	important,

since	arrays	are	mutable:	if	boundArray	returned	its
argument,	the	using	code	is	likely	to	notice	the	sharing.

In	Figure	3.4,	all	procedures	use	only	formal	parameters

as	inputs.	Here	is	an	example	of	a	specification	of	a

procedure	that	has	implicit	inputs,	namely	System.in
and	System.out:

			public	static	void	copyLine(	)
						//	REQUIRES:	System.in	contains	a	line	of	text
						//	MODIFIES:	System.in	and	System.out
						//	EFFECTS:	Reads	a	line	of	text	from	System.in,	advances	the	curs
or	in
						//			System.in	to	the	end	of	the	line,	and	writes	the	line	on	System.out.

Note	that	the	specification	describes	what	the	procedure

does	to	the	implicit	inputs.

Typically,	specifications	are	written	first,	in	advance	of

writing	the	code	that	implements	them.	At	that	point,	the

class	should	be	given	a	skeleton	implementation,

consisting	of	just	the	method	headers	and	specifications.

The	bodies	of	the	routines	will	be	missing;	code	will	be

provided	for	these	bodies	at	a	later	time.

3.4	IMPLEMENTING	PROCEDURES

The	implementation	of	a	procedure	should	produce	the

behavior	defined	by	its	specification.	In	particular,	it

should	modify	only	those	inputs	that	appear	in	the

modifies	clause;	and	if	all	inputs	satisfy	the	requires

clause,	it	should	produce	the	result	in	accordance	with

the	effects	clause.

Figure	3.5	shows	a	Java	method	that	implements

searchSorted	(specified	in	Figure	3.4)	using	linear



search.	Note	that	the	implementation	of	search-
Sorted	returns	−1	when	passed	null	in	place	of	the
argument	array.	This	behavior	is	consistent	with	what	is

described	in	its	specification.	However,	a	better

specification	might	have	treated	this	case	specially,	by

indicating	that	an	exception	should	be	thrown.

Exceptions	will	be	discussed	in	Chapter	4.	Note	also	that

we	have	included	a	comment	in	the	code	explaining	the

algorithm	in	use;	such	a	comment	is	not	needed	if	the

algorithm	is	straightforward	but	should	be	included	if	it

is	not.

As	a	second	example,	consider	the	sort	procedure
specified	in	Figure	3.4.	One	possible	method	is	quick	sort,

which	partitions	the	elements	of	the	array	into	two

contiguous	groups	such	that	all	the	elements	in	the	first

group	are	no	larger	than	those	in	the	second	group;	it

continues	to	partition	recursively	until	the	entire	array	is

sorted.	To	carry	out	these	steps,	we	use	two	subsidiary

procedures:	quickSort,	which	causes	the	partitioning	of
smaller	and	smaller	subparts	of	the	array,	and

partition,	which	performs	the	partitioning	of	a
designated	subpart	of	the	array.

Figure	3.5	An	implementation	of	searchSorted

			public	class	Arrays	{
						//	OVERVIEW:	This	class	provides	a	number	of	standalone	procedures
	that
						//			are	useful	for	manipulating	arrays	of	ints.
			
						public	static	int	searchSorted	(int[	]	a,	int	x)	{
								//	REQUIRES:	a	is	sorted	in	ascending	order.
								//	EFFECTS:	If	x	is	in	a,	returns	an	index	where	x	is	stored;
								//			otherwise,	returns	-1.
								//	uses	linear	search
								if	(a	==	null)	return	-1;
								for	(int	i	=	0;	i	<	a.length;	i++)
											if	(a[i]	==	x)	return	i;	else	if	(a[i]	>	x)	return	-1;
								return	-1;
					}
			
					//	other	static	methods	go	here
			}

Figure	3.6	shows	the	sort	implementation.	Note	that	the
quickSort	and	partition	routines	are	not	declared	to
be	public;	instead,	their	use	is	limited	to	the	Arrays
class.	This	is	appropriate	because	they	are	just	helper

routines	and	have	little	utility	in	their	own	right.



Nevertheless,	we	have	provided	specifications	for	them;

these	specifications	are	of	interest	to	someone	interested

in	understanding	how	quickSort	is	implemented	but
not	to	a	user	of	quickSort.

As	another	example,	consider	a	class	Vectors	that	is
similar	to	Arrays	but	instead	provides	useful	routines
for	vectors	(recall	that	vectors	are	extensible	arrays	of

objects).	One	routine	provided	by	this	class	removes

duplicates	from	a	vector.	Figure	3.7	on	page	50	contains

the	specification	and	implementation	of	this	routine.

Note	that	the	specification	explains	what	“duplicate”

means:	it	is	determined	by	using	the	equals	method	to
compare	elements	of	the	vector.

Figure	3.6	Quick	sort	implementation

						public	class	Arrays	{
									//	OVERVIEW:	…
			
									public	static	void	sort	(int[	]	a)	{
												//	MODIFIES:	a
												//	EFFECTS:	Sorts	a[0],	…,	a[a.length	-	1]	into	ascending	or
der.
												if	(a	==	null)	return;
												quickSort(a,	0,	a.length-1);	}
			
									private	static	void	quickSort(int[	]	a,	int	low,	int	high)	{
												//	REQUIRES:	a	is	not	null	and	0	<=	low	&	high	>	a.length
												//	MODIFIES:	a
												//	EFFECTS:	Sorts	a[low],	a[low+1],	…,	a[high]	into	ascendin
g	order.
												if	(low	>=	high)	return;
												int	mid	=	partition(a,	low,	high);
												quickSort(a,	low,	mid);
												quickSort(a,	mid	+	1,	high);	}
			
									private	static	int	partition(int[	]	a,	int	i,	int	j)	{
												//	REQUIRES:	a	is	not	null	and	0	<=	i	<	j	<	a.length
												//	MODIFIES:	a
												//	EFFECTS:	Reorders	the	elements	in	a	into	two	contiguous	g
roups,
												//			a[i],…,	a[res]	and	a[res+1],…,	a[j],	such	that	each
												//			element	in	the	second	group	is	at	least	as	large	as	eac
h
												//			element	of	the	first	group.	Returns	res.
												int	x	=	a[i];
												while	(true)	{
															while	(a[j]	>	x)	j--;
															while	(a[i]	<	x)	i++;
															if	(i	<	j)	{	//	need	to	swap
																		int	temp	=	a[i];	a[i]	=	a[j];	a[j]	=	temp;
																		j--;	i++;	}
															else	return	j;	}
								}
			}

Figure	3.7	Removing	duplicates	from	a	vector

						public	class	Vectors	{
									//	OVERVIEW:	Provides	useful	standalone	procedures	for	manipula



ting	vectors.
			
									public	static	void	removeDupls	(Vector	v)	{
												//	REQUIRES:	All	elements	of	v	are	not	null.
												//	MODIFIES:	v
												//	EFFECTS:	Removes	all	duplicate	elements	from	v;	uses	equals	
to
												//				determine	duplicates.	The	order	of	remaining	elements	
may	change.
												if	(v	==	null)	return;
												for	(int	i	=	0;	i	<	v.size(	);	i++)	{
															Object	x	=	v.get(i);
															int	j	=	i	+	1;
															//	remove	all	dupls	of	x	from	the	rest	of	v
															while	(j	<	v.size(	))
																		if	(!x.equals(v.get(j)))	j++;
																		else	{	v.set(j,	v.lastElement(	));
																					v.remove(v.size(	)-1);	}
												}
								}
				}

3.5	DESIGNING	PROCEDURAL	ABSTRACTIONS

In	this	section,	we	discuss	a	number	of	issues	that	arise	in

designing	procedural	abstractions.

Procedures	are	introduced	during	program	design	to

shorten	the	calling	code	and	clarify	its	structure.	In	this

way,	the	calling	code	becomes	easier	to	understand	and

to	reason	about.	However,	it	is	possible	to	introduce	too

many	procedures.	For	example,	the	partition
procedure	in	Figure	3.6	is	worth	introducing	because	it

has	a	well-defined	purpose	and	because	it	allows	us	to

separate	the	details	of	partitioning	the	array	from

controlling	the	partitioning,	thus	making	quickSort
easier	to	understand.	Further	decomposition	is	probably

counterproductive,	however.	For	example,	the	loop	body

in	partition	could	be	made	into	a	procedure,	but	its
purpose	would	be	difficult	to	state,	and	neither

partition	itself	nor	the	new	procedure	would	do	much.

Procedures,	as	well	as	the	other	kinds	of	abstractions	that

we	shall	discuss	later,	should	be	designed	to	be

minimally	constraining;	care	should	be	taken	to

constrain	details	of	the	procedure’s	behavior	only	to	the

extent	necessary.	In	this	way,	we	leave	more	freedom	to

the	implementor,	who	may	be	able	to	provide	a	more

efficient	implementation	as	a	result.	However,	details

that	matter	to	users	must	be	constrained	or	the

procedure	will	not	be	what	is	needed.

One	kind	of	detail	that	is	almost	certainly	left	undefined



is	the	algorithm	to	be	used	in	the	implementation.

Generally,	users	do	not	depend	on	such	details.	(There

are	exceptions,	however;	for	example,	a	numerical

procedure	may	be	constrained	to	use	a	well-known

numerical	method	so	that	its	behavior	with	respect	to

rounding	errors	will	be	well	defined.)	Some	details	of

what	the	procedure	does	may	also	be	left	undefined,

leading	to	a	procedure	that	is	underdetermined.	This

means	that	for	certain	inputs,	instead	of	a	single	correct

output,	there	is	a	set	of	acceptable	outputs.	An

implementation	is	constrained	to	produce	some	member

of	that	set,	but	any	member	will	do.

The	search	and	searchSorted	procedures	are
underdetermined	because	we	did	not	state	exactly	what

index	should	be	returned	if	x	occurs	in	the	array	more
than	once.	This	means	that	implementations	can	differ	in

this	regard.	For	example,	Figure	3.8	shows	another

implementation	of	search-Sorted	using	binary	search.
This	implementation	differs	from	the	one	using	linear

search	(see	Figure	3.5	)	in	many	details.	For	example,	for

all	but	very	small	arrays,	binary	search	is	faster	than

linear	search.	Moreover,	if	x	appears	in	a	more	than
once,	the	two	procedures	may	return	different	indices.

Finally,	if	x	is	contained	in	a	but	a	is	not	sorted,	the
implementation	using	binary	search	may	return	−1	when

the	other	implementation	finds	the	index	of	x	or	vice
versa	(as	an	example,	consider	a	=	[1,	7,	6,	4,	9]	and	x	=
7).	Nevertheless,	both	implementations	are	correct

realizations	of	the	search-Sorted	abstraction	since
both	provide	behavior	that	is	consistent	with	the

specification.

removeDupls	(see	Figure	3.7)	is	also	underdetermined,
since	it	does	not	necessarily	preserve	the	order	of

elements	in	its	input	vector.	This	lack	of	constraint	may

be	a	mistake,	because	users	may	care	about	the	order;	if

the	input	vector	is	sorted,	for	example,	it	might	be

desirable	to	preserve	the	order.	The	important	point	is

that	what	matters	depends	on	what	users	need.	Details

that	matter	to	users	should	be	specified;	the	others	can	be

left	undefined.



An	underdetermined	abstraction	usually	has	a

deterministic	implementation;	that	is,	one	that,	if	called

twice	with	identical	inputs,	behaves	identically	on	the	two

calls.	Both	implementations	of	searchSorted	are
deterministic.	(Nondeterministic	implementations

require	the	use	of	nondeterministic	primitives,	global

data,	or	static	variables;	for	example,	the	implementation

might	read	the	system	clock	each	time	it	is	called	and	use

that	value	as	a	way	of	producing	a	different	result	from

any	previous	call.)

Figure	3.8	Implementing	searchSorted	using	binary	search

			public	class	Arrays	{
						//	OVERVIEW:	…

						public	static	int	searchSorted	(int[	]	a,	int	x)	{
									//	uses	binary	search
									if	(a	==	null)	return	−1;
									int	low	=	0;
									int	high	=	a.length	−	1;
									while	(low	<=	high)	{
												int	mid	=	(low	+	high)	/	2;	//	computes	the	floor
												if	(x	==	a[mid])	return	mid;
												if	(x	<	a[mid])	high	=	mid	−	1;	else	low	=	mid	+	1;
									}
						return	−1;
						}
			}

In	addition	to	minimality,	another	important	property	of

procedures	is	generality,	which	is	often	achieved	by	using

parameters	instead	of	specific	variables	or	assumptions.

For	example,	a	procedure	that	searches	for	an	arbitrary

integer	in	an	array,	where	the	integer	is	an	argument	of

the	procedure,	is	more	general	than	one	that	works	only

for	a	specific	integer.	Similarly,	a	procedure	that	works

on	any	size	array	is	more	general	than	one	that	works

only	on	arrays	of	some	fixed	size.	Generalizing	a

procedure	is	only	worthwhile,	however,	if	doing	so

increases	its	usefulness.	This	is	almost	always	true	when

size	assumptions	are	eliminated,	since	by	doing	so	we

ensure	that	a	minor	change	in	the	context	of	use	(for

example,	doubling	the	size	of	an	array)	requires	little,	if

any,	program	modification.	See	Sidebar	3.2	for	a

summary	of	the	properties	of	procedural	abstractions.

Generalization	is	discussed	further	in	Chapter	8.

Sidebar	3.2	Properties	of	Procedures	and	Their	Implementations



Minimality—One	specification	is	more	minimal	than	another	if	it	contains	fewer	constraints	on
allowable	behavior.

Underdetermined	behavior—A	procedure	is	underdetermined	if	for	certain	inputs	its
specification	allows	more	than	one	possible	result.

Deterministic	implementation—An	implementation	of	a	procedure	is	deterministic	if,	for	the
same	inputs,	it	always	produces	the	same	result.	Implementations	of	underdetermined
procedures	are	almost	always	deterministic.

Generality—One	specification	is	more	general	than	another	if	it	can	handle	a	larger	class	of
inputs.

Another	important	property	of	procedures	is	simplicity.	A

procedure	should	have	a	well-defined	and	easily

explained	purpose	that	is	independent	of	its	context	of

use.	A	good	check	for	simplicity	is	to	give	the	procedure	a

name	that	describes	its	purpose.	If	it	is	difficult	to	think

of	a	name,	there	may	be	a	problem	with	the	procedure.

Some	of	the	procedures	discussed	earlier	are	partial,

while	others	are	total.	This	dichotomy	leads	to	the

question	of	when	it	is	appropriate	to	define	a	partial

abstraction.	Partial	procedures	are	not	as	safe	as	total

ones,	since	they	leave	it	to	the	user	to	satisfy	the

constraints	in	the	requires	clause.	When	the	requires

clause	is	not	satisfied,	the	behavior	of	a	partial	procedure

is	completely	unconstrained;	and	this	can	cause	the	using

program	to	fail	in	mysterious	ways.	For	example,

searchSorted	might	not	return	or	it	might	return	the
wrong	index	when	its	input	array	is	not	sorted.	In	the

latter	case,	the	error	may	not	be	noticed	until	long	after

searchSorted	returns.	By	then,	the	reason	for	the	error
may	be	obscure,	and	important	objects	may	have	been

damaged.

On	the	other	hand,	partial	procedures	can	be	more

efficient	to	implement	than	total	ones.	For	example,	if

searchSorted	had	to	work	even	when	the	input	array
was	not	sorted,	then	neither	implementation	(in	Figure

3.5	or	Figure	3.8	)	would	be	correct;	only	a	less-efficient

implementation	that	examined	all	elements	of	the	array

could	be	used.

Sidebar	3.3	Total	versus	Partial	Procedures

A	procedure	is	total	if	its	behavior	is	specified	for	all	legal	inputs;	otherwise,	it	is	partial.	The
specification	of	a	partial	procedure	always	contains	a	requires	clause.

Partial	procedures	are	less	safe	than	total	ones.	Therefore,	they	should	be	used	only	when	the
context	of	use	is	limited	or	when	they	enable	a	substantial	benefit,	such	as	better	performance.

When	possible,	the	implementation	should	check	the	constraints	in	the	requires	clause	and

•	

•	

•	

•	

•	

•	

•	



throw	an	exception	if	they	are	not	satisfied.

In	choosing	between	a	partial	and	a	total	procedure,	we

have	to	make	a	trade-off.	On	the	one	hand	is	efficiency;

on	the	other	is	safe	behavior,	with	fewer	potential

surprises	at	runtime.	How	is	such	a	choice	to	be	made?

An	important	consideration	is	the	expected	context	of

use.	If	the	procedure	is	intended	for	general	use	(for

example,	if	it	is	to	be	made	available	as	part	of	a	program

library),	safety	considerations	should	be	given	great

weight.	In	such	a	situation,	it	is	impossible	to	examine	all

code	that	calls	the	procedure	to	ensure	that	the	calls

satisfy	the	constraints.	Therefore,	it	is	wise	to	avoid	the

constraints	if	possible.

Alternatively,	some	procedures	are	intended	to	be	used

only	in	a	limited	context.	This	was	the	situation	with

partition	and	quickSort,	which	can	be	used	only
within	the	Arrays	class.	In	a	limited	context,	it	is	easy	to
establish	that	constraints	are	satisfied.	For	example,

partition	assumes	that	i	is	less	than	j,	but	this
condition	is	established	by	quickSort,	which	is	its	only
caller.	Therefore,	we	might	choose	a	partial	procedure	in

such	a	case	if	this	can	improve	performance	or	lead	to	a

simpler	implementation.

Another	point	is	that	the	implementation	of	an

abstraction	is	not	forbidden	to	check	the	constraint	given

in	a	requires	clause.	If	the	check	indicates	that	the

requires	clause	is	not	satisfied,	the	procedure	could

produce	an	error	message,	but	a	better	approach	is

usually	to	throw	an	exception;	exceptions	are	discussed

in	the	next	chapter.	Sidebar	3.3	summarizes	our

discussion	of	total	versus	partial	procedures.

Of	course,	it	doesn’t	make	sense	to	check	a	constraint

when	the	checking	is	very	expensive,	for	example,	as	it

would	be	in	the	searchSorted	routine.	But	sometimes
a	constraint	is	not	expensive	to	check;	this	is	the	case	for

removeDupls,	which	requires	all	elements	of	the	vector
to	be	non-null.	In	such	a	case	it	is	a	good	idea	to	do	the

check	and	throw	an	expection	if	it	fails.	Since	such	checks

aren’t	required	by	the	specification,	they	can	be	disabled



later,	when	the	program	is	in	production	use,	if	this

becomes	necessary	to	achieve	good	performance.

Finally,	it	is	worth	noting	that	a	specification	is	the	only

record	of	its	abstraction.	Therefore,	it	is	crucial	that	the

specification	be	clear	and	precise.	How	to	write	good

specifications	is	the	subject	of	Chapter	9.

3.6	SUMMARY

This	chapter	has	been	concerned	primarily	with

procedures:	what	they	are,	how	to	describe	their

behavior,	and	how	to	implement	them.	We	also	discussed

two	important	benefits	of	abstraction	and	the	need	for

specifications.

A	procedure	is	a	mapping	from	inputs	to	outputs,	with

possible	modifications	of	some	of	the	inputs.	Its	behavior,

like	that	of	any	other	kind	of	abstraction,	is	described	by

a	specification,	and	we	presented	a	form	for	informal

specifications	of	procedures.	A	procedure	is	implemented

in	Java	by	a	static	method;	in	other	languages,	it	would

be	implemented	by	a	function	or	subroutine.

Abstraction	provides	the	two	key	benefits	of	locality	and

modifiability.	Both	are	based	on	the	distinction	between

an	abstraction	and	its	implementations.	Locality	means

that	each	implementation	can	be	understood	in	isolation.

An	abstraction	can	be	used	without	having	to	understand

how	it	is	implemented,	and	it	can	be	implemented

without	having	to	understand	how	it	is	used.

Modifiability	means	that	one	implementation	can	be

substituted	for	another	without	disturbing	the	using

programs.

To	obtain	these	benefits,	we	must	have	a	description	of

the	abstraction	that	is	distinct	from	any	implementation.

To	this	end,	we	introduced	the	specification,	which

describes	the	behavior	of	an	abstraction	using	a	special

specification	language.	This	language	can	be	formal	or

informal;	we	used	an	informal	language	but	with	a	fixed

structure	consisting	of	the	requires,	modifies,	and	effects

clauses.	Users	can	assume	the	behavior	described	by	the

specification,	and	implementors	must	provide	this



behavior.	Thus,	the	specification	serves	as	a	contract

between	users	and	implementors.

Since	we	are	interested	in	design	and	how	to	invent	good

abstractions,	we	concluded	the	chapter	with	a	discussion

of	what	procedures	should	be	like.	Desirable	properties

include	minimality,	simplicity,	and	generality.	Minimality

often	gives	rise	to	underdetermined	abstractions.	We	also

discussed	the	pros	and	cons	of	partial	and	total

procedures.	We	shall	continue	to	discuss	desirable

properties	in	the	following	chapters	as	we	introduce

additional	kinds	of	abstractions.

EXERCISES

3.1	Computing	the	greatest	common	divisor	by	repeated

subtraction	(see	Figure	2.1	in	Chapter	2	)	is	not	very

efficient.	Reimplement	gcd	to	use	division	instead.

3.2	Specify	and	implement	a	method	with	the	header

						public	static	int	sum	(int[	]	a)

that	returns	the	sum	of	the	elements	of	a.

3.3	Specify	and	implement	a	procedure	isPrime	that
determines	whether	an	integer	is	prime.

3.4	Specify	and	implement	a	procedure	that	determines

whether	or	not	a	string	is	a	palindrome.	(A

palindrome	reads	the	same	backward	and	forward;

an	example	is	“deed.”)

3.5	You	are	to	choose	between	two	procedures,	both	of

which	compute	the	minimum	value	in	an	array	of

integers.	One	procedure	returns	the	smallest	integer

if	its	array	argument	is	empty.	The	other	requires	a

nonempty	array.	Which	procedure	should	you	choose

and	why?

3.6	Suppose	that	the	implementation	of	sorting	by	quick

sort	shown	in	Figure	3.6	were	changed	as	follows:

Procedure	partition	is	retained,	but	quickSort
is	eliminated,	so	that	its	work	is	done	directly	in

sort.	Is	this	change	a	good	idea?	What	purpose	does

quickSort	have?	Discuss.

3.7	Suppose	the	implementation	of	partition	in	Figure



3.6	were	changed	to	return	i	instead	of	returning	j.
Would	this	work?	Explain	your	reasoning.



4	Exceptions

A	procedural	abstraction	is	a	mapping	from	arguments	to

results,	with	possible	modification	of	some	of	the

arguments.	The	arguments	are	members	of	the	domain	of

the	procedure,	and	the	results	are	members	of	its	range.

A	procedure	often	makes	sense	only	for	arguments	in	a

subset	of	its	domain.	For	example,	a	procedure	that

computes	the	factorial	makes	sense	only	if	its	argument	is

positive.	As	another	example,	the	search	procedure	can
return	the	index	of	the	element	only	if	the	element

appears	in	the	array.

One	way	of	coping	with	such	a	situation	is	to	use	partial

procedures,	as	discussed	in	Chapter	3.	For	example,	we

might	define	gcd	only	when	its	arguments	are	positive:

			public	static	int	gcd	(int	n,	int	d)
						//	REQUIRES:	n,	d	>	0
						//	EFFECTS:	Returns	the	greatest	common	divisor	of	n	and	d.

The	caller	of	a	partial	procedure	must	ensure	that	the

arguments	are	in	the	permitted	subset	of	the	domain,	and

the	implementor	can	ignore	arguments	outside	this

subset.	Thus,	in	implementing	gcd,	we	could	ignore	the
case	of	nonpositive	arguments.

Partial	procedures	are	generally	a	bad	idea,	however,

since	there	is	no	guarantee	that	their	arguments	are	in

the	permitted	subset	and	the	procedure	may	therefore	be

called	with	arguments	outside	the	subset.	When	this

happens,	the	procedure	is	allowed	to	do	anything:	it

might	loop	forever	or	return	an	erroneous	result.	The

latter	case	is	especially	bad	since	it	can	lead	to	an	obscure

error	that	is	difficult	to	track	down.	For	example,	the

calling	code	might	continue	to	run,	using	the	erroneous

result,	and	possibly	damage	important	databases.

Partial	procedures	lead	to	programs	that	are	not	robust.

A	robust	program	is	one	that	continues	to	behave

reasonably	even	in	the	presence	of	errors.	If	an	error

occurs,	the	program	may	not	be	able	to	provide	exactly



the	same	behavior	as	if	there	were	no	error,	but	it	should

behave	in	a	well-defined	way.	Ideally,	it	should	continue

after	the	error	by	providing	some	approximation	of	its

behavior	in	the	absence	of	an	error;	a	program	like	this	is

said	to	provide	graceful	degradation.	At	worst,	it	should

halt	with	a	meaningful	error	message	and	without

causing	damage	to	permanent	data.

A	method	that	enhances	robustness	is	to	use	total

procedures:	procedures	whose	behavior	is	defined	for	all

inputs	in	the	domain.	If	the	procedure	is	unable	to

perform	its	“intended”	function	for	some	of	these	inputs,

at	least	it	can	inform	its	caller	of	the	problem.	In	this	way,

the	situation	is	brought	to	the	attention	of	the	caller,

which	may	be	able	to	do	something	about	it,	or	at	least

avoid	harmful	consequences	of	the	error.

How	should	the	caller	be	notified	if	a	problem	arises?

One	possibility	is	to	use	a	particular	result	to	convey	the

information.	For	example,	a	factorial	procedure	might

return	zero	if	its	argument	is	not	positive:

			public	static	int	fact	(int	n)
						//	EFFECTS:	If	n	>	0	returns	n!	else	returns	0.

This	solution	is	not	very	satisfactory.	Since	the	call	with

illegal	arguments	is	probably	an	error,	it	is	more

constructive	to	treat	this	case	in	a	special	way,	so	that	a

programmer	who	uses	the	procedure	is	less	likely	to

ignore	the	error	by	mistake.	Also,	returning	a	special

result	may	be	inconvenient	for	the	calling	code,	which

then	must	check	for	it.	For	example,	rather	than	writing:

			z	=	x	+	Num.fact(y);

the	calling	code	instead	must	do	the	check:

			int	r	<	Num.fact(y);
			if	(r	>	0)	z	<	x	+	r;	else	…

Furthermore,	if	every	value	of	the	return	type	is	a

possible	result	of	the	procedure,	the	solution	of	returning

a	special	result	is	impossible,	since	there	is	no	leftover

value	to	use.	For	example,	the	get	method	of	Vector
returns	the	value	of	the	vector’s	i 	element,	and	that	valueth



can	be	any	object	or	null.	Therefore,	we	can’t	convey
information	about	the	index	being	out	of	bounds	by

returning	a	particular	object	or	by	returning	null.

What	is	needed	is	an	approach	that	conveys	information

about	unusual	situations	in	all	cases,	even	when	every

value	of	the	return	type	is	a	legitimate	result.	In	addition,

it	is	desirable	for	the	approach	to	distinguish	these

situations	in	some	way,	so	that	users	can’t	ignore	them	by

mistake.	It	would	also	be	nice	if	the	approach	allowed	the

handling	of	these	situations	to	be	separated	from	the

normal	program	control	flow.

An	exception	mechanism	provides	what	we	want.	It

allows	a	procedure	to	terminate	either	normally,	by

returning	a	result,	or	exceptionally.	There	can	be	several

different	exceptional	terminations.	In	Java,	each

exceptional	termination	corresponds	to	a	different

exception	type.	The	names	of	the	exception	types	are

selected	by	the	definer	of	the	procedure	to	convey	some

information	about	what	the	problem	is.	For	example,	the

get	method	of	Vector	has
IndexOutOfBoundsException.

In	this	chapter,	we	discuss	how	to	specify,	implement,

and	use	procedures	with	exceptions.	We	also	discuss	a

number	of	related	design	issues.

4.1	SPECIFICATIONS

A	procedure	that	can	terminate	exceptionally	is	indicated

by	having	a	throws	clause	in	its	header:

			throws	<	list_of_types	>

For	example,

			public	static	int	fact	(int	n)	throws	NonPositiveException

states	that	fact	can	terminate	by	throwing	an	exception;
and	in	this	case,	it	throws	an	object	of	type

NonPositiveException.

A	procedure	can	throw	more	than	one	type	of	exception;

for	example,	states	that	search	can	throw	two
exceptions:	NullPointerException	(if	a	is	null)	and



NotFoundException	(if	a	is	not	null	and	x	is	not	in
a).

			public	static	int	search	(int[	]	a,	int	x)
										throws	NullPointerException,	NotFoundException
						//	EFFECTS:	If	a	is	null	throws	NullPointerException;	else	if	x	is
	not
						//					in	a	throws	NotFoundException;	else	returns	i	such	that	x	<	a[i].

Figure	4.1	Some	specifications	with	exceptions

			public	static	int	fact	(int	n)	throws	NonPositiveException
						//	EFFECTS:	If	n	is	non-
positive,	throws	NonPositiveException,	else
						//			returns	the	factorial	of	n.

			public	static	int	search	(int[	]	a,	int	x)
											throws	NullPointerException,	NotFoundException
						//	REQUIRES:	a	is	sorted
						//	EFFECTS:	If	a	is	null	throws	NullPointerException;	else	if	x	is
	not
						//			in	a,	throws	NotFoundException;	else	returns	i	such	that	a[i]	=	x.

The	specification	of	a	procedure	that	throws	exceptions

must	make	it	clear	to	users	exactly	what	is	going	on.	First,

we	require	that	its	header	list	all	exceptions	that	it	can

throw	as	part	of	its	“ordinary”	behavior,	for	example,	for

all	inputs	that	meet	its	requires	clause.

Second,	the	effects	clause	must	explain	what	causes	each

exception	to	be	thrown.	As	before,	the	effects	clause

should	define	the	behavior	of	the	procedure	for	all	inputs

not	ruled	out	by	the	requires	clause.	Since	this	behavior

includes	exceptions,	the	effects	section	must	define	what

causes	the	procedure	to	terminate	with	each	exception,

and	what	its	behavior	is	in	each	case.	Furthermore,	if	a

procedure	signals	an	exception	for	a	certain	subset	of

arguments,	that	subset	should	not	be	excluded	in	the

requires	clause.	Termination	by	throwing	an	exception	is

part	of	the	ordinary	behavior	of	the	procedure.

Figure	4.1	shows	specifications	of	fact	and	search.
Note	that	the	spec-ification	of	search	contains	a
requires	clause	and	that,	as	usual,	its	effects	section

assumes	that	the	requires	clause	is	satisfied.

When	a	procedure	has	side	effects,	its	specification	must

make	clear	how	these	interact	with	exceptions.	The

modifies	section	of	a	specification	indicates	that	an

argument	may	be	modified	but	does	not	say	when	this



will	happen.	If	there	are	exceptions,	it	is	likely	that	the

modification	will	happen	only	for	some	of	them.	Exactly

what	happens	must	be	described	in	the	effects	section.

Modifications	must	be	described	explicitly	in	each	case

where	they	occur;	if	no	modifications	are	described,	this

means	none	happens.	For	example,	the	following

specification	indicates	that	v	is	modified	only	when
addMax	returns	normally:

			public	static	void	addMax	(Vector	v,	Integer	x)
												throws	NullPointerException,	NotSmallException
						//	REQUIRES:	All	elements	of	v	are	Integers.
						//	MODIFIES:	v
						//	EFFECTS:	If	v	is	null	throws	NullPointerException;	if	v			conta
ins	an
						//					element	larger	than	x	throws	NotSmallException;	else	adds	x	
to	v.

4.2	THE	JAVA	EXCEPTION	MECHANISM

This	section	provides	a	brief	discussion	of	how	exceptions

are	supported	in	Java.

4.2.1	Exception	Types

Exception	types	are	subtypes	of	either	Exception	or
RuntimeException,	both	of	which	are	subtypes	of	type
Throwable.	Figure	4.2	shows	the	hierarchy	of	exception
types.	The	main	point	to	note	is	that	there	are	two	kinds

of	exceptions:	checked	exceptions	and	unchecked

exceptions.	Unchecked	exceptions	are	sub-types	of

RuntimeException;	checked	exceptions	are	subtypes
of	Exception	but	not	of	RuntimeException.

Figure	4.2	The	exception	type	hierarchy

Most	exceptions	that	are	defined	by	Java	are	unchecked



(e.g.,	Null-PointerException,
IndexOutOfBoundsException)	but	others	are
checked	(e.g.,	IOException).	User-defined	exceptions
can	similarly	be	either	checked	or	unchecked.

There	are	two	differences	in	how	checked	and	unchecked

exceptions	can	be	used	in	Java:

1.	If	a	procedure	might	throw	a	checked	exception,	Java

requires	that	the	exception	be	listed	in	the	procedure’s

header;	otherwise,	there	will	be	a	compile-time	error.

Unchecked	exceptions	need	not	be	listed	in	the

header.

2.	If	code	calls	a	procedure	that	might	throw	a	checked

exception,	Java	requires	that	it	handle	the	exception

as	explained	in	Section	4.2.4;	otherwise,	there	will	be

a	compile-time	error.	Un-checked	exceptions	need	not

be	handled	in	the	calling	code.

These	differences	between	checked	and	unchecked

exceptions	make	it	necessary	to	think	carefully	when

defining	a	new	exception	type	about	whether	or	not	it

should	be	checked.	We	will	discuss	this	design	issue	in

Section	4.4.2.

We	will	deviate	from	the	Java	rules	in	one	important	way:

we	require	that	the	header	of	a	procedure	list	all

exceptions	it	throws,	whether	checked	or	unchecked.	For

example,	the	header	of	search	in	Figure	4.1	lists	Null-
PointerException	even	though	this	is	an	unchecked
exception.	The	reason	for	listing	unchecked	exceptions	is

that	from	the	point	of	view	of	someone	using	the

procedure,	any	exception	that	can	occur	is	of	interest;	you

can’t	understand	how	to	use	a	procedure	without	this

information.	Of	course,	you	could	obtain	the	information

from	the	effects	clause	of	the	specification,	but	including

the	information	in	the	header	brings	it	to	the	attention	of

the	user	in	a	very	direct	way.	It	also	provides	a	good

approach	for	the	specifier:	list	all	exceptions	in	the

header,	and	then	make	sure	the	effects	clause	explains

each	of	them.

4.2.2	Defining	Exception	Types



When	a	new	exception	type	is	defined,	its	declaration

indicates	whether	it	is	checked	or	unchecked	by

indicating	its	supertype:	if	the	supertype	is	Exception,
it	is	checked;	while	if	the	supertype	is

RuntimeException,	it	is	unchecked.	For	example,
Figure	4.3	gives	a	definition	of	a	new	exception	type.	The

header	of	the	class	states	that	the	new	type,

NewKindOfException,	is	a	subtype	of	type
Exception;	this	is	the	meaning	of

Figure	4.3	Defining	a	new	exception	type

			public	class	NewKindOfException	extends	Exception	{

							public	NewKindOfException(	)	{	super(	);	}
							public	NewKindOfException(String	s)	{	super(s);	}
			}

			extends	Exception

Therefore,	the	exception	being	defined	in	the	figure	is	a

checked	exception.	The	definition	of	an	unchecked

exception	differs	only	in	that	its	header	contains

			extends	RuntimeException

As	illustrated	in	Figure	4.3,	a	class	defining	a	new

exception	type	need	only	define	constructors;	recall	that

constructors	are	special	methods	that	are	used	to

initialize	newly	created	objects	of	the	class.	Defining	a

new	exception	type	requires	very	little	work	because	most

of	the	code	for	the	new	type	is	inherited	from	the	class

that	implements	its	supertype.	We	will	discuss

inheritance,	and	also	provide	more	detail	about	the

special	forms	used	in	this	definition,	in	Chapter	7.

The	exception	type	provides	two	constructors;	in	other

words,	the	constructor	name	is	overloaded	as	discussed

in	Section	2.4.2.	The	second	constructor	initializes	the

exception	object	to	contain	the	string	provided	as	its

argument;	as	we	shall	see	in	Section	4.2.3,	this	string	will

explain	why	the	exception	was	thrown.	For	example,

			Exception	e1	=	new	NewKindOfException("this	is	the	reason");

causes	exception	object	e1	to	contain	the	string	”this



is	the	reason”.	The	first	constructor	initializes	the
object	to	contain	the	empty	string,	for	example,

			Exception	e2	=	new	NewKindOfException(	);

The	string,	together	with	the	type	of	exception,	can	be

obtained	by	calling	the	toString	method	on	the
exception	object.	For	example,

			String	s	=	e1.toString(	);

causes	s	to	contain	the	string

			”NewKindOfException:	this	is	the	reason”

Exception	types	must	be	defined	in	some	package.	One

possibility	is	to	define	them	in	the	same	package	that

contains	the	class	of	the	methods	that	throw	them.

However,	in	this	case,	we	would	need	a	longer	name,	for

example,	NotFoundFromSearchException,	to	avoid
name	conflicts	with	exception	types	defined	for	other

procedures.	A	better	alternative,	therefore,	is	to	have	a

package	that	defines	exception	types.	This	allows	the

same	exception	type	to	be	used	in	many	routines.

Java	does	not	require	that	exception	types	have	the	form

EnameException.	However,	it	is	good	programming
style	to	follow	this	convention	since	it	makes	it	easy	to

distinguish	exception	types,	which	should	be	used	only

for	throwing	and	handling	exceptions,	from	ordinary

types.

4.2.3	Throwing	Exceptions

A	Java	procedure	can	terminate	by	throwing	an

exception.	It	does	this	by	using	the	throw	statement.	For

example,	in	fact	we	might	have

			if	(n	<=	0)	throw	new	NonPositiveException(”Num.fact”);

Here	we	are	throwing	an	object	of	type

NonPositiveException;	we	actually	construct	this
object	as	part	of	the	throw,	by	calling	new.

The	main	issue	when	throwing	exceptions	is	what	to	use

for	the	string	argument.	To	answer	this	question,	we	need

to	understand	the	purpose	of	the	string.	The	string	is



used	primarily	to	convey	information	to	a	person	when

the	program	isn’t	able	to	handle	the	exception	and

therefore	stops	with	an	error	message,	or	writes	an	error

message	to	a	log.

Therefore,	the	string	must	enable	the	user	to	find	out

what	went	wrong.	A	good	way	to	accomplish	this	is	to

have	the	string	identify	the	procedure	that	threw	the

exception,	since	in	general	many	procedures	will	throw

the	same	exception	type.	The	information	should	allow	a

person	to	find	the	specification	of	that	procedure.	Giving

the	class	and	method	name	is	usually	sufficient;	however,

if	the	method	is	overloaded,	the	types	of	its	arguments

must	also	be	given.

4.2.4	Handling	Exceptions

When	a	procedure	terminates	with	an	exception,

execution	does	not	continue	right	after	the	call.	Instead,

control	is	transferred	to	some	code	that	handles	the

exception.

Code	deals	with	an	exception	in	two	ways.	The	first	is	to

handle	it	explicitly	by	using	the	try	statement.	For
example,	the	following	code	uses	a	try	statement	to
handle	NonPositiveException	should	it	be	thrown	by
the	call	of	fact.

			try	{	x	=	Num.fact(y);	}
			catch	(NonPositiveException	e)	{
						//	in	here	can	use	e
			}

If	the	call	of	fact	throws	NonPositiveException,	the
catch	clause	is	executed:	the	exception	object	is	assigned

to	variable	e	so	that	this	object	can	be	used	while
handling	the	exception.

This	example	has	one	catch	clause;	however,	several

catch	clauses	can	be	attached	to	the	try	statement	so
that	several	different	exceptions	can	be	handled.	Also,

try	statements	can	be	nested.	If	an	exception	thrown	by
the	body	of	the	inner	try	statement	is	not	caught	by	one
of	its	catch	clauses,	it	can	be	caught	by	one	of	the	catch

clauses	of	the	outer	try	statement.	For	example,	in

			try	{	…;



						try	{	x	=	Arrays.search(v,	7);	}
						catch	(NullPointerException	e)	{
								throw	new	NotFoundException(	);	}
			}	catch	(NotFoundException	b)	{	…	}

the	catch	clause	in	the	outer	try	statement	will	handle
NotFound	Exception	if	it	is	thrown	by	the	call	of
Arrays.search	or	by	the	catch	clause	for
NullPointerException.

The	catch	clauses	do	not	have	to	identify	the	actual	type

of	an	exception	object.	Instead,	the	clause	can	list	a

supertype	of	the	type.	For	example,	in	the	catch	clause

will	handle	both	NullPointerException	and
NotFound-Exception.	(Here	s	is	a	PrintWriter,	and
println	uses	e’s	toString	method	to	obtain	the
information	to	print.)

			try	{	x	=	Arrays.search(v,	y);	}
			catch	(Exception	e)	{	s.println(e);	return;	}

The	second	way	to	deal	with	an	exception	is	to	propagate

it.	This	occurs	when	a	call	within	some	procedure	P
signals	an	exception	that	is	not	handled	by	a	catch	clause

of	any	containing	try	statement	in	P.	In	this	case,	Java
automatically	propagates	the	exception	to	P’s	caller
provided	one	of	the	following	is	true:

that	exception	type	or	one	of	its	supertypes	is	listed	in

P’s	header,

the	exception	type	is	unchecked.

Otherwise,	there	is	a	compile-time	error.

A	procedure	should	only	raise	exceptions	that	are	listed

in	its	specification	since	this	is	what	a	person	writing

code	that	uses	the	procedure	relies	on.	Unfortunately,

Java	does	not	enforce	this	requirement	for	unchecked

exceptions.	Therefore,	you	must	enforce	it	yourself:	make

sure	that	any	exception	your	code	raises,	either	by

automatic	propagation	or	by	an	explicit	throw,	is	listed	in

the	header	of	the	procedure	you	are	implementing	(even

if	the	exception	is	unchecked)	and	described	in	that

procedure’s	specification.

4.2.5	Coping	with	Unchecked	Exceptions

Any	call	can	potentially	throw	any	unchecked	exception.

•	

•	



This	means	we	have	a	problem	in	catching	unchecked

exceptions	because	it’s	hard	to	know	where	they	come

from.	For	example,	in

			try	{	x	=	y[n];	i	=	Arrays.search(z,	x);	}
			catch	(IndexOutOfBoundsException	e)	{
						//	handle	IndexOutOfBoundsException	from	the	array	access	y[n]
			}
			//	code	here	continues	assuming	problem	has	been	fixed

IndexOutOfBoundsException,	which	is	an	unchecked
exception,	might	have	occurred	because	of	an	error	in	the

implementation	of	search.

The	only	way	to	be	certain	about	the	origin	of	an

unchecked	exception	is	to	narrow	the	scope	of	the	try
statement.	For	example,	it	is	certain	the	exception	comes

from	the	array	access	in	the	following	code:

			try	{	x	=	y[n];	}
			catch	(IndexOutOfBoundsException	e)	{
									//	handle	IndexOutOfBoundsException	from	the	array	access	y[n]
			}
			i	=	Arrays.search(z,	x);

We	will	discuss	these	issues	further	in	Section	4.4.2.

4.3	PROGRAMMING	WITH	EXCEPTIONS

When	implementing	a	procedure	with	exceptions,	the

programmer’s	job,	as	always,	is	to	provide	the	behavior

defined	by	the	specification.	If	this	behavior	includes

exceptions,	the	program	must	throw	the	proper

exceptions	at	the	proper	times	with	the	meaning

described	in	the	specification.	To	accomplish	this	task,

the	program	may	need	to	handle	exceptions	that	are

thrown	by	procedures	it	calls.

Some	exceptions	are	handled	specifically:	the	catch

clause	attempts	to	respond	to	the	specific	situation	that

gave	rise	to	the	exception.	Other	exceptions	are	handled

generically.	In	this	case,	the	catch	clause	does	not

attempt	to	deal	with	the	exception	in	any	specific	way.

Instead,	it	takes	a	generic	action.	It	might	stop	the

program	after	reporting	the	problem	to	a	user,	or	it	might

“restart”	the	program	by	reverting	to	an	earlier	state,

without	an	attempt	to	fix	the	exact	problem.	For	example,



such	a	program	might	carry	out	some	kind	of	shutdown,

followed	by	a	clean	restart.	(The	shutdown	should	also	be

logged,	so	that	if	it	was	due	to	a	program	error,	the	error

can	be	fixed.)

4.3.1	Reflecting	and	Masking

There	are	two	ways	to	deal	with	an	exception.	Sometimes

an	exception	is	reflected	up	another	level;	that	is,	the

caller	also	terminates	by	throwing	an	exception.

Reflecting	an	exception	can	be	accomplished	by

automatic	propagation,	as	discussed	in	Section	4.2.4,	or

by	explicitly	catching	an	exception	and	then	throwing	an

exception.	The	former	is	more	limited	because	the	same

exception	object	is	thrown.	More	commonly,	we	want	to

throw	a	different	object,	of	a	different	exception	type,

because	the	meaning	of	the	information	has	changed.

Another	point	is	that	before	reflecting	an	exception,	the

caller	may	need	to	do	some	local	processing	in	order	to

satisfy	its	specification.

For	example,	many	programs	that	iterate	through	arrays

need	to	“prime”	the	iteration	by	obtaining	an	initial	value

from	the	array.	This	is	the	case	in	the	min	procedure
shown	in	Figure	4.4.	min	simply	fetches	the	zero
element	of	the	array.	If	the	array	argument	is	null,	the
call	will	raise	NullPointerException,	and	this	is
reflected	to	the	caller	of	min	by	being	propagated
automatically.	If	the	array	is	empty,	the	call	will	raise

IndexOutOfBoundsException.	It	would	not	make
sense	to	reflect	this	exception	to	min’s	caller,	since	we
want	exceptions	that	are	related	to	the	min	abstraction
rather	than	exceptions	having	to	do	with	how	min	is
implemented.	Instead,	min	throws	EmptyException,
which	is	an	exception	that	is	meaningful	for	it.	Note	that

the	string	in	the	exception	object	identifies	Arrays.min
as	the	thrower.

A	second	possibility	is	that	the	caller	masks	the	exception

—that	is,	handles	the	exception	itself	and	then	continues

with	the	normal	flow.	This	situation	is	illustrated	in	the

sorted	procedure	in	Figure	4.4.	Again,	the	code	is
priming	the	loop;	but	in	this	case,	if	the	array	is	empty,	it

th



simply	means	it	is	sorted.

One	point	to	note	about	both	examples	is	how	we	used

exceptions	to	control	program	flow.	This	is	perfectly

acceptable	programming	practice:	exceptions	can	be	used

to	avoid	other	work.	For	example,	in	both	min	and
sorted,	the	code	does	not	need	to	check	the	length	of
the	array	explicitly.	(However,	depending	on	how	the

exception	mechanism	is	implemented,	it	may	be

expensive	to	handle	exceptions,	and	you	should	weigh

this	cost	against	the	benefit	of	using	exceptions	to	avoid

the	extra	work.)

4.4	DESIGN	ISSUES

Now	we	consider	how	to	decide	about	the	use	of

exceptions	when	designing	abstractions.	There	are	two

main	issues:	when	to	use	an	exception,	and	whether	to

use	a	checked	or	unchecked	exception.

An	important	point	is	that	exceptions	are	not

synonymous	with	errors.	Exceptions	are	a	mechanism

that	allows	a	method	to	bring	some	information	to	the

attention	of	its	caller.	That	information	might	not

concern	an	error.	For	example,	there	isn’t	anything

erroneous	about	search	being	called	on	an	element	that
isn’t	in	the	array;	instead,	this	is	just	an	interesting

situation	that	the	caller	should	be	informed	about.	We

convey	this	information	through	an	exception	because	we

want	to	distinguish	it	from	the	other	possibility.	The

classification	of	one	possibility	as	normal	and	the	others

as	exceptional	is	somewhat	arbitrary.

Figure	4.4	Reflecting	and	masking	exceptions

			public	class	Arrays	{

							public	static	int	min	(int[	]	a)	throws	NullPointerException,	EmptyException	{
								//	EFFECTS:	If	a	is	null	throws	NullPointerException	else	if	a	i
s	empty
								//					throws	EmptyException	else	returns	the	minimum	value	of	a
								int	m;
								try	{	m	=	a[0];	}
								catch	(IndexOutOfBoundsException	e)	{
											throw	new	EmptyException("Arrays.min");	}
								for	(int	i	=	1;	i	<						a.length;	i++)
											if	(a[i]	<	m)	m	=	a[i];
								return	m;	}

							public	static	boolean	sorted	(int[	]	a)	throws	NullPointerException	{



										//	effects:	If	a	is	null	throws	NullPointerException	else	if	a	is
										//					sorted	in	ascending	order	returns	true	else	returns	fal
se.
										int	prev;
										try	{	prev	=	a[0];	}
										catch	(IndexOutOfBoundsException	e)	{	return	true;	}
										for	(int	i	=	1;	i	<						a.length;	i++)
													if	(prev	<=	a[i])	prev	=	a[i];	else	return	false;
										return	true;	}
			}

Also,	even	when	an	exception	is	associated	with	what

appears	to	be	an	error	at	a	lower	level	of	abstraction,	the

situation	is	not	necessarily	an	error	at	a	higher	one.	For

example,	within	the	get	method	of	Vector,	it	appears	to
be	erroneous	if	the	given	index	isn’t	within	bounds.

However,	from	the	perspective	of	the	caller	of	get,	this
situation	may	simply	indicate	that	a	loop	should

terminate.	Thus,	it	can	be	just	as	“correct”	for	a	call	to

terminate	with	an	exception	as	to	terminate	normally.

Exceptions	are	simply	a	means	for	allowing	several	kinds

of	behavior	and	informing	the	caller	about	the	different

cases.

Furthermore,	not	every	error	leads	to	an	exception.

Consider	an	erroneous	record	in	a	large	input	file,	where

it	is	possible	to	continue	processing	the	file	by	skipping

that	record.	In	such	a	case,	it	may	be	appropriate	to

inform	a	person	(not	a	program)	about	the	error	by

writing	an	error	message	on	some	output	device.	Note,	by

the	way,	that	what	is	done	when	an	error	occurs	must	be

defined	in	the	abstraction’s	specification,	even	when	no

exception	is	thrown.

4.4.1	When	to	Use	Exceptions

Exceptions	should	be	used	to	eliminate	most	constraints

listed	in	requires	clauses.	The	requires	clause	should

remain	only	for	efficiency	reasons	or	if	the	context	of	use

is	so	limited	that	we	can	be	sure	the	constraint	is

satisfied.	For	example,	search	might	still	require	that
the	array	be	sorted,	since	it	can	then	be	implemented

much	more	efficiently.	Also,	the	partition	procedure
used	in	quick	sort	(Figure	3.6)	should	require	its

argument	i	to	be	less	than	its	argument	j,	since	the
context	of	use	is	so	limited.

Exceptions	should	also	be	used	to	avoid	encoding



information	in	ordinary	results.	For	example,	instead	of

returning	−1	if	the	element	is	not	in	the	array,	search
signals	an	exception.	It	is	better	to	convey	this

information	with	an	exception,	since	the	result	returned

in	this	case	cannot	be	used	like	a	regular	result.	By	using

an	exception,	we	make	it	easy	to	distinguish	this	result

from	a	regular	one,	thus	avoiding	a	potential	error.	Using

exceptions	instead	of	encoding	information	in	results	is

particularly	important	for	procedures	intended	for

general	use.	For	procedures	that	will	be	used	in	a	limited

context	(e.g.,	that	aren’t	public),	encoding	information
in	ordinary	results	may	be	acceptable.

The	rules	for	using	exceptions	are	summarized	in	Sidebar

4.1.

4.4.2	Checked	versus	Unchecked	Exceptions

Suppose	you	have	decided	that	you	need	to	define	a	new

exception	type.	How	do	you	choose	between	a	checked	or

an	unchecked	exception?

Checked	exceptions	either	must	be	handled	in	calling

code	or	must	be	listed	in	the	throws	clause	of	the

procedure	header;	otherwise,	there	will	be	a	compile-time

error.	This	provides	a	certain	amount	of	protection.	If	you

forget	to	handle	a	checked	exception	that	is	thrown	by

some	call	in	your	code,	the	compiler	will	warn	you	so	that

you	can	get	rid	of	the	error.

Sidebar	4.1	Rules	for	Using	Exceptions

When	the	context	of	use	is	local,	you	need	not	use	exceptions	because	you	can	easily	verify
that	requires	clauses	are	satisfied	by	calls	and	that	special	results	are	used	properly.

However,	when	the	context	of	use	is	nonlocal,	you	should	use	exceptions	instead	of	special
results.	And	you	should	use	exceptions	instead	of	requires	clauses	unless	a	requirement
cannot	be	checked	or	is	very	expensive	to	check.

However,	unchecked	exceptions	will	be	implicitly

propagated	to	the	caller	even	if	they	aren’t	listed	in	the

header.	This	means	that	procedures	can	raise	unchecked

exceptions	even	when	this	isn’t	mentioned	in	their	header

and	specification.	For	example,	if	search	is
implemented	incorrectly	so	that	it	accesses	its	argument

array,	a,	out	of	bounds	and	doesn’t	handle	the	resulting
IndexOutOfBoundsException,	it	will	throw	that

•	

•	



exception	to	its	caller,	even	though	that	possibility	is	not

mentioned	in	its	specification.

It	may	seem	that	this	really	isn’t	a	problem,	since	using

code	can	handle	the	exception,	for	example,	at	the	top

level.	But	code	isn’t	very	good	at	coping	with	programmer

errors,	which	are	usually	the	reason	unchecked

exceptions	propagate.	(Exceptions	also	propagate

because	of	resource	problems—for	example,	the	heap	ran

out	of	room;	programs	aren’t	good	at	coping	with	those

errors	either.)

Furthermore,	there	is	a	danger	that	the	exception	will	be

captured.	For	example,	in:

			try	{	x	=	y[n];	i	=	Arrays.search(z,	x);	}
			catch	(IndexOutOfBoundsException	e)	{
									//	handle	IndexOutOfBoundsException	from	use	of	array	y
			}
			//	code	here	continues	assuming	problem	has	been	fixed

the	catch	clause	might	handle

IndexOutOfBoundsException	from	search	by
mistake.	Whatever	corrective	action	is	taken	by	the	catch

clause	will	fix	only	the	problem	with	y	and	n,	but	not	the
problem	with	search.	It	is	unlikely	that	the	code	after
the	catch	clause	will	work	in	this	case,	and	when	the	error

is	finally	discovered,	it	may	be	very	difficult	to	track

down.

Why	does	Java	have	unchecked	exceptions	when	they	are

a	problem?	The	reason	is	that	checked	exceptions	are	also

a	problem:	if	your	code	is	certain	not	to	cause	one	to	be

raised,	you	still	must	handle	it!	This	is	why	many

exceptions	defined	by	Java	are	in	fact	unchecked.

So	there	are	good	reasons	on	both	sides	here.	This	means

that	there	is	a	design	issue:	when	you	define	a	new

exception	type,	you	must	think	carefully	about	whether	it

should	be	checked	or	unchecked.

Choosing	between	checked	and	unchecked	exceptions

should	be	based	on	expectations	about	how	the	exception

will	be	used.	If	you	expect	using	code	to	avoid	calls	that

raise	the	exception,	the	exception	should	be	unchecked.

This	is	the	rationale	behind



IndexOutOfBoundsException:	arrays	are	supposed
to	be	used	primarily	in	for	loops	that	control	the	indices
and	thus	ensure	that	all	calls	on	array	methods	have

indices	within	bounds.

Otherwise,	exceptions	should	be	checked.	For	example,	it

is	likely	that	many	calls	of	search	will	be	made	without
knowledge	of	whether	the	searched-for	integer	is	in	the

array.	In	such	a	case,	it	would	be	an	error	for	the	calling

code	not	to	handle	the	exception.	Therefore,	the

exception	type	should	be	checked	so	that	such	errors	can

be	detected	by	the	compiler.

The	question	of	whether	the	exception	is	“usually”

avoided	often	has	to	do	with	the	cost	and	convenience	of

avoiding	it.	For	example,	it	is	convenient	and	inexpensive

to	determine	the	size	of	a	vector	(by	calling	the	size
method,	which	returns	in	constant	time);	therefore,	using

code	is	likely	to	use	this	method	to	avoid

IndexOutOfBoundsException.	But	sometimes	there
is	no	convenient	way	to	avoid	the	exception,	or	avoiding

the	exception	is	costly.	Both	situations	arise	for	search.
There	may	be	no	other	procedure	to	determine	whether

the	element	is	in	the	array,	since	this	is	(partly)	the

purpose	of	search.	Furthermore,	if	such	a	procedure
existed,	its	call	would	be	costly.

The	rules	for	choosing	between	checked	and	unchecked

exceptions	are	summarized	in	Sidebar	4.2.

4.5	DEFENSIVE	PROGRAMMING

Exceptions	can	be	used	to	support	the	practice	of

defensive	programming—that	is,	writing	each	procedure

to	defend	itself	against	errors.	Errors	can	be	introduced

by	other	procedures,	by	the	hardware,	or	by	the	user

entering	data;	these	latter	errors	will	continue	to	exist

even	if	the	software	is	error	free.	An	exception

mechanism	provides	a	means	for	conveying	information

about	errors	and	a	way	to	handle	errors	without

cluttering	the	main	flow	of	a	routine.	Therefore,	it

encourages	a	methodology	of	writing	code	that	checks	for

problems	and	reports	them	in	an	orderly	way.



Sidebar	4.2	Checked	versus	Unchecked	Exceptions

You	should	use	an	unchecked	exception	only	if	you	expect	that	users	will	usually	write	code
that	ensures	the	exception	will	not	happen,	because

•	There	is	a	convenient	and	inexpensive	way	to	avoid	the	exception.

•	The	context	of	use	is	local.

Otherwise,	you	should	use	a	checked	exception.

For	example,	the	implementation	of	a	procedure	with	a

requires	clause	should	check,	if	possible,	whether	the

requires	clause	is	satisfied.	This	raises	the	question	of

what	to	do	if	the	requires	clause	is	not	satisfied.	One

possibility	is	to	halt	the	program	with	an	error	message	if

the	check	fails.	However,	this	is	not	a	very	robust

approach.	It’s	better	to	use	the	exception	mechanism

because	then,	if	the	call	occurs	in	a	context	in	which	a

higher	level	can	recover	from	problems	in	a	generic	way

(e.g.,	by	doing	a	restart),	it	will	be	able	to	do	this	for	the

failed	check	as	well.

It’s	a	good	idea	to	have	a	particular	exception	type

devoted	to	situations	such	as	the	requires	clause	not

being	satisfied.	A	good	name	for	this	type	is

FailureException;	it	is	an	unchecked	exception.

Headers	of	procedures	should	not	list

FailureException,	and	their	spec-ifications	should
not	mention	throwing	it.	The	reason	is	that	this	exception

is	used	for	situations	that	do	not	correspond	to	what	is

described	in	a	procedure’s	specification.	Instead,	the

exception	indicates	that	something	is	broken	so	that	the

procedure	is	unable	to	satisfy	its	specification.

There	are	many	other	situations	in	which

FailureException	should	be	thrown.	For	example,
suppose	you	are	using	search	in	a	context	in	which	you
know	x	is	in	the	array,	yet	your	call	of	search	throws
NotFoundException.	Since	this	is	a	checked	exception,
you	must	catch	it;	your	code	can	then	throw

FailureException.	The	string	within	the
FailureException,	as	usual,	should	indicate	what	the
problem	is.	One	easy	way	to	do	this	is	to	concatenate

information	about	your	class	and	method	with	the	string

obtained	from	NotFoundException,	for	example,

•	

•	



			catch	(NotFoundException	e)	{
							throw	new	FailureException("C.p"	+	e.toString(	));	}

More	generally,	FailureException	should	be	raised
whenever	your	code	checks	an	assumption	that	should

hold	and	discovers	it	doesn’t.	We	will	see	examples	of	this

in	later	chapters.

Of	course,	checking	for	problems	takes	time,	and	it	is

tempting	not	to	bother	with	the	checks,	or	to	use	them

only	while	debugging	and	disable	them	during

production.	This	is	generally	an	unwise	practice.

Defensive	programming	is	particularly	valuable	during

production	because	it	can	prevent	a	small	error	from

causing	a	large	problem,	such	as	a	damaged	database.

Disabling	checks	during	production	is	analogous	to

disconnecting	warning	lights	in	an	airplane;	a	pilot	would

never	do	this	because	the	results	could	be	catastrophic.

Checks	should	be	disabled	only	if	we	have	proved	that	the

errors	can	never	occur	or	if	the	checks	are	costly.

4.6	SUMMARY

In	this	chapter,	we	have	extended	procedures	to	include

exceptions.	Exceptions	are	needed	in	robust	programs

because	they	provide	a	way	to	respond	to	errors	and

unusual	situations.	If	an	argument	is	not	what	is

expected,	a	procedure	can	notify	the	caller	of	this	fact

rather	than	simply	failing	or	encoding	the	information	in

a	special	result.	Since	this	notification	is	distinct	from	the

normal	case,	the	caller	cannot	confuse	the	two.

Exceptions	are	introduced	when	procedures	are

designed.	Most	procedures	should	be	defined	over	the

entire	input	domain;	exceptions	are	used	to	take	care	of

situations	in	which	the	“usual”	behavior	cannot	happen.

Partial	procedures	are	suitable	only	when	it	is	either	too

expensive	or	not	possible	to	check	the	condition,	or	when

the	procedure	is	used	in	a	limited	context	in	which	it	can

be	proved	that	all	calls	have	proper	arguments.

In	implementing	a	procedure,	the	programmer	must

ensure	that	it	terminates	as	specified	in	all	situations.

Only	exceptions	permitted	by	the	specification	should	be



signaled,	and	each	should	be	signaled	only	in	the

situation	indicated	in	the	specification.	In	addition,	it	is	a

good	idea	to	practice	defensive	programming	by	checking

for	errors	in	as	many	cases	as	possible;	Failure-
Exception	can	be	used	to	report	such	errors.	An
example	is	checking	in	a	partial	procedure	for	inputs	that

do	not	satisfy	the	requires	clause.

EXERCISES

4.1	Implement	a	standalone	procedure	to	read	in	a	file

containing	words	and	white	space	and	produce	a

compressed	version	of	the	file	in	an	output	file.	The

compressed	version	should	contain	all	of	the	words	in

the	input	file	and	none	of	the	white	space,	except	that

it	should	preserve	lines.

4.2	Implement	search	as	specified	in	Figure	4.1	in	two
ways:	using	for	loops,	and	using	while	(true)
loops	that	are	terminated	when	accessing	the	array

raises	IndexOutOfBoundsException.	Which

implementation	is	better?	Discuss.

4.3	A	specification	for	a	procedure	that	computes	the

sum	of	the	elements	in	an	array	of	integers	might

require	a	nonempty	array,	return	0	if	the	array	is

empty,	or	throw	an	exception	if	the	array	is	empty.

Discuss	which	alternative	is	best	and	provide	the

specification	for	the	procedure.

4.4	Consider	a	procedure

								static	void	combine	(int[	]	a,	int[	]	b)

that	multiplies	each	element	of	a	by	the	sum	of	the
elements	of	b;	for	example,	if	a	=	[1,	2,	3]	and
b	=	[4,	5],	then	on	return	a	=	[9,	18,	27].
What	should	this	procedure	do	if	a	or	b	is	null	or
empty?	Give	a	specification	for	combine	that
answers	these	questions	and	explain	why	your

specification	is	a	good	one.



5	Data	Abstraction

This	chapter	discusses	the	most	important	abstraction

mechanism,	data	abstraction.	Data	abstraction	allows	us

to	abstract	from	the	details	of	how	data	objects	are

implemented	to	how	the	objects	behave.	This	focus	on

the	behavior	of	objects	forms	the	basis	of	object-oriented

programming.

Data	abstraction	allows	us	to	extend	the	programming

language	in	use	(e.g.,	Java),	with	new	data	types.	What

new	types	are	needed	depends	on	the	application	domain

of	the	program.	For	example,	in	implementing	a	compiler

or	interpreter,	stacks	and	symbol	tables	are	useful,	while

accounts	are	a	natural	abstraction	in	a	banking	system.

Polynomials	arise	in	a	symbolic	manipulation	system,

and	matrices	are	useful	in	defining	a	package	of	numeric

functions.	In	each	case,	the	data	abstraction	consists	of	a

set	of	objects—for	example,	stacks	or	polynomials—plus	a

set	of	operations.	For	example,	matrix	operations	include

addition,	multiplication,	and	so	on,	and	deposit	and

withdraw	are	operations	on	accounts.

The	new	data	types	should	incorporate	abstraction	both

by	parameterization	and	by	specification.	Abstraction	by

parameterization	can	be	achieved	in	the	same	way	as	for

procedures—by	using	parameters	wherever	it	is	sensible

to	do	so.	We	achieve	abstraction	by	specification	by

making	the	operations	part	of	the	type.	To	understand

why	the	operations	are	needed,	consider	what	happens	if

we	view	a	type	as	just	a	set	of	objects.	Then	all	that	is

needed	to	implement	the	type	is	to	select	a	storage

representation	for	the	objects;	all	the	using	programs	can

be	implemented	in	terms	of	this	representation.

However,	if	the	representation	changes,	or	even	if	its

interpretation	changes,	all	programs	that	use	the	type

must	be	changed:	there	is	no	way	to	limit	the	impact	of

the	change.

On	the	other	hand,	suppose	we	include	operations	in	the



type,	obtaining

data	abstraction	=	‹objects,	operations›

and	we	require	users	to	call	the	operations	instead	of

accessing	the	representation	directly.	Then	to	implement

the	type,	we	implement	the	operations	in	terms	of	the

chosen	representation,	and	we	must	reimplement	the

operations	if	we	change	the	representation.	However,	we

need	not	reimplement	any	using	programs	because	they

did	not	use	the	representation.	Now	we	have	abstracted

from	the	representation	details;	using	code	depends	only

on	the	specified	behavior	of	the	type	with	its	operations.

Therefore,	we	have	achieved	abstraction	by	specification.

If	enough	operations	are	provided,	lack	of	access	to	the

representation	will	not	cause	users	any	difficulty—

anything	they	need	to	do	to	the	objects	can	be	done,	and

done	efficiently,	by	calls	on	the	operations.	In	general,

there	will	be	operations	to	create	and	modify	objects	and

to	obtain	information	about	their	values.	Of	course,	users

can	augment	the	set	of	operations	by	defining	standalone

procedures,	but	such	procedures	would	not	have	access

to	the	representation.

Data	abstraction	allows	us	to	defer	decisions	about	data

structures	until	the	uses	of	the	data	are	fully	understood.

Choosing	the	right	data	structures	is	crucial	to	achieving

an	efficient	program.	In	the	absence	of	data	abstraction,

data	structures	must	be	defined	too	early;	they	must	be

specified	before	the	implementations	of	using	modules

can	be	designed.	At	this	point,	however,	the	uses	of	the

data	are	typically	not	well	understood.	Therefore	the

chosen	structure	may	lack	needed	information	or	be

organized	in	an	inefficient	way.

We	use	data	abstraction	to	avoid	defining	the	structure

immediately:	we	introduce	the	abstract	type	with	its

objects	and	operations.	Implementations	of	using

modules	can	then	be	designed	in	terms	of	the	abstract

type.	Decisions	about	how	to	implement	the	type	are

made	later,	when	all	its	uses	are	understood.

Data	abstraction	is	also	valuable	during	program



modification	and	maintenance.	In	this	phase,	data

structures	are	particularly	likely	to	change,	either	to

improve	performance	or	to	accommodate	changing

requirements.	Data	abstraction	limits	the	changes	to	just

the	implementation	of	the	type;	none	of	the	using

modules	need	be	changed.

In	this	chapter,	we	describe	how	to	specify	and

implement	data	abstractions	in	Java.	We	also	discuss

ways	to	reason	about	the	correctness	of	programs	that

use	and	implement	types,	and	we	describe	some	issues

that	arise	in	designing	new	types.

5.1	SPECIFICATIONS	FOR	DATA	ABSTRACTIONS

Just	as	was	the	case	for	procedures,	the	meaning	of	a	type

should	not	be	given	by	any	of	its	implementations.

Instead,	a	specification	should	define	its	behavior.	Since

objects	of	the	type	are	used	only	by	calling	the	operations,

most	of	the	specification	consists	of	explaining	what	the

operations	do.

In	Java,	new	types	are	defined	by	classes	or	interfaces.

For	now,	we	will	consider	only	classes;	interfaces	will	be

discussed	in	Chapter	7.

Each	class	defines	a	type	by	defining	a	name	for	the	type,

a	set	of	constructors,	and	a	set	of	instance	methods	or

methods.	Constructors	are	used	to	initialize	new	objects

of	the	type;	these	are	the	instances.	Once	an	object	has

been	created	(and	initialized	by	a	constructor),	users	can

access	it	by	calling	its	methods.

The	form	of	a	data	abstraction	specification	is	shown	in

Figure	5.1.	The	header	class	dname	indicates	that	a
new	data	type	called	dname	is	being	defined.	The	header
contains	a	declaration	of	the	visibility	of	the	class;	almost

all	classes	have	public	visibility	so	that	they	can	be	used

by	code	outside	of	their	containing	package.

Figure	5.1	The	form	of	a	data	abstraction	specification

			visibility	class	dname	{
							//OVERVIEW:	A	brief	description	of	the	behavior	of	the	type
′s	objects	goes	here.

						//constructors



						//specs	for	constructors	go	here

						//methods
						//specs	for	methods	go	here
			}

The	specification	has	three	parts.	The	overview	gives	a

brief	description	of	the	data	abstraction,	including	a	way

of	viewing	the	abstract	objects	in	terms	of	“well-

understood”	concepts.	It	usually	presents	a	model	for	the

objects;	that	is,	it	describes	the	objects	in	terms	of	other

objects	that	the	reader	of	the	specification	can	be

expected	to	understand.	For	example,	stacks	might	be

defined	in	terms	of	mathematical	sequences.	The

overview	section	also	states	whether	objects	of	the	type

are	mutable,	so	that	their	state	can	change	over	time,	or

immutable.

The	constructors	part	of	the	specification	defines	the

constructors	that	initialize	new	objects,	while	the

methods	part	defines	the	methods	that	allow	access	to	the

objects	once	they	have	been	created.	All	the	constructors

and	methods	that	appear	in	the	specification	will	be

public.

Constructors	and	methods	are	procedures,	and	they	are

specified	using	the	specification	notation	presented	in

Chapters	3	and	4,	with	the	following	differences:

Methods	and	constructors	both	belong	to	objects,

rather	than	to	classes.	Therefore,	the	keyword	static
will	not	appear	in	the	methods′	headers	(since	this

keyword	means	that	the	method	belongs	to	the	class

rather	than	to	an	object	of	the	class).

The	object	a	method	or	constructor	belongs	to	is

available	to	it	as	an	implicit	argument,	and	this	object

can	be	referred	to	in	the	method	or	constructor

specification	as	this.

As	was	the	case	for	specifications	of	procedures,

specifications	for	data	abstractions	take	the	form	of

comments	in	the	code.	When	a	data	abstraction	is	first

invented,	all	that	exists	is	the	specification;	almost	all

code	in	the	class,	such	as	the	bodies	of	the	methods,	is

missing.	Later,	when	the	data	abstraction	is

•	

•	



implemented,	this	code	is	added.

5.1.1	Specification	of	IntSet

Figure	5.2	gives	a	specification	for	the	IntSet	data
abstraction.	IntSets	are	unbounded	sets	of	integers
with	operations	to	create	a	new,	empty	IntSet,	test
whether	a	given	integer	is	an	element	of	an	IntSet,	and
add	or	remove	elements.	The	overview	indicates	that

IntSets	are	mutable.	It	also	indicates	that	we	will
model	IntSets	in	terms	of	mathematical	sets.	In	the
rest	of	the	specification,	we	specify	each	operation	using

this	model.

Figure	5.2	Specification	of	the	IntSet	data	abstraction

			public	class	IntSet	{
						//OVERVIEW:	IntSet	s	are	mutable,	unbounded	sets	of	integers.
						//		A	typical	IntSet	is	{x1,..	.,	xn}.

						//constructors
						public	IntSet	(	)
									//EFFECTS:	Initializes	this	to	be	empty.

						//methods
						public	void	insert	(int	x)
									//MODIFIES:	this
									//EFFECTS:	Adds	x	to	the	elements	of	this,	i.e.,	this_post	=	this	+	{	x	}.

						public	void	remove	(int	x)
									//MODIFIES:	this
									//EFFECTS:	Removes	x	from	this,	i.e.,	this_post	=	this	-	{	x	}

						public	boolean	isIn	(int	x)
									//EFFECTS:	If	x	is	in	this	returns	true	else	returns	false.
		
						public	int	size	(	)
									//EFFECTS:	Returns	the	cardinality	of	this.

						public	int	choose	(	)	throws	EmptyException
									//EFFECTS:	If	this	is	empty,	throws	EmptyException	else
									//		returns	an	arbitrary	element	of	this.
			}

Figure	5.2	uses	set	notation	in	the	specifications	of	the

methods.	In	particular,	it	uses	+	for	set	union,	and	–	for

set	difference.	Figure	5.3	summarizes	the	set	notation

used	in	this	book.

The	IntSet	type	has	a	single	constructor	that	initializes
the	new	set	to	be	empty;	note	that	the	specification	refers

to	the	new	set	object	as	this.	Since	a	constructor	always
modifies	this	(to	initialize	it),	we	do	not	bother	to
indicate	the	modification	in	the	modifies	clause.	In	fact,

this	modification	is	invisible	to	users:	they	do	not	have

access	to	the	constructor′s	object	until	after	the



constructor	runs,	and	therefore,	they	cannot	observe	the

state	change.

Figure	5.3	Set	notation

A	set	is	denoted	as	{x	1,	…,	xn}.	The	xi′s	are	the	elements

of	the	set.	There	are	no	duplicates	in	a	set.

set	union:	t	=	s	1	+	s	2	is	the	set	containing	all	the

elements	of	set	s	1	and	all	the	elements	of	set	s	2.	If	s	1

and	s	2	contain	an	element	in	common,	there	will	be

only	one	occurrence	of	that	element	in	t.

set	difference:	t	=	s	1	–	s	2	is	the	set	containing	all	the

elements	of	s	1	that	are	not	also	elements	of	s	2.

set	intersection:	t	=	s	1&s	2	is	the	set	containing	all

elements	that	are	members	of	both	s	1	and	s	2.

cardinality:	|s|	stands	for	the	size	of	set	s.

set	membership:	x	in	s	is	true	if	x	is	an	element	of	s.

set	former:	t	={x	|	p(x)}	is	the	set	of	all	elements	x	such

that	p(x)	is	true.

Once	an	IntSet	object	exists,	elements	can	be	added	to
it	by	calling	its	insert	method,	and	elements	can	be
removed	by	calling	remove;	again,	the	specifications
refer	to	the	object	as	this.	These	two	methods	are
mutators	since	they	modify	the	state	of	their	object;	their

specifications	make	it	clear	that	they	are	mutators

because	they	contain	a	modifies	clause	stating	that	this
is	modified.	Note	that	the	specifications	of	insert	and
remove	use	the	notation	this_post	to	indicate	the
value	of	this	when	the	operation	returns.	An	input
argument	name	without	the	post	qualifier	always	means

the	value	when	the	operation	is	called.

The	remaining	methods	are	observers:	they	return

information	about	the	state	of	their	object	but	do	not

change	the	state.	Observers	do	not	have	a	modifies

clause.	(More	accurately,	an	observer	does	not	have	a

modifies	clause	stating	that	this,	or	some	argument
object	of	its	type,	is	modified;	however,	observers

typically	don′t	modify	anything.)

The	choose	method	returns	an	arbitrary	element	of	the



IntSet;	thus,	it	is	underdetermined.	It	throws	an
exception	if	the	set	is	empty.	This	exception	can	be

unchecked	since	users	can	call	the	size	method	before
calling	choose	to	cheaply	and	conveniently	ensure	that
the	set	is	nonempty.

Note	that	insert	does	not	throw	an	exception	if	the
integer	is	already	in	the	set,	and	similarly,	remove	does
not	throw	an	exception	if	the	integer	is	not	in	the	set.

These	decisions	are	based	on	assumptions	about	how	sets

will	be	used.	We	expect	that	users	will	add	and	remove

set	elements	without	concern	for	whether	they	are

already	there.	Therefore,	the	methods	do	not	throw

exceptions.	If	we	expected	a	different	pattern	of	usage,	we

might	change	the	specifications	and	headers	of	these

methods	(to	throw	an	exception),	or	we	might	provide

additional	methods	that	throw	an	exception	(e.g.,

insertNonDup	and	removeIfIn),	so	that	users	can
choose	the	method	that	best	fits	their	needs.

In	the	IntSet	specification,	we	are	relying	on	the	reader
knowing	what	mathematical	sets	are;	otherwise,	the

specification	would	not	be	understandable.	In	general,

this	reliance	on	informal	description	is	a	weakness	of

informal	specifications.	It	is	probably	reasonable	to

expect	the	reader	to	understand	a	number	of

mathematical	concepts,	such	as	sets,	sequences,	and

integers.	However,	not	all	types	can	be	described	nicely	in

terms	of	such	concepts.	If	the	concepts	are	inadequate,

we	must	describe	the	type	as	best	we	can,	even	by	using

pictures;	but	of	course,	there	is	always	the	danger	that	the

reader	will	not	understand	the	description	or	will

interpret	it	differently	than	we	intended.	Techniques	for

writing	understandable	specifications	will	be	discussed	in

Chapter	9.

Note	that	the	specification	takes	the	form	of	a

preliminary	version	of	the	class.	This	code	could	be

compiled	if	the	methods	and	constructors	were	given

empty	bodies	(except	that	methods	that	return	results

will	need	a	type-correct	return	statement).	This	will	allow

you	to	compile	code	that	uses	the	abstraction,	so	that	you



′ll	be	able	to	get	rid	of	errors	that	the	compiler	catches,

such	as	type	errors.	You	probably	won′t	be	able	to	run	the

using	code,	however,	until	after	the	new	type	is

implemented.

5.1.2	The	Poly	Abstraction

A	second	example	of	a	data	abstraction	specification	is

given	in	Figure	5.4.	Polys	are	polynomials	with	integer
coefficients.	Unlike	IntSets,	Polys	are	immutable:	once
a	Poly	has	been	created	(and	initialized	by	a
constructor),	it	cannot	be	modified.	Operations	are

provided	to	create	a	one-term	Poly	and	to	add,	subtract,
and	multiply	Polys.

Figure	5.4	Specification	of	the	Poly	data	abstraction

			public	class	Poly	{
						//OVERVIEW:	Polys	are	immutable	polynomials	with	integer	coefficie
nts.
						//		A	typical	Poly	is	c0		+c1x+..	.

						//constructors
						public	Poly	(	)
									//EFFECTS:	Initializes	this	to	be	the	zero	polynomial.
	
						public	Poly	(int	c,	int	n)	throws	NegativeExponentException
									//EFFECTS:	If	n	<	0	throws	NegativeExponentException	else

									//		initializes	this	to	be	the	Poly	cxn.

						//methods
						public	int	degree	(	)
									//EFFECTS:	Returns	the	degree	of	this,	i.e.,	the	largest	exponent
									//		with	a	non-
zero	coefficient.	Returns	0	if	this	is	the	zero	Poly.

						public	int	coeff	(int	d)
									//EFFECTS:	Returns	the	coefficient	of	the	term	of	this	whose	ex
ponent	is	d.

						public	Poly	add	(Poly	q)	throws	NullPointerException
									//EFFECTS:	If	q	is	null	throws	NullPointerException	else
									//		returns	the	Poly	this	+	q	.

						public	Poly	mul	(Poly	q)	throws	NullPointerException
									//EFFECTS:	If	q	is	null	throws	NullPointerException	else
									//		returns	the	Poly	this	*	q.

						public	Poly	sub	(Poly	q)	throws	NullPointerException
									//EFFECTS:	If	q	is	null	throws	NullPointerException	else
									//		returns	the	Poly	this	-	q.

						public	Poly	minus	(	)
									//EFFECTS:	Returns	the	Poly	-	this.
			}

The	Poly	type	has	two	constructors,	one	to	create	the
zero	polynomial,	and	one	to	create	an	arbitrary

monomial.	In	general,	a	type	can	have	a	number	of

constructors.	All	constructors	have	the	same	name,	the



type	name,	and	therefore,	if	there	is	more	than	one

constructor,	this	name	is	overloaded.

Java	allows	method	names	to	be	overloaded	as	well.	Java

requires	that	overloaded	definitions	differ	from	one

another	in	the	number	of	arguments	and/or	their	types;

otherwise,	a	compile-time	error	occurs.	The	two

definitions	for	the	Poly	constructor	are	legal	since	one
has	no	arguments	and	the	other	has	two	arguments.

Poly	has	no	mutator	methods:	no	method	has	a
modifies	clause.	This	is	what	we	expect	to	see	for	an
immutable	data	abstraction.	Furthermore,	the	method

specifications	do	not	use	the	post	notation	that	was	used

in	the	IntSet	specification.	This	notation	is	not	needed
for	immutable	abstractions:	since	object	state	doesn′t

change,	the	pre	and	post	states	of	objects	are	identical.

As	part	of	defining	Poly,	we	need	to	decide	whether
NegativeExponent-Exception	is	checked	or
unchecked.	Since	it	seems	likely	that	users	will	avoid	calls

with	a	negative	exponent,	it	is	appropriate	to	make	the

exception	unchecked.

5.2	USING	DATA	ABSTRACTIONS

Figure	5.5	gives	examples	of	procedures	that	use	data

abstractions.	(The	classes	of	the	procedures	aren′t	shown

in	the	figure.)	The	diff	method	returns	a	new	Poly	that
is	the	result	of	differentiating	its	argument	Poly.	The
getElements	routine	returns	an	IntSet	containing	the
integers	in	its	array	argument	a;	there	are	no	duplicates
in	the	returned	set	(since	sets	do	not	contain	duplicates)

even	if	there	are	duplicates	among	the	elements	of	a.

These	routines	are	written	based	on	the	specifications	of

the	used	abstractions	and	can	use	only	what	is	described

in	the	specifications.	They	are	not	able	to	access	the

implementation	details	of	the	abstract	objects	since,	as

we	shall	see,	this	access	is	limited	to	implementations	of

the	objects′	constructors	and	methods.	They	can	use

methods	to	access	object	state	and	to	modify	that	state	if

the	object	is	mutable,	and	they	can	use	constructors	to

initialize	new	objects.



Figure	5.5	Using	abstract	data	types

			public	static	Poly	diff	(Poly	p)	throws	NullPointerException	{
						//EFFECTS:	If	p	is	null	throws	NullPointerException
						//		else	returns	the	Poly	obtained	by	differentiating	p.
						Poly	q	=	new	Poly	(	);
						for	(int	i	=	1;	i	<=	p.degree(	);	i++)
									q	=	q.add(new	Poly(p.coeff(i)*i,	i	-	1));
						return	q;
			}

			public	static	IntSet	getElements	(int[	]	a)
									throws	NullPointerException	{
						//	EFFECTS:	If	a	is	null	throws	NullPointerException	else	returns	
a	set
						//			containing	an	entry	for	each	distinct	element	of	a.
						IntSet	s	=	new	IntSet(	);
						for	(int	i	=	0;	i	<	a.length;	i++)	s.insert(a[i]);
						return	s;
			}

5.3	IMPLEMENTING	DATA	ABSTRACTIONS

A	class	both	defines	a	new	type	and	provides	an

implementation	for	it.	The	specification	constitutes	the

definition	of	the	type.	The	remainder	of	the	class	provides

the	implementation.

To	implement	a	data	abstraction,	we	select	a

representation,	or	rep,	for	its	objects	and	then

implement	the	constructors	to	initialize	the

representation	properly	and	the	methods	to	use/modify

the	representation	properly.	The	chosen	representation

must	permit	all	operations	to	be	implemented	in	a

reasonably	simple	and	efficient	manner.	In	addition,	if

some	of	the	operations	must	run	quickly,	the

representation	must	make	this	possible.	A	representation

that	is	fast	for	some	operations	often	will	be	slower	for

others.	We	might,	therefore,	require	multiple

implementations	of	the	same	type;	we	will	discuss	how	to

achieve	this	in	Chapter	7.

For	example,	a	plausible	representation	for	an	IntSet
object	is	a	vector,	where	each	integer	in	the	IntSet
occurs	as	an	element	of	the	vector.	We	could	choose	to

have	each	element	of	the	set	occur	exactly	once	in	the

vector	or	allow	it	to	occur	many	times.	The	latter	choice

makes	the	implementation	of	insert	run	faster	but
slows	down	remove	and	isIn.	Since	isIn	is	likely	to	be
called	frequently,	we	will	make	the	former	choice,	and

therefore,	there	will	be	no	duplicate	elements	in	the



vector.

5.3.1	Implementing	Data	Abstractions	in	Java

A	representation	typically	has	a	number	of	components;

in	Java,	each	of	these	is	an	instance	variable	of	the	class

implementing	the	data	abstraction.	The	implementations

of	the	constructors	and	methods	access	and	manipulate

the	instance	variables.

Thus,	when	considered	from	an	implementation	point	of

view,	objects	have	both	methods	and	instance	variables.

To	support	abstraction,	however,	it	is	important	to

restrict	access	to	the	instance	variables	to	the

implementation	of	the	methods	and	constructors;	this

allows	you,	for	example,	to	reimplement	an	abstract	type

without	affecting	any	code	that	uses	the	type.	Therefore,

the	instance	variables	should	not	be	visible	to	users;	code

that	uses	the	objects	can	refer	only	to	their	methods.

The	instance	variables	are	prevented	from	being	visible	to

users	by	declaring	them	to	be	private.	Java	allows

instance	variables	to	have	other	than	private	visibility.	It

is	generally	not	a	good	idea	to	have	public	instance

variables;	this	point	will	be	discussed	in	more	detail	in

Sections	5.6.2	and	5.9.	The	one	exception	to	this	rule

occurs	when	defining	record	types;	record	types	are

discussed	in	Section	5.3.4.

Declarations	of	instance	variables	do	not	have	the

static	qualifier.	These	variables	belong	to	objects;	there
is	a	separate	set	of	them	for	each	object.	It	is	also	possible

to	declare	static	variables	within	a	class.	Such	variables

belong	to	the	class	itself,	rather	than	to	specific	objects,

just	as	static	methods	belong	to	the	class.	Static	variables

are	not	used	very	often	in	implementing	data

abstractions;	some	examples	of	their	use	will	be	given	in

Chapter	15.

5.3.2	Implementation	of	IntSet

This	section	gives	a	first	example	of	an	implementation—

for	the	IntSet	data	abstraction.	The	implementation	is
given	in	Figure	5.6.

The	first	point	to	note	here	is	the	definition	of	the



IntSet	rep,	preceding	the	implementations	of	the
constructors	and	methods.	In	this	case,	the	rep	consists

of	a	single	instance	variable.	Since	this	variable	has

private	visibility,	it	can	be	accessed	only	by	code	inside	its

class.

Figure	5.6	Implementation	of	IntSet

			public	class	IntSet	{
						//OVERVIEW:	IntSets	are	unbounded,	mutable	sets	of	integers.
						private	Vector	els;			//	the	rep

						//constructors
						public	IntSet	(	)	{
									//EFFECTS:	Initializes	this	to	be	empty.
										els	=	new	Vector(	);	}

						//methods
						public	void	insert	(int	x)	{
									//MODIFIES:	this
									//EFFECTS:	Adds	x	to	the	elements	of	this.
									Integer	y	=	new	Integer(x);
									if	(getIndex(y)	<	0)	els.add(y);	}
		

						public	void	remove	(int	x)	{
									//MODIFIES:	this
									//EFFECTS:	Removes	x	from	this.
									int	i	=	getIndex(new	Integer(x));
									if	(i	<	0)	return;
									els.set(i,	els.lastElement(	));
									els.remove(els.size(	)	-	1);	}

						public	boolean	isIn	(int	x)	{
									//EFFECTS:	Returns	true	if	x	is	in	this	else	returns	false.
									return	getIndex(new	Integer(x))	>=	0;	}

						private	int	getIndex	(Integer	x)	{
									//EFFECTS:	If	x	is	in	this	returns	index	where	x	appears	else	r
eturns	-	1.
									for	(int	i	=	0;	i	<	els.size(	);	i++)
												if	(x.equals(els.get(i)))	return	i;
									return	-1;	}
		

						public	int	size	(	)	{
									//EFFECTS:	Returns	the	cardinality	of	this.
									return	els.size(	);	}

						public	int	choose	(	)	throws	EmptyException	{
									//EFFECTS:	If	this	is	empty	throws	EmptyException	else
									//	returns	an	arbitrary	element	of	this.
													if	(els.size(	)	==	0)	throw	new	EmptyException(″IntSet.choose
″);
													return	els.lastElement(	);	}
			}

The	constructors	and	methods	belong	to	a	particular

object	of	their	type.	The	object	is	passed	as	an	additional,

implicit	argument	to	the	constructors	and	methods,	and

they	can	refer	to	it	using	the	keyword	this.	For	example,



the	instance	variable	els	can	be	accessed	using	the	form
this.els.	(The	code	cannot	assign	to	this.)	However,
the	prefix	is	not	needed:	the	code	can	refer	to	methods

and	instance	variables	of	its	own	object	by	just	using	their

names.	Thus,	in	the	methods	and	constructors	in	the

figure,	els	refers	to	the	els	instance	variable	of	this.

The	implementation	of	IntSet	is	straightforward.	The
constructor	initializes	its	object	by	creating	the	vector

that	will	hold	the	elements	and	assigning	it	to	els;	since
the	vector	is	empty,	no	more	work	need	be	done.	The

insert,	remove,	and	isIn	methods	all	make	use	of	the
private	method,	getIndex,	to	determine	whether	the
element	of	interest	is	already	in	the	set.	Doing	this	check

allows	insert	to	preserve	the	no-duplicates	condition.
This	condition	is	relied	on	in	size	(since	otherwise	the
size	of	the	vector	would	not	be	the	same	as	the	size	of	the

set)	and	in	remove	(since	otherwise	there	might	be	other
occurrences	of	the	element	that	would	need	to	be

removed).

Note	that	getIndex	has	private	visibility;	therefore,	it
cannot	be	called	outside	the	class.	The	design	takes

advantage	of	this	fact	by	having	getIndex	return	–	1
when	the	element	is	not	in	the	vector	rather	that	using	an

exception.	As	discussed	in	Chapter	4,	this	is	a	satisfactory

approach	here,	since	getIndex	is	used	only	within	this
class.

Since	vectors	cannot	store	ints,	the	methods	use
Integer	objects	instead	to	contain	the	set	elements.
This	approach	is	somewhat	awkward.	An	alternative	is	to

use	arrays	of	ints;	but	this	has	its	own	difficulties,	since
then	the	implementation	of	IntSet	would	need	to	switch
to	bigger	arrays	as	the	set	grows.	The	implementation	of

Vector	takes	care	of	this	problem	in	an	efficient
manner.

getIndex	uses	the	equals	method	to	check	for
membership.	This	check	is	correct	because	equals	for
Integer	objects	returns	true	only	if	the	two	objects
being	compared	are	both	Integers	and	both	contain	the
same	integer	value.



5.3.3	Implementation	of	Poly

Now	we	consider	the	implementation	of	the	Poly	data
abstraction.	Unliked	IntSets,	Polys	are	immutable,
and	therefore,	their	size	does	not	change	overtime.

Therefore,	we	can	represent	a	Poly	as	an	array	rather
than	a	vector.	The	i 	element	of	the	array	will	contain	the

coefficient	of	the	i 	exponent;	this	representation	makes

sense	only	if	the	Poly	is	dense.	The	zero	Poly	can	be
represented	either	as	an	empty	array	or	as	a	one-element

array	containing	zero;	we	will	use	the	latter	approach.	In

addition,	we	will	have	an	instance	variable	that	keeps

track	of	the	degree	of	the	Poly	since	this	is	convenient.

Figures	5.7	and	5.8	show	the	implementation	of	Poly.
The	main	point	to	note	here	is	that	several	of	the	methods

(e.g.,	add	and	mul)	make	use	of	instance	variables	of
other	Poly	objects	in	addition	to	their	own	object.	Code
in	a	method	is	allowed	to	access	private	information	in

other	objects	of	its	class	as	well	as	private	information	in

its	own	object.

Note	how	sub	and	mul	are	implemented	in	terms	of
other	Poly	methods.	Another	point	is	the	use	of	the
Poly	constructor	in	the	implementations	of	add,	mul,
and	minus.	All	of	these	methods	actually	initialize	the
new	Poly	themselves;	this	is	allowed	since	the	new	Poly
is	just	another	object	of	the	class,	which	can	be	accessed

in	the	method.	These	methods	create	the	new	Poly	using
the	private	constructor	(which	cannot	be	called	by	users)

to	get	an	array	of	the	right	size.	In	the	case	of	mul,	we	rely
on	the	fact	that	the	array	constructor	initializes	all

elements	of	an	array	of	ints	to	zero.	Also,	note	the	care
taken	to	ensure	that	the	new	Poly	object	is	the	right	size.
This	requires	a	precomputation	in	the	add	method	to
handle	the	case	of	trailing	zeros.

5.3.4	Records

Suppose	polynomials	are	going	to	be	sparse	rather	than

dense.	In	this	case,	the	previous	implementation	would

not	be	a	good	one,	since	the	array	is	likely	to	be	large	and

full	of	zeros.	Instead,	we	would	like	to	store	information

only	for	the	coefficients	that	are	nonzero.

th

th



This	could	be	accomplished	by	using	two	vectors:

			private	Vector	coeffs;	//	the	non-zero	coefficients
			private	Vector	exps;	//	the	associated	exponents

However,	the	implementation	in	this	case	must	ensure

that	the	two	arrays	are	lined	up,	so	that	the	i 	element	of

coeffs	contains	the	coefficient	that	goes	with	the
exponent	stored	in	the	i 	element	of	exps.	It	would	be
more	convenient	if	instead	we	could	use	just	one	vector,

each	of	whose	elements	contained	both	the	coefficient

and	the	associated	exponent.

Figure	5.7	First	part	of	Poly	implementation

public	class	Poly	{
			//OVERVIEW:	…
			private	int[	]	trms;
			private	int	deg;

			//constructors
			public	Poly	(	)	{
						//EFFECTS:	Initializes	this	to	be	the	zero	polynomial.
						trms	=	new	int[1];	deg	=	0;	}

			public	Poly	(int	c,	int	n)	throws	NegativeExponentException	{
						//EFFECTS:	If	n	<	0	throws	NegativeExponentException	else

						//		initializes	this	to	be	the	Poly	cxn.
						if	(n	<	0)
									throw	new	NegativeExponentException(″Poly(int,	int)	constructor
″);
						if	(c	==	0)	{	trms	=	new	int[1];	deg	=	0;	return;	}
						trms	=	new	int[n+1];
						for	(int	i	=	0;	i	<	n;	i++)	trms[i]	=	0;
						trms[n]	=	c;
						deg	=	n;	}

			private	Poly	(int	n)	{	trms	=	new	int[n+1];	deg	=	n;	}

			//methods
			public	int	degree	(	)	{
						//EFFECTS:	Returns	the	degree	of	this	,	i.e.,	the	largest	exponent
						//		with	a	non-
zero	coefficient.	Returns	0	if	this	is	the	zero	Poly.
						return	deg;	}

			public	int	coeff	(int	d)	{
						//EFFECTS:	Returns	the	coefficient	of	the	term	of	this	whose	expon
ent	is	d.
						if	(d	<	0	||	d	>	deg)	return	0;	else	return	trms[d];	}

			public	Poly	sub	(Poly	q)	throws	NullPointerException	{
						//EFFECTS:	If	q	is	null	throws	NullPointerException	else
						//		returns	the	Poly	this	-	q.
						return	add	(q.minus(	));	}

			public	Poly	minus	(	)	{
						//EFFECTS:	Returns	the	Poly	–	this.
						Poly	r	=	new	Poly(deg);

th

th



						for	(int	i	=	0;	i	<	deg;	i++)	r.trms[i]	=	-	trms[i];
						return	r;	}

Figure	5.8	Rest	of	the	implementation	of	the	Poly	data	abstraction

public	Poly	add	(Poly	q)	throws	NullPointerException	{
			//EFFECTS:	If	q	is	null	throws	NullPointerException	else
			//		returns	the	Poly	this	+	q.
			Poly	la,	sm;
			if	(deg	>	q.deg)	{la	=	this;	sm	=	q;}	else	{la	=	q;	sm	=	this;}
			int	newdeg	=	la.deg;	//	new	degree	is	the	larger	degree
			if	(deg	==	q.deg)	//	unless	there	are	trailing	zeros
						for	(int	k	=	deg;	k	>	0;	k--)
									if	(trms[k]	+	q.trms[k]	!=	0)	break;	else	newdeg--;
			Poly	r	=	new	Poly(newdeg);	//	get	a	new	Poly
			int	i;
			for	(i	=	0;	i	<=	sm.deg	&&	i	<=	newdeg;	i++)
						r.trms[i]	=	sm.trms[i]	+	la.trms[i];
			for	(int	j	=	i;	j	<=	newdeg;	j++)	r.trms[j]	=	la.trms[j];
			return	r;	}

public	Poly	mul	(Poly	q)	throws	NullPointerException	{
			//EFFECTS:	If	q	is	null	throws	NullPointerException	else
			//		returns	the	Poly	this	*	q.
			if	((q.deg	==	0	&&	q.trms[0]	==	0)	||
						(deg	==	0	&&	trms[0]	==	0))	return	new	Poly(	);
			Poly	r	=	new	Poly(deg+q.deg);
			r.trms[deg+q.deg]	=	0;	//	prepare	to	compute	coeffs
			for	(int	i	=	0;	i	<=	deg;	i++)
						for	(int	j	=	0;	j	<=	q.deg;	j++)
									r.trms[i+j]	=	r.trms[i+j]	+	trms[i]*q.trms[j];
			return	r;	}
}

This	can	be	accomplished	by	using	a	record.	Most

languages	provide	records	as	a	built-in	feature.	For

example,	in	C	and	C++,	you	can	define	a	struct	with
named	fields	of	various	types.	Java,	however,	does	not

provide	this	ability.	Instead,	record	types	must	be	defined

using	classes.

A	record	is	simply	a	collection	of	fields,	each	with	a	name

and	type.	The	class	implementing	such	a	type	has	a	public

or	package-visible	instance	variable	for	each	field;

package	visibility	means	the	fields	can	be	accessed	by

other	code	in	the	same	package	but	nowhere	else.	The

class	provides	a	constructor	for	creating	a	new	object	of

the	type;	the	constructor	takes	arguments	to	define	the

initial	values	of	the	fields.	An	example	is	given	in	Figure

5.9.	Since	no	visibility	is	explicitly	indicated	for	the	class

and	its	instance	variables,	they	are	package	visible.

Figure	5.9	A	record	type

class	Pair	{
			//OVERVIEW:	A	record	type
			int	coeff;
			int	exp;



			Pair(int	c,	int	n)	{	coeff	=	c;	exp	=	n;	}
}

Note	that	no	specification	is	given	for	this	class,	other

than	to	indicate	that	it	is	a	record	type.	Such	a	minimal

specification	is	sufficient:	knowing	that	the	class	defines	a

record	type	indicates	that	the	type	simply	provides	the

fields	defined	by	the	instance	variables.

We	can	use	Pair	in	an	implementation	of	sparse
polynomials:

			private	Vector	trms;	//	the	terms	with	non-zero	coefficients

Here	each	element	of	trms	is	a	Pair.	This
representation	is	simpler	than	the	one	using	two	vectors.

An	additional	benefit	is	that	it	allows	us	to	avoid	the	use

of	the	intValue	method.	For	example,	consider	the
implementation	of	the	coeff	method.	If	we	are	using
two	vectors,	we	have:

public	int	coeff	(int	x)	{
			for	(int	i	=	0;	i	<	exps.size(	);	i++)
						if	(((Integer)	exps.get(i)).intValue(	)	==	x)
									return	((Integer)	coeffs.get(i)).intValue(	);
			return	0;	}

If	we	use	the	vector	of	pairs,	however,	we	have

public	int	coeff	(int	x)	{
			for	(int	i	=	0;	i	<	trms.size(	);	i++)	{
						Pair	p	=	(Pair)	trms.get(i);
						if	(p.exp	==	x)	return	p.coeff;	}
			return	0;	}

5.4	ADDITIONAL	METHODS

So	far,	we	have	ignored	some	additional	methods	that	all

objects	have.	These	are	methods	defined	by	Object.	All
classes	define	subtypes	of	Object,	and	therefore,	they
must	provide	all	the	Object	methods.	Furthermore,
classes	will	inherit	the	implementations	of	these	methods

unless	they	implement	the	methods	explicitly

(inheritance	will	be	discussed	in	detail	in	Chapter	7).

Inheriting	the	Object	methods	is	fine	if	the	inherited
implementation	is	correct	for	the	new	type;	otherwise,

the	class	must	provide	its	own	implementation.	This

section	discusses	some	of	these	methods	and	how	they

ought	behave.	Of	particular	interest	are	the	methods



equals,	clone,	and	toString.	(See	Sidebar	5.1.)

Two	objects	should	be	equals	if	they	are	behaviorally
equivalent.	This	means	that	it	is	not	possible	to

distinguish	between	them	using	any	sequence	of	calls	to

the	objects′	methods.	In	the	case	of	mutable	objects,	all

distinct	objects	are	distinguishable	(i.e.,	equals	has	the
same	meaning	as	==).	For	example,	consider	the
following	code:

			IntSet	s	=	new	IntSet(	);
			IntSet	t	=	new	IntSet(	);
			if	(s.equals(t))	…;	else	…

Sidebar	5.1	equals,	clone,	and	toString

Two	objects	are	equals	if	they	are	behaviorally	equivalent.	Mutable	objects	are	equals	only	if
they	are	the	same	object;	such	types	can	inherit	equals	from	Object.	Immutable	objects	are
equals	if	they	have	the	same	state;	immutable	types	must	implement	equals	themselves.

clone	should	return	an	object	that	has	the	same	state	as	its	object.	Immutable	types	can
inherit	clone	from	Object,	but	mutable	types	must	implement	it	themselves.

toString	should	return	a	string	showing	the	type	and	current	state	of	its	object.	All	types
must	implement	toString	themselves.

At	the	time	the	if	is	executed,	both	s	and	t	have	the
same	state	(the	empty	set).	However,	s	and	t	are
nevertheless	distinguishable,	because	of	mutations;	for

example,	if	the	code	now	does	s.insert(3),	s	and	t
will	have	different	states.	Therefore,	the	call	to	equals	in
the	if	statement	must	return	false.	In	other	words,	for
mutable	objects	s	and	t,	s.equals(t)	(or
t.equals(s))	should	return	false	if	s	and	t	are
different	objects	even	when	they	have	the	same	state.

On	the	other	hand,	if	two	immutable	objects	have	the

same	state,	they	should	be	considered	equal	because

there	will	not	be	any	way	to	distinguish	among	them	by

calling	their	methods.	For	example,	consider

			Poly	p	=	new	Poly(3,	4);
			Poly	q	=	new	Poly(3,	4);
			if	(p.equals(q))	…;	else	…

When	the	if	statement	is	executed,	p	and	q	have	the
same	state	(the	polynomial	3x ).	Furthermore,	because

Polys	are	immutable,	p	and	q	will	always	have	the	same
state.	Therefore,	the	call	p.equals(q)	in	the	if

•	

•	

•	

4



statement	should	return	true.

The	default	implementation	of	equals	provided	by
Object	tests	whether	the	two	objects	have	the	same
identity.	This	is	the	right	test	for	IntSet:	s	and	t	are	not
equivalent	even	though	they	have	the	same	state.

However,	it	is	the	wrong	test	for	Poly,	and	it	will	be	the
wrong	test	for	any	immutable	type.

Therefore,	when	you	define	an	immutable	type,	you	need

to	provide	your	own	implementation	of	equals.
However,	you	need	not	worry	about	equals	for	mutable
types;	objects	of	these	types	will	have	an	equals	method
—namely,	the	one	they	inherit	from	Object—that	does
the	right	thing.

Object	also	provides	a	hashCode	method.	The
specification	of	hashCode	indicates	that	if	two	objects
are	equivalent	according	to	the	equals	method,
hashCode	should	produce	the	same	value	for	them.	Yet
the	default	implementation	for	hashCode	will	not	do	this
for	immutable	types.	hashCode	is	needed	only	for	types
that	are	intended	to	be	keys	in	hash	tables.	If	your

immutable	type	is	one	of	these,	you	must	implement

hashCode	in	a	way	that	observes	this	constraint	on	its
behavior.

There	is	a	weaker	equality	notion	that	we	will	call

similarity.	Two	objects	are	similar	if	it	is	not	possible	to

distinguish	between	them	using	any	observers	of	their

type.	Just	as	it	is	useful	to	have	a	standard	name	equals
for	the	method	that	does	equivalence	testing,	it	is	also

useful	to	have	a	standard	name	for	the	method	that

provides	similarity	testing.	We	will	call	this	method

similar.	There	is	no	requirement	to	provide	this
method	in	a	new	type,	but	you	can	do	so	if	you	wish.

For	immutable	types,	similar	and	equals	are	the
same.	However,	for	mutable	types,	similarity	is	weaker

than	equivalence.	For	example,	in

			IntSet	s	=	new	IntSet(	);
			IntSet	t	=	new	IntSet(	);
			if	(s.similar(t))	…;	else	…



the	call	to	similar	should	return	true.

The	clone	method	makes	a	copy	of	its	object.	The	copy	it
produces	should	have	the	same	state	as	its	object;	that	is,

it	should	be	similar	to	the	object	being	cloned.	The

default	implementation	provided	by	Object	simply
assigns	from	the	instance	variables	of	the	old	object	to

those	of	the	new	one.	This	is	often	not	a	correct

implementation.	For	example,	in	the	case	of	IntSet,	it
would	cause	the	els	components	of	the	two	objects	to
share	the	same	vector.	Then,	when	a	modification	is	done

to	one	of	them	(e.g.,	an	insert),	the	state	of	the	other
will	also	change,	which	is	incorrect.	On	the	other	hand,

the	default	implementation	is	correct	for	Poly;	again
there	is	sharing	(of	the	array	that	is	the	trms
component),	but	the	sharing	doesn′t	matter	because	that

array	is	never	modified.

If	you	want	a	type	to	provide	a	clone	method,	you	must
provide	your	own	implementation	if	the	default

implementation	is	not	correct.	In	general,	the	default

implementation	will	be	correct	for	immutable	types	and

incorrect	for	mutable	ones.	If	the	default	implementation

is	correct,	you	can	inherit	it	by	putting	implements
Cloneable	in	the	class	header.	If	a	class	neither
includes	this	clause	in	its	header	nor	provides	an

implementation	of	clone,	then	if	the	clone	method	is
called	on	one	of	its	objects,	the	code	will	throw

CloneNotSupportedException.

For	example,	the	implementations	of	IntSet	and	Poly
shown	earlier	do	not	support	clone	and,	therefore,
should	the	clone	method	be	called	on	an	IntSet	or
Poly	object,	it	will	raise
CloneNotSupportedException.	If	we	wanted	these
types	to	provide	clone,	we	would	need	to	reimplement	it
for	IntSet,	but	we	could	inherit	it	for	Poly.	The
situation	is	illustrated	in	Figure	5.10,	which	shows	how	to

provide	clone	and	equals	for	Poly	and	IntSet.	Note
that	no	specification	is	given	for	these	methods	since	they

have	standard	meanings.

Poly	implements	equals	but	inherits	clone	from



Object	because	of	the	implements	Cloneable	in	its
header.	Note	that	Poly	provides	two	(overloaded)
definitions	for	equals,	one	overriding	the	Object
method	and	an	extra	one:

Figure	5.10	The	clone	and	equals	methods

public	class	Poly	implements	Cloneable	{
			//	as	given	before,	plus

			public	boolean	equals	(Poly	q)	{
						if	(q	==	null	||	deg	!=	q.deg)	return	false;
						for	(int	i	=	0;	i	<=	deg;	i++)
									if	(trms[i]	!=	q.trms[i])	return	false;
						return	true;	}

			public	boolean	equals	(Object	z)	{
						if	(!(z	instanceof	Poly))	return	false;
						return	equals((Poly)	z);	}
}

public	class	IntSet	{
			//	as	given	before,	plus

			private	IntSet	(Vector	v)	{	els	=	v;	}

			public	Object	clone	(	)	{
						return	new	IntSet((Vector)	els.clone(	));	}
}

			boolean	equals	(Object)	//	header	of	Object	method
			boolean	equals	(Poly)	//	header	of	Poly	method

The	second	one	is	an	optimization;	it	avoids	the	cast	and

the	call	on	instanceof,	which	are	expensive,	in
contexts	in	which	both	the	object	and	the	argument	are

known	by	the	compiler	to	be	Polys.	For	example,
consider	In	the	first	if	statement,	the	call	will	go	to	the
optimized	implementation	of	equals	because	the
compiler	knows	both	x	and	the	argument	are	Polys,	but
the	second	call	will	go	to	the	unoptimized

implementation	because	the	compiler	doesn′t	know	that

y	is	a	Poly.

			Poly	x	=	new	Poly(3,	7);
			Object	y	=	new	Poly(3,	7);
			.
			.
			.
			if	(x.equals(new	Poly(3,7)))	…
			if	(x.equals(y))	…

IntSet	implements	clone	but	inherits	equals	from
Object.	Note	that	the	implementation	uses	an
additional	constructor	so	that	it	can	initialize	the	newly

created	object	with	the	right	vector;	since	this	constructor



is	private,	it	can	be	called	only	inside	the	class.

The	signature	of	the	clone	method	in	a	subtype	must	be
identical	to	the	signature	of	clone	for	Object:

			Object	clone	(	);

Unfortunately,	this	means	that	calls	to	the	method	aren′t

very	convenient	or	efficient.	For	example,	most	likely	the

caller	of	s.clone(	),	where	s	is	an	IntSet,	wants	to
get	an	IntSet	object	as	a	result.	And,	in	fact,	IntSet′s
clone	method	produces	an	IntSet	object.	However,
clone′s	return	type	indicates	that	an	Object	is	being
returned.	Since	Object	is	not	a	subtype	of	IntSet	(in
fact	the	opposite	is	true),	the	object	returned	by	clone
cannot	be	assigned	to	an	IntSet	variable;	instead	the
caller	must	cast	the	result,	for	example,

			IntSet	t	=	(IntSet)	s.clone(	);

The	toString	method	produces	a	string	that	represents
the	current	state	of	its	object,	together	with	an	indication

of	its	type.	For	example,	for	an	IntSet,	we	might	want	to
see	a	representation	like

			IntSet:	{1,	7,	3}

while	for	a	Poly	we	might	want

			Poly:	2	+	3x	+	5x**2

The	implementation	of	toString	provided	by	Object	is
not	very	informative;	it	provides	the	type	name	of	the

object	and	its	hash	code.	Therefore,	almost	every	type

should	provide	its	own	implementation	of	toString.

Figure	5.11	shows	the	toString	method	for	IntSet.
Again	no	specification	is	given,	since	the	meaning	is

standard.	The	implementation	identifies	the	type	of

object	being	produced;	all	toString	implementations
should	follow	this	convention.

Figure	5.11	toString	method	for	IntSet

public	String	toString	(	)	{
			if	(els.size(	)	==	0)	return	″IntSet:{	}″;
			String	s	=	″IntSet:	{″	+	els.elementAt(0).toString(	);
			for	(int	i	=	1;	i	<	els.size(	);	i++)



						s	=	s	+	″	,	″	+	els.elementAt(i).toString(	);
			return	s	+	″}″;	}

5.5	AIDS	TO	UNDERSTANDING	IMPLEMENTATIONS

In	this	section,	we	discuss	two	pieces	of	information,	the

abstraction	function	and	the	representation	invariant,

that	are	particularly	useful	in	understanding	an

implementation	of	a	data	abstraction.

The	abstraction	function	captures	the	designer′s	intent

in	choosing	a	particular	representation.	It	is	the	first

thing	you	decide	on	when	inventing	the	rep:	what

instance	variables	to	use	and	how	they	relate	to	the

abstract	object	they	are	intended	to	represent.	The

abstraction	function	simply	describes	this	decision.

The	rep	invariant	is	invented	as	you	investigate	how	to

implement	the	constructors	and	methods.	It	captures	the

common	assumptions	on	which	these	implementations

are	based;	in	doing	so,	it	allows	you	to	consider	the

implementation	of	each	operation	in	isolation	of	the

others.

The	abstraction	function	and	rep	invariant	together

provide	valuable	documentation,	both	to	the	original

implementor	and	to	others	who	read	the	code.	They

capture	the	reason	why	the	code	is	the	way	it	is:	for

example,	why	the	implementation	of	choose	can	return
the	zero	 	element	of	els	(since	the	elements	of	els
represent	the	elements	of	the	set),	or	why	size	can
simply	return	the	size	of	els	(because	there	are	no
duplicates	in	els).

Because	they	are	so	useful,	both	the	abstraction	function

and	rep	invariant	should	be	included	as	comments	in	the

code.	This	section	describes	how	to	define	them	and	also

how	to	provide	them	as	methods.

5.5.1	The	Abstraction	Function

Any	implementation	of	a	data	abstraction	must	define

how	objects	belonging	to	the	type	are	represented.	In

choosing	the	representation,	the	implementor	has	in

mind	a	relationship	between	the	rep	and	the	abstract

objects.	For	example,	in	the	implementation	in	Figure

th



5.6,	IntSets	are	represented	by	vectors,	where	the
elements	of	the	vector	are	the	elements	of	the	set.

Figure	5.12	An	example	of	an	abstraction	function

This	relationship	can	be	defined	by	a	function	called	the

abstraction	function	that	maps	from	the	instance

variables	that	make	up	the	rep	of	an	object	to	the	abstract

object	being	represented:

AF:	 	→	A

Specifically,	the	abstraction	function	AF	maps	from	a

concrete	state	(i.e.,	the	state	of	an	object	of	the	class	

)toan	abstract	state	(i.e.,	the	state	of	an	abstract	object).

For	each	object	c	belonging	to	 ,	AF(c)	is	the	state	of	the

abstract	object	a	ε	A	that	c	represents.

For	example,	the	abstraction	function	for	the	IntSet
implementation	maps	the	instance	variables	of	objects	of

the	IntSet	class	to	abstract	IntSet	states.	Figure	5.12
illustrates	this	function	at	some	points;	it	shows	how

objects	with	various	els	components	map	to	IntSet
states.	This	abstraction	function	is	many-to-one:	many

els	components	map	to	the	same	abstract	element.	For
example,	the	IntSet	{1,	2}	is	represented	by	an	object
whose	els	vector	contains	the	Integer	with	value	1
followed	by	the	Integer	with	value	2,	and	also	by	an
object	whose	els	vector	contains	the	two	integers	in	the
opposite	order.	Since	the	process	of	abstraction	involves

forgetting	irrelevant	information,	it	is	not	surprising	that

abstraction	functions	are	often	many-to-one.	In	this

example,	the	order	in	which	the	elements	appear	in	the

els	component	is	irrelevant.

The	abstraction	function	is	a	crucial	piece	of	information

about	an	implementation.	It	defines	the	meaning	of	the



representation,	the	way	in	which	the	objects	of	the	class

are	supposed	to	implement	the	abstract	objects.	It	should

always	be	described	in	a	comment	in	the	implementation.

In	writing	such	a	description,	however,	we	are	hampered

by	the	fact	that	if	the	specification	of	the	type	is	informal,

the	range	of	the	abstraction	function	(the	set	A)	is	not

really	defined.	We	shall	overcome	this	problem	by	giving

a	description	of	a	“typical”	abstract	object.	This	allows	us

to	define	the	abstraction	function	in	terms	of	this	typical

object.	The	description	of	the	typical	abstract	object	state

is	part	of	the	specification;	it	is	provided	in	the	overview

section.	For	example,	the	overview	for	IntSet	stated:

//	A	typical	IntSet	is	{x	1,	…,	xn}

(Recall	that	we	are	using	mathematical	sets	to	denote

IntSet	states.)	Then	we	can	say

//	The	abstraction	function	is
//					AF(c)	=	{	c.els[i].intValue	|	0	<=	i	<	c.els.size	}

The	notation	{x	|	p(x)}	describes	the	set	of	all	x	such	that

the	predicate	p(x)	is	true;	this	notation	was	defined	in

Figure	5.3.	For	example,	here	it	says	that	the	elements	of

the	set	are	exactly	the	integer	values	contained	in	the	els
vector.

Note	that	in	defining	the	abstraction	function,	we	use

some	convenient	abbreviations:	we	use	the	notation

c.els[i]	to	stand	for	use	of	the	get	method	of
Vector,	and	we	omit	the	()	when	we	use	methods	with
no	arguments	(like	intValue	and	size).	We	also	omit

casting	and	simply	assume	the	elements	of	the	els	vector
are	Integers.

As	a	second	example,	consider	the	Poly	implementation.
We	chose	to	represent	a	Poly	as	an	array	in	which	the	i
element	held	the	i 	coefficient	up	to	the	degree.	We	can

describe	this	representation	as	follows:

//	A	typical	Poly	is		c0	+c1x+c2x2+	·	·	·

//	The	abstraction	function	is

//					AF(c)		=	c0	+c1x+c2x2+	·	·	·

//					where
//					ci		=c.trms[i]		if			0	<=	i	<	c.trms.size
//								=	0	otherwise

th

th



Abstraction	functions	need	not	be	provided	for	record

types.	A	record	type	provides	no	abstraction	over	its	rep;

its	rep	is	a	collection	of	fields	and	so	are	its	abstract

objects.	Therefore,	its	abstraction	function	is	always	the

identity	map.

5.5.2		The	Representation	Invariant

In	Java,	type	checking	guarantees	that	whenever	a

method	or	constructor	is	called,	its	object	this	belongs
to	its	class.	Frequently,	however,	not	all	objects	of	the

class	are	legitimate	representations	of	abstract	objects.

For	example,	the	representation	of	IntSet	given	in
Figure	5.6	could	potentially	include	objects	whose	els
vector	contained	more	than	one	entry	with	the	same

integer	value.	However,	we	decided	that	each	element	of

the	set	would	be	entered	in	the	vector	exactly	once.

Therefore,	legitimate	representations	of	IntSets	do	not
contain	duplicate	entries.

A	statement	of	a	property	that	all	legitimate	objects

satisfy	is	called	a	representation	invariant,	or	rep

invariant.	A	rep	invariant	J	is	a	predicate

J:	C	 		boolean

that	is	true	of	legitimate	objects.	For	example,	for

IntSet,	we	might	state	the	following	rep	invariant:

//	The	rep	invariant	is:
//	c.els	≠	null	&&
//	for	all	integers	i.	c.els[i]	is	an	Integer	&&	
//	for	all	integers	i	,	j.	(0	<=	i	<	j	<	c.els.size	⇒
//					c.els[i].intValue	≠	c.els[j].intValue	)

Thus,	J	is	false	if	els	contains	duplicates;	additionally,	it
rules	out	a	rep	in	which	els	does	not	refer	to	a	vector,	as
well	as	a	rep	in	which	the	els	vector	contains	something
other	than	an	Integer.	This	rep	invariant	is	written
using	predicate	calculus	notation.	Figure	5.13

summarizes	the	notation	we	will	use	in	this	book.

The	rep	invariant	can	also	be	given	more	informally:

//	The	rep	invariant	is:
//					c.els	≠	null	&&
//					all	elements	of	c.els	are	Integers	&&
//					there	are	no	duplicates	in	c.els



As	a	second	example,	consider	an	alternative

representation	of	IntSets	that	consists	of	an	array	of
100	booleans	plus	a	vector:

Figure	5.13	Predicate	calculus	notation

&&	will	be	used	for	conjunction:	p	&&	q	is	true	if	p	is	true

and	q	is	true

||	will	be	used	for	disjunction:	p	||	q	is	true	if	either	p	is

true	or	q	is	true

⇒	will	be	used	for	implication:	p	⇒	q	means	that	if	p	is
true,	then	q	is	also	true.	Note	that	false	⇒	anything,	i.e.,	if
p	is	false,	then	we	can	deduce	whatever	we	like.

iff	(if	and	only	if)	will	be	used	for	double	implication:	p	iff

q	means	that	p	⇒	q	and	q	⇒	p

for	all	x	in	s	.	p(x)	means	that	predicate	p(x)	is	true	for	all

x	in	set	s.

there	exists	x	in	s	.	p(x)	means	that	there	is	at	least	one	x

in	set	s	for	which	the	predicate	p(x)	is	true

private	boolean[100]	els;
private	Vector	otherEls;
private	int	sz;

The	idea	here	is	that	for	an	integer	i	in	the	range	0…99,

we	record	membership	in	the	set	by	storing	true	in

els[i].	Integers	outside	this	range	will	be	stored	in
otherEls	in	the	same	manner	as	in	our	previous
implementation	of	IntSet.	Since	it	would	be	expensive
to	compute	the	size	of	the	IntSet	if	we	had	to	examine
every	part	of	the	els	array,	we	also	store	the	size
explicitly	in	the	rep.	This	representation	is	a	good	one	if

almost	all	members	of	the	set	are	in	the	range	0	…	99	and

if	we	expect	the	set	to	have	quite	a	few	members	in	this

range.	Otherwise,	the	space	required	for	the	els	array
will	be	wasted.

For	this	representation	we	have

//	The	abstraction	function	is
//					AF(c)	=	{	c.otherEls[i].intValue	|	0	=<	i	<	c.otherEls.size	}
//									+
//							{	j	|	0	<=	j	<	100	&&	c.els[j]	}



In	other	words,	the	set	is	the	union	of	the	elements	of

otherEls	and	the	indexes	of	the	true	elements	of	els.
Also,	we	have

//	The	rep	invariant	is
//		c.els	≠	null	&&	c.otherEls	≠	null	&&	c.els.size	=	100	&&
//					all	elements	in	c.otherEls	are	Integers	&&
//					all	elements	in	c.otherEls	are	not	in	the	range	0	to	99	&&
//					there	are	no	duplicates	in	c.otherEls	&&
//					c.sz	=	c.otherEls.size	+	(	count	of	true	entries	in	c.els	)

Note	that	the	sz	instance	variable	of	this	rep	is
redundant:	It	holds	information	that	can	be	computed

directly	from	the	other	instance	variables.	Whenever

there	is	redundant	information	in	the	rep,	the

relationship	of	this	information	to	the	rest	of	the	rep

should	be	explained	in	the	rep	invariant	(for	example,	in

the	last	line	of	this	rep	invariant).

It	is	sometimes	convenient	to	use	a	helping	function	in

the	rep	invariant	or	abstraction	function.	For	example,

the	last	line	of	the	preceding	rep	invariant	could	be

rewritten

//	c.sz	=	c.otherEls.size	+	cnt(c.els,	0)
//					where	cnt(a,	i)	=	if	i	>=	a.size	then	0
//					else	if	a[i]	then	1	+	cnt(a,	i+1)
//					else	cnt(a,	i+1)

The	helping	function	cnt	is	defined	by	a	recurrence
relation.

The	implementation	of	Poly	in	Figure	5.7	has	an
interesting	rep	invariant.	Recall	that	we	chose	to	store

coefficients	only	up	to	the	degree,	without	any	trailing

zeros	except	in	the	case	of	the	zero	polynomial.

Therefore,	we	do	not	expect	to	find	a	zero	in	the	high

element	of	the	trms	component	unless	the	component
has	just	one	element.	In	addition,	these	arrays	always

have	at	least	one	element.	Furthermore,	deg	must	be	one
less	than	the	size	of	trms.	Thus	we	have

//	The	rep	invariant	is
//					c.trms	≠	null	&&	c.trms.length	>=	1	&&	c.deg	=	c.trms.length-1
//					&&	c.deg	>	0	⇒			c.trms[deg]	≠	0

Recall	that	the	implementation	of	the	coeff	operation
depended	on	the	length	of	the	array	being	one	greater

than	the	degree	of	the	Poly;	now	we	see	this	requirement



spelled	out	in	the	rep	invariant.

Sometimes	all	concrete	objects	are	legal	representations.

Then	we	have	simply

//	The	rep	invariant	is
//						true

This	is	what	happens	for	record	types:	record	objects	are

used	by	accessing	their	fields	directly.	This	means	that

using	code	will	be	able	to	modify	the	fields,	which	in	turn

means	that	the	class	implementing	the	record	cannot

constrain	the	rep	in	any	way.	Of	course,	there	might	be

some	constraints	on	how	the	record	objects	are	used	that

define	a	stronger	relationship	between	the	fields,	but

these	constraints	would	be	ensured	by	the	code	that	uses

the	record	objects	and	would	show	up	in	the	rep	invariant

for	that	code.	For	example,	the	rep	invariant	for	the

sparse	polynomial	implementation	discussed	in	Section

5.3.4	would	include

//	for	all	elements	e	of	c.trms
//					e	is	a	Pair	and	e.exp	>=	0	and	e.coeff	≠	0

Rep	invariants	need	not	be	given	for	record	types	because

all	these	classes	have	exactly	the	same	rep	invariant.	They

must	be	given	for	all	other	types,	even	those	for	which	the

invariant	is	simply	true.	Giving	the	invariant	may	prevent

the	implementor	from	depending	on	a	stronger,

unsatisfied	invariant.

5.5.3		Implementing	the	Abstraction	Function	
and	Rep	Invariant

In	addition	to	providing	the	abstraction	function	and	rep

invariant	as	comments	in	your	code,	you	should	also

provide	methods	to	implement	them.	(The	only	exception

to	this	rule	is	record	types,	which	do	not	need	these

methods.)	These	methods	are	useful	for	finding	errors	in

your	code;	in	addition,	the	implementation	of	the

abstraction	function	can	be	used	to	do	output.	Sidebar

5.2	summarizes	the	abstraction	function	and	rep

invariant.	The	toString	method	is	used	to	implement
the	abstraction	function.	The	method	that	checks	the	rep

invariant	is	called	repOk.	It	has	the	following
specification:



public	boolean	repOk(	)
						//	EFFECTS:	Returns	true	if	the	rep	invariant	holds	for	this;
						//					otherwise	returns	false.

The	method	is	public	because	we	want	it	to	be	callable	by

code	outside	of	its	class.	Every	type	should	provide	this

method,	but	a	specification	need	not	be	given	for	it,	since

the	specification	is	identical	for	every	type.

Figure	5.14	gives	implementations	of	the	repOk	methods
for	the	classes	we	have	seen	so	far.	Note	the	use	of	the

instanceof	operator	in	repOk	for	IntSet	to	check
that	the	element	is	an	Integer.

The	repOk	method	is	used	in	two	ways.	Test	programs
can	call	it	to	check	whether	an	implementation	is

preserving	the	rep	invariant.	Or	you	can	use	it	inside

method	and	constructor	implementations.	In	this	case,	if

the	rep	invariant	does	not	hold,	you	can	throw

FailureException.	Constructors	would	call	it	before
they	return	to	ensure	the	rep	invariant	holds	on	the	newly

initialized	object.	Also	any	methods	that	modify	the	rep

of	either	old	or	newly	created	objects	would	call	it	on

these	objects	before	they	return.	For	example,	in	Poly,
the	add,	mul,	and	minus	routines	would	call	it,	but	sub
need	not	since	it	doesn’t	access	the	reps	of	objects

directly,	and	coeff	need	not	since	it	doesn’t	modify	the
rep.	In	IntSet,	the	mutators	insert	and	remove
would	call	it.	If	the	calls	on	repOk	are	costly,	they	can	be
disabled	when	the	program	is	in	production.

Sidebar	5.2	Abstraction	Function	and	Rep	Invariant

The	abstraction	function	explains	the	interpretation	of	the	rep.	It	maps	the	state	of	each	legal
representation	object	to	the	abstract	object	it	is	intended	to	represent.	It	is	implemented	by	the
toString	method.

The	representation	invariant	defines	all	the	common	assumptions	that	underlie	the
implementations	of	a	type’s	operations.	It	defines	which	representations	are	legal	by	mapping
each	representation	object	to	either	true	(if	its	rep	is	legal)	or	false	(if	its	rep	is	not	legal).	It	is
implemented	by	the	repOk	method.

Figure	5.14	Implementations	of	repOk	methods

//	for	Poly:
public	boolean	repOk(	)	{
				if	(trms	==	null	||	deg	!=	trms.length	-	1	||
					trms.length	==	0)	return	false;
				if	(deg	==	0)	return	true;
				return	trms[deg]	!=	0;	}

•	

•	



//	for	IntSet:
public	boolean	repOk(	)	{
				if	(els	==	null)	return	false;
				for	(int	i	=	0;	i	<	els.size(	);	i++)	{
					Object	x	=	els.get(i);
					if	(!(x	instanceof	Integer))	return	false;
					for	(int	j	=	i	+	1;	j	<	els.size(	);	j++)
							if	(x.equals(els.get(j)))	return	false;
			}
				return	true;	}

5.5.4	Discussion

A	rep	invariant	is	“invariant”	because	it	always	holds	for

the	reps	of	abstract	objects;	that	is,	it	holds	whenever	an

object	is	used	outside	its	implementation.	The	rep

invariant	need	not	hold	all	the	time,	since	it	can	be

violated	while	executing	one	of	the	type’s	operations.	For

example,	the	Poly	mul	method	produces	a	trms
component	with	zero	in	the	high	element,	but	the

element	is	overwritten	with	a	nonzero	value	before	mul
returns.	The	rep	invariant	must	hold	whenever

operations	return	to	their	callers.

There	is	a	relationship	between	the	abstraction	function

and	the	rep	invariant.	The	abstraction	function	is	of

interest	only	for	legal	representations,	since	only	these

represent	the	abstract	objects.	Therefore,	it	need	not	be

defined	for	illegal	representations.	For	example,	both

IntSet	and	Poly	have	abstraction	functions	that	are
defined	only	if	the	els	and	trms	components,
respectively,	are	non-null,	and	furthermore,	the

abstraction	function	for	IntSet	makes	sense	only	if	all
elements	of	the	Vector	are	Integers.

There	is	an	issue	concerning	how	much	to	say	in	a	rep

invariant.	A	rep	invariant	should	express	all	constraints

on	which	the	operations	depend.	A	good	way	to	think	of

this	is	to	imagine	that	the	operations	are	to	be

implemented	by	different	people	who	cannot	talk	to	one

another;	the	rep	invariant	must	contain	all	the

constraints	that	these	various	implementors	depend	on.

However,	it	need	not	state	additional	constraints.	We	will

see	an	example	of	unstated	constraints	in	Section	6.6.

When	a	data	abstraction	is	implemented,	the	rep

invariant	is	one	of	the	first	things	the	programmer	thinks



about.	It	must	be	chosen	before	any	operations	are

implemented,	or	the	implementations	will	not	work

together	harmoniously.	To	ensure	that	it	is	understood,

the	rep	invariant	should	be	written	down	and	included	as

a	comment	in	the	code	(in	addition	to	the	abstraction

function).	Writing	the	rep	invariant	forces	the

implementor	to	articulate	what	is	known	and	increases

the	chances	that	the	operations	will	be	implemented

correctly.

All	operations	must	be	implemented	in	a	way	that

preserves	the	rep	invariant.	For	example,	suppose	we

implemented	insert	by

public	void	insert	(int	x)	{
				els.addElement(new	Integer(x));
}

This	implementation	can	produce	an	object	with

duplicate	elements.	If	we	know	that	the	rep	invariant

prohibits	such	objects,	then	this	implementation	is

clearly	incorrect.

The	rep	invariant	is	also	useful	for	the	reader	of	an

implementation.	For	example,	in	an	alternative

implementation	of	IntSet,	we	might	have	decided	to
keep	the	rep	array	sorted.	In	this	case,	we	would	have

//	The	rep	invariant	is
//					c.els	≠	null	&&	all	elements	of	c.els	are	Integers
//					&&	for	all	i,	j	such	that	0	<=	i	<	j	<	c.els.size
//					c.els[i].intValue	<	c.els[j].intValue

and	the	operations	would	be	implemented	differently

than	in	Figure	5.6.	The	rep	invariant	tells	the	reader	why

the	operations	are	implemented	as	they	are.

5.6	PROPERTIES	OF	DATA	ABSTRACTION
IMPLEMENTATIONS

This	section	discusses	some	properties	of

implementations	of	data	abstractions:	benevolent	side

effects	and	exposing	the	rep.	These	properties	are

summarized	in	Sidebar	5.3.

5.6.1	Benevolent	Side	Effects

A	mutable	abstraction	must	have	a	mutable	rep	or	it	will



not	be	possible	to	provide	the	required	mutability.

However,	an	immutable	abstraction	need	not	have	an

immutable	rep.	(It	is	possible	to	have	an	immutable	rep

in	Java	by	declaring	all	the	instance	variables	to	be

final.)

For	example,	Polys	are	immutable,	but	they	have	a
mutable	rep.	A	mutable	rep	is	not	a	problem	so	long	as

modifications	made	to	the	rep	cannot	be	observed	by	the

abstraction’s	users.	For	example,	sometimes	it	is	useful	to

initialize	an	object	by	incrementally	mutating	its	rep,

though	once	the	object	is	fully	initialized,	its	rep	is	never

modified	again.	This	is	the	way	Polys	are	created	in
some	of	the	Poly	methods.

Sidebar	5.3	Properties	of	Data	Abstraction	Implementations

An	implementation	performs	a	benevolent	side	effect	if	it	modifies	the	rep	without	affecting	the
abstract	state	of	its	object.	Benevolent	side	effects	are	possible	only	when	the	abstraction
function	is	many-to-one.

An	implementation	exposes	the	rep	if	it	provides	users	of	its	objects	with	a	way	of	accessing
some	mutable	component	of	the	rep.

Mutability	is	also	useful	for	benevolent	side	effects,	which

are	modifications	that	are	not	visible	outside	the

implementation.	For	example,	suppose	rational	numbers

are	represented	as	a	pair	of	integers:

int	num,	denom;

The	abstraction	function	is

//	A	typical	rational	is	n/d
//		The	abstraction	function	is
//								AF(c)	=	c.num/c.denom

Given	this	rep,	several	choices	must	be	made:	what	to	do

with	a	zero	denominator,	how	to	store	negative	rationals,

and	whether	or	not	to	keep	the	rational	in	reduced	form

(that	is,	with	the	numerator	and	denominator	reduced	so

that	there	are	no	common	terms).	Suppose	we	choose	to

rule	out	zero	denominators,	to	represent	negative

rationals	by	means	of	negative	numerators,	and	not	to

keep	the	rep	in	reduced	form	(to	speed	up	operations	like

multiplication).	Thus	we	have

//	The	rep	invariant	is

•	

•	



//					c.denom	>	0

However,	to	test	whether	two	rationals	are	equal,	it	is

useful	to	compute	reduced	forms;	they	can	be	computed

using	the	following	gcd	procedure:

Figure	5.15	A	benevolent	side	effect

public	class	rat	{
				private	int	num;
				private	int	denom;

				public	boolean	equals(rat	r)	{
						if	(r	==	null)	return	false;
						if	(num	==	0)	return	r.num	==	0;
						if	(r.num	==	0)	return	false;
						reduce(	);
						r.reduce(	);
						return	(num	==	r.num	&&	denom	==	r.denom);	}

				private	void	reduce	(	)	{
						//	REQUIRES:	This.num	!=	0
						//	MODIFIES:	This
						//	EFFECTS:	Changes	this	to	its	reduced	form.
						int	temp	=	num;
						if	(num	<	0)	temp	=	-num;
						int	g	=	Num.gcd(temp,	denom);
						num	=	num/g;
						denom	=	denom/g;	}
}
static	public	int	gcd	(int	n,	int	d)	throws	NonPositiveException
						//	EFFECTS:	If	n	or	d	is	not	positive	throws	NonPositiveException
						//					else	returns	the	greatest	common	divisor	of	n	and	d.

The	implementation	of	the	equals	method	is	shown	in
Figure	5.15.	Once	computed,	the	reduced	forms	are

stored	in	the	rep	because	this	will	speed	up	the	next

equality	test.

The	modification	of	the	rep	performed	by	the	equals
method	is	a	benevolent	side	effect.	Such	side	effects	are

often	performed	for	reasons	of	efficiency.	They	are

possible	whenever	the	abstraction	function	is	many-to-

one,	since	then	many	rep	objects	represent	a	particular

abstract	object.	It	is	sometimes	useful	within	an

implementation	to	switch	from	one	of	these	rep	objects	to

another.	Such	a	switch	is	safe	since	the	rep	still	maps	to

the	same	abstract	object.

5.6.2	Exposing	the	Rep

A	key	issue	in	implementing	data	abstractions	is	to	obtain

the	ability	to	do	local	reasoning:	we	want	to	be	able	to

ensure	that	a	class	is	correct	just	by	examining	the	code

of	that	class.	Local	reasoning	is	valid	only	if	the



representations	of	abstract	objects	cannot	be	modified

outside	their	implementation.	If	local	reasoning	is	not

supported,	we	say	the	implementation	exposes	the	rep.

Exposing	the	rep	means	that	the	implementation	makes

mutable	components	of	the	rep	(e.g.,	instance	variables)

accessible	to	code	outside	of	the	class.

One	way	to	expose	the	rep	is	to	have	instance	variable

declarations	that	are	not	declared	to	be	private.	However,

even	if	all	instance	variables	are	private,	it	is	still	possible

to	expose	the	rep!

For	example,	suppose	IntSet	had	an	allEls	method
with	the	following	specification:

public	Vector	allEls	(	)
						//	EFFECTS:	Returns	a	vector	containing	the	elements	of	this,	each
						//					exactly	once,	in	arbitrary	order.

and	suppose	this	method	were	implemented	(as	part	of

the	implementation	given	in	Figure	5.6)	as	follows:

public	Vector	allEls	(	)	{
				return	els;	}

This	implementation	would	allow	users	of	IntSet	to
access	the	els	component	directly;	since	this	component
is	mutable,	users	can	modify	it.	To	avoid	this	problem,

the	allEls	implementation	must	return	a	copy	of	the
els	component.

Exposing	the	rep	is	an	implementation	error.	It	can

happen	either	because	a	method	returns	a	mutable	object

in	the	rep,	as	discussed	previously,	or	because	a

constructor	or	method	makes	a	mutable	argument	object

part	of	the	rep.	For	example,	suppose	IntSet	had	the
following	constructor:

public	IntSet(Vector	elms)	throws	NullPointerException
						//	EFFECTS:	If	elms	is	null	throws	Null	PointerException	else
						//					initializes	this	to	contain	as	elements	all	the	ints	in	elms.

and	suppose	the	implementation	were

public	IntSet	(Vector	elms)	throws	NullPointerException	{
				if	(elms	==	null)
					throw	new	NullPointerException
							("IntSet	1	argument	constructor");
				els	=	elms;
}



Again,	we	have	an	implementation	error	that	results	in

the	rep	being	exposed.

5.7	REASONING	ABOUT	DATA	ABSTRACTIONS

Whenever	you	write	a	program,	you	think	in	an	informal

way	about	whether	it	is	correct.	This	reasoning	is	so	basic

that	you	may	not	be	aware	that	you	are	doing	it!	In

addition,	you	often	want	to	convince	others	of	the

correctness	of	your	code—for	example,	as	part	of	a	code

inspection.	This	process	of	“convincing”	also	involves	an

informal	correctness	argument.	Finally,	when	you	read

someone	else’s	code	to	determine	if	it	is	correct,	you	also

go	through	an	informal	correctness	argument.

Reasoning	about	the	correctness	of	standalone

procedures	is	relatively	straightforward:	you	assume	the

precondition	holds	and	examine	the	code	to	convince

yourself	that	the	procedure	does	what	its	effects	clause

requires.	Reasoning	about	data	abstraction

implementations	is	a	little	trickier	because	you	have	to

consider	the	entire	class.	Furthermore,	you	have	to

reason	about	code	written	at	the	concrete	level	(i.e.,	it

manipulates	the	rep),	yet	convince	yourself	that	it

satisfies	the	specification,	which	is	written	in	terms	of

abstract	objects.

This	section	discusses	how	to	carry	out	this	reasoning.

First	we	discuss	how	to	show	that	an	implementation

preserves	the	rep	invariant,	that	is,	ensures	the	invariant

is	true	for	an	object	whenever	it	is	being	used	outside	of

its	class.	Then	we	discuss	how	to	reason	that	operations

do	the	right	thing.	We	also	discuss	how	to	reason	about

properties	of	a	data	abstraction	by	showing	that	certain

abstract	invariants	hold.	Sidebar	5.4	summarizes	the

reasoning	process.

Sidebar	5.4	Reasoning	about	Data	Abstractions

Data	type	induction	is	used	to	reason	about	whether	an	implementation	preserves	the	rep
invariant.	For	each	operation,	we	assume	the	rep	invariant	holds	for	any	inputs	of	the	type,	and
show	it	holds	at	return	for	any	inputs	of	the	type	and	any	new	objects	of	the	type.

To	prove	the	correctness	of	an	operation,	we	make	use	of	the	abstraction	function	to	relate	the
abstract	objects	mentioned	in	its	specification	to	the	concrete	objects	that	represent	them.

Data	type	induction	is	also	used	to	reason	about	abstract	invariants.	However,	in	this	case,	the
reasoning	is	based	on	the	specification,	and	observers	can	be	ignored.

•	

•	

•	



5.7.1	Preserving	the	Rep	Invariant

As	part	of	showing	that	a	type	is	implemented	correctly,

we	must	show	that	the	rep	invariant	holds	for	all	objects

of	the	class.	We	do	this	as	follows.	First,	we	show	that	the

invariant	holds	for	objects	returned	by	constructors.	For

methods,	we	can	assume	when	they	are	called	that	the

invariant	holds	for	this	and	also	for	all	argument	objects
of	the	type;	we	must	show	that	it	holds	when	the	method

returns	for	this	and	any	arguments	of	the	type	and	also
for	returned	objects	of	the	type.

For	example,	the	IntSet	implementation	of	Figure	5.6
has	invariant

//		c.els	=	null	&&
//	for	all	integers	i.	c.els[i]	is	an	Integer	&&
//	for	all	integers	i,	j.	(	0	<=	i	<	j	<	c.els.size	=>
//					c.els[i].intValue	≠	c.els[j].intValue	)

The	IntSet	constructor	establishes	this	invariant
because	the	newly	created	vector	is	empty.	The	isIn
method	preserves	it	because	we	can	assume	that	the

invariant	holds	for	this	when	isIn	is	called	and	isIn
does	not	modify	this;	the	same	is	true	for	size	and
choose	and	private	method	getIndex.	Method	insert
preserves	the	invariant	because	the	following	conditions

are	met:

The	invariant	holds	for	this	at	the	time	of	the	call.

The	call	to	getIndex	by	insert	preserves	the
invariant.

insert	adds	x	to	this	only	if	x	is	not	already	in
this	(i.e.,	getIndex(x)	returns	–1);	therefore,	since
this	satisfies	the	invariant	at	the	time	of	the	call,	it
still	satisfies	the	invariant	after	the	call.

As	a	second	example,	consider	the	Poly	implementation

in	Figure	5.7	and	recall	that	the	invariant	is

//					c.trms	≠	null	&&	c.trms.length	>=	1	&&	c.deg	=	c.trms.length	-	1
//					&&	c.deg	>	0	⇒		c.trms[deg]	≠	0

The	Poly	constructor	that	produces	the	zero	polynomial
preserves	the	invariant	because	it	creates	a	one-element

array;	the	other	Poly	constructor	preserves	the	invariant

•	

•	

•	



because	it	explicitly	tests	for	the	zero	polynomial.	The

mul	operation	preserves	the	invariant	because	the
following	conditions	are	met:

The	invariant	holds	for	this	at	the	time	of	the	call;	it
also	holds	for	q	if	q	is	not	null.

If	either	this	or	q	is	the	zero	Poly,	this	is	recognized
and	the	proper	rep	constructed.

Otherwise,	neither	this	nor	q	contains	a	zero	in	its
high	term—therefore,	the	high	term	of	the	trms	array
in	the	returned	Poly,	which	contains	the	product	of
the	high	terms	of	trms	and	q.trms,	cannot	be	zero.

This	kind	of	reasoning	is	called	data	type	induction.	The

induction	is	on	the	number	of	procedure	invocations	used

to	produce	the	current	value	of	the	object.	The	first	step

of	the	induction	is	to	establish	the	property	for	the

constructor(s);	the	induction	step	establishes	the

property	for	the	methods.

5.7.2	Reasoning	about	Operations

Proving	that	the	operations	preserve	the	rep	invariant	is

only	part	of	what	is	needed	to	convince	yourself	that	your

implementation	is	correct.	In	addition,	you	need	to	show

that	each	operation	does	what	it	is	supposed	to	do.

The	difficulty	is	that	the	specifications	are	written	in

terms	of	abstract	objects,	but	the	implementation

manipulates	concrete	representations.	Therefore,	we

need	a	way	to	relate	the	two.	This	is	done	by	using	the

abstraction	function.

For	example,	suppose	we	wanted	to	argue	that	the

implementation	of	IntSet	is	correct.	This	would	consist
of	arguing	that	each	operation	is	implemented	correctly:

The	constructor.	The	IntSet	constructor	returns	an
object	whose	els	component	is	an	empty	vector.	This
is	correct	because	the	abstraction	function	maps	the

empty	vector	to	the	empty	set.

The	size	method.	When	this	method	is	called,	we

know	that	the	size	of	the	els	vector	is	the	cardinality
of	the	set	because	the	abstraction	function	maps	the

elements	of	the	vector	to	the	elements	of	the	set	and

•	

•	

•	

•	

•	



because	the	rep	invariant,	which	can	be	assumed	to

hold	when	size	is	called,	ensures	that	there	are	no
duplicates	in	els.	Therefore,	returning	this	size	is
correct.

The	remove	method.	This	method	first	checks
whether	the	element	to	be	removed	is	in	the	vector	and

simply	returns	if	it	is	not.	This	is	correct	because	if	the

element	isn’t	in	the	vector,	it	isn’t	in	the	set	(because	of

the	way	the	abstraction	function	maps	the	vector	to	the

set),	and	therefore,	when	remove	returns,
this_post	maps	to	this-{x}.	Otherwise,	the
method	removes	the	element	from	the	vector,	and

again	we	get	the	right	result	because	the	rep	invariant

guarantees	that	there	are	no	duplicates	in	els.

This	process	would	continue	until	every	operation	had

been	considered.	Note	that	we	make	use	of	the	rep

invariant	in	these	proofs;	that	is,	we	are	able	to	assume	it

holds	on	entry.

An	important	point	about	these	proofs	is	that	we	are	able

to	reason	about	each	operation	independently,	which	is

possible	because	of	the	rep	invariant.	It	captures	the

common	assumptions	between	the	operations	and,	in	this

way,	stands	in	place	of	all	the	other	operations	when	we

consider	the	proof	of	any	particular	operation.	Of	course,

this	reasoning	is	valid	only	if	all	operations	preserve	the

rep	invariant,	since	that	is	what	allows	it	to	take	the	place

of	the	other	operations	in	the	reasoning	process.

5.7.3	Reasoning	at	the	Abstract	Level

The	preceding	sections	have	discussed	how	we	reason

about	the	correctness	of	an	implementation	of	a	data

abstraction.	It	is	also	useful	to	reason	about	a	data

abstraction	at	an	abstract	level.	In	this	case,	the

reasoning	is	based	only	on	the	type’s	specification;	we	can

ignore	its	implementation.

One	kind	of	property	that	it	is	useful	to	show	is	an

abstract	invariant,	which	is	the	abstract	analog	of	the	rep

invariant.	For	example,	we	relied	on	abstract	invariants

for	vectors	and	arrays	in	our	reasoning	about	the

correctness	of	the	IntSet	and	Poly	implementations.

•	



For	both	vectors	and	arrays,	we	assumed	that	their	size

was	greater	than	or	equal	to	zero	and,	furthermore,	that

all	indexes	that	were	greater	than	or	equal	to	zero,	and

less	than	the	size,	were	in	bounds.

There	are	similar	abstract	invariants	for	sets	and

polynomials.	For	example,	the	size	of	an	IntSet	is
always	greater	than	or	equal	to	zero.	This	property	can	be

established	as	follows:

It	clearly	holds	for	the	constructor	since	it	returns	a

new,	empty	IntSet.

It	holds	for	insert	since	this	only	increases	the	size
of	the	IntSet.

It	holds	for	remove	since	this	removes	an	element
from	the	set	only	if	the	element	was	in	the	set	at	the

time	of	the	call.

Note	that	we	completely	ignore	the	observers	in	this

proof.	Since	they	do	not	modify	their	objects	(in	a	way

that	users	can	notice),	they	cannot	affect	the	property.

Note	that	we	are	reasoning	at	an	abstract	level,	not	at	an

implementation	level.	We	are	not	concerned	with	how

IntSets	are	implemented.	Instead,	we	work	directly
with	the	IntSet	specification.	Working	at	the	abstract

level	greatly	simplifies	the	reasoning.

5.8	DESIGN	ISSUES

In	this	section,	we	discuss	some	issues	that	arise	when

defining	a	data	abstraction:	mutability,	kinds	of

operations,	and	adequacy.	Sidebar	5.5	summarizes	the

properties	of	data	abstractions.

5.8.1	Mutability

Data	abstractions	are	either	mutable,	with	objects	whose

values	can	change,	or	immutable.	Care	should	be	taken	in

deciding	on	this	aspect	of	a	type.	In	general,	a	type	should

be	immutable	if	its	objects	would	naturally	have

unchanging	values.	This	might	be	the	case,	for	example,

for	such	mathematical	objects	as	integers,	Polys,	and
complex	numbers.	A	type	should	usually	be	mutable	if	it

is	modeling	something	from	the	real	world,	where	it	is

•	
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natural	for	the	values	of	objects	to	change	over	time.	For

example,	an	automobile	in	a	simulation	system	might	be

running	or	stopped,	and	contain	passengers	or	not.

Similarly,	a	type	modeling	storage,	such	as	an	array	or	a

set,	is	likely	to	be	mutable.	However,	we	might	still	prefer

to	use	an	immutable	type	in	such	a	case	because	of	the

greater	safety	immutability	provides,	or	because

immutability	can	allow	sharing	of	subparts.	We	will	see

an	example	of	such	an	immutable	type	(lists)	in	Chapter

7.

Sidebar	5.5	Properties	of	Data	Abstractions

A	data	abstraction	is	mutable	if	it	has	any	mutator	methods;	otherwise,	the	data	abstraction	is
immutable.

There	are	four	kinds	of	operations	provided	by	data	abstractions:	creators	produce	new	objects
“from	scratch”;	producers	produces	new	objects	given	existing	objects	as	arguments,	mutators
modify	the	state	of	their	object;	and	observers	provide	information	about	the	state	of	their
object.

A	data	type	is	adequate	if	it	provides	enough	operations	so	that	whatever	users	need	to	do	with
its	objects	can	be	done	conveniently	and	with	reasonable	efficiency.

In	deciding	about	mutability,	it	is	sometimes	necessary	to

make	a	trade-off	between	efficiency	and	safety.

Immutable	abstractions	are	safer	than	mutable	ones

because	no	problems	arise	if	their	objects	are	shared.

However,	new	objects	may	be	created	and	discarded

frequently	for	immutable	abstractions,	which	means	that

storage	management	work	(e.g.,	garbage	collection)	is

done	more	frequently.	For	example,	representing	a	set	as

a	list	is	probably	not	a	good	choice	if	insert	and
remove	are	used	frequently.

In	any	case,	note	that	mutability	or	immutability	is	a

property	of	the	type	and	not	of	its	implementation.	An

implementation	must	simply	support	this	aspect	of	its

abstraction’s	behavior.

5.8.2	Operation	Categories

The	operations	of	a	data	abstraction	fall	into	four

categories:

1.	Creators.	These	operations	create	objects	of	their	type

“from	scratch”	without	taking	any	objects	of	their	type

as	inputs.	All	creators	are	constructors.	Most

constructors	are	creators—for	example,	all	the	ones	in

•	
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the	examples	in	this	chapter.	But	sometimes

constructors	take	arguments	of	their	type,	and	these

are	not	creators.

2.	Producers.	These	operations	take	objects	of	their	type

as	inputs	and	create	other	objects	of	their	type.	They

may	be	either	constructors	or	methods.	For	example,

add	and	mul	are	producers	for	Poly.

3.	Mutators.	These	are	methods	that	modify	objects	of

their	type.	For	example,	insert	and	remove	are
mutators	for	IntSets.	Clearly,	only	mutable	types
can	have	mutators.

4.	Observers.	These	are	methods	that	take	objects	of

their	type	as	inputs	and	return	results	of	other	types.

They	are	used	to	obtain	information	about	objects.

Examples	are	size,	isIn,	and	choose	for	IntSets,
and	coeff	and	degree	for	Polys.

The	creators	usually	produce	some	but	not	all	objects;	for

example,	the	Poly	creators	(the	two	constructors)
produce	only	single-term	polynomials,	while	the	IntSet
constructor	produces	only	the	empty	set.	The	other

objects	are	produced	by	producers	or	mutators.	Thus,	the

producer	add	can	be	used	to	obtain	Polys	with	more
than	one	term,	while	the	mutator	insert	can	be	used	to
obtain	sets	containing	many	elements.

Mutators	play	the	same	role	in	mutable	types	that

producers	play	in	immutable	ones.	A	mutable	type	can

have	producers	as	well	as	mutators;	for	example,	if

IntSet	had	a	clone	method,	this	method	would	be	a
producer.	Sometimes	observers	are	combined	with

producers	or	mutators;	for	example,	IntSet	might	have
a	chooseAndRemove	method	that	returns	the	chosen
element	and	also	removes	it	from	the	set.

5.8.3	Adequacy

A	data	type	is	adequate	if	it	provides	enough	operations

so	that	everything	users	need	to	do	with	its	objects	can	be

done	both	conveniently	and	with	reasonable	efficiency.	It

is	not	possible	to	give	a	precise	definition	of	adequacy,

although	there	are	limits	on	how	few	operations	a	type



can	have	and	still	be	useful.	For	example,	if	we	provide

only	the	IntSet	constructor	and	the	insert	and
remove	methods,	programs	cannot	find	out	anything
about	the	elements	in	the	set	(because	there	are	no

observers).	On	the	other	hand,	if	we	add	just	the	size
method	to	these	three	operations,	we	can	learn	about

elements	in	the	set	(for	example,	we	could	test	for

membership	by	deleting	the	integer	and	seeing	if	the	size

changed),	but	the	type	would	be	costly	and	inconvenient

to	use.

A	very	rudimentary	notion	of	adequacy	can	be	obtained

by	considering	the	operation	categories.	In	general,	a

data	abstraction	should	have	operations	from	at	least

three	of	the	four	categories	discussed	in	the	preceding

section.	It	must	have	creators,	observers,	and	producers

(if	it	is	immutable)	or	mutators	(if	it	is	mutable).	In

addition,	the	type	must	be	fully	populated.	This	means

that	between	its	creators,	mutators,	and	producers,	it

must	be	possible	to	obtain	every	possible	abstract	object

state.

However,	the	notion	of	adequacy	additionally	must	take

context	of	use	into	account:	a	type	must	have	a	rich

enough	set	of	operations	for	its	intended	uses.	If	the	type

is	to	be	used	in	a	limited	context,	such	as	a	single

package,	then	just	enough	operations	for	that	context

need	be	provided.	If	the	type	is	intended	for	general	use,

a	rich	set	of	operations	is	desirable.

To	decide	whether	a	data	abstraction	has	enough

operations,	identify	everything	users	might	reasonably

expect	to	do.	Next,	think	about	how	these	things	can	be

done	with	the	given	set	of	operations.	If	something	seems

too	expensive	or	too	cumbersome	(or	both),	investigate

whether	the	addition	of	an	operation	would	help.

Sometimes	a	substantial	improvement	in	performance

can	be	obtained	simply	by	having	access	to	the

representation.	For	example,	we	could	eliminate	the

isIn	operation	for	IntSets	because	this	operation	can
be	implemented	outside	the	type	by	using	the	other

operations.	However,	testing	for	membership	in	a	set	is	a



common	use	and	will	be	faster	if	done	inside	the

implementation.	Therefore,	IntSet	should	provide	this
operation.

There	can	also	be	too	many	operations	in	a	type.	When

considering	the	addition	of	operations,	you	need	to

consider	how	they	fit	in	with	the	purpose	of	the	data

abstraction.	For	example,	a	storage	abstraction	like

Vector	or	IntSet	should	include	operations	to	access
and	modify	the	storage,	but	not	operations	unrelated	to

this	purpose,	such	as	a	sort	method	or	a	method	to
compute	the	sum	of	the	elements	of	the	vector	or	set.

Having	too	many	operations	makes	an	abstraction	harder

to	understand.	Also,	implementation	is	more	difficult,

and	so	is	maintenance,	because	if	the	implementation

changes,	more	code	is	affected.	The	desirability	of	extra

operations	must	be	balanced	against	these	factors.	If	the

type	is	adequate,	its	operations	can	be	augmented	by

standalone	procedures	that	are	outside	the	type’s

implementation	(i.e.,	static	methods	of	some	other	class).

5.9	LOCALITY	AND	MODIFIABILITY

The	benefits	of	locality	and	modifiability	apply	to	data

abstractions	as	well	as	to	procedures.	However,	these

benefits	can	be	achieved	only	if	we	have	abstraction	by

specification.

Locality	(the	ability	to	reason	about	a	module	by	just

looking	at	its	code	and	not	any	other	code)	requires	that	a

representation	be	modifiable	only	within	its	type’s

implementation.	If	modifications	can	occur	elsewhere,

then	we	cannot	establish	the	correctness	of	the

implementation	just	by	examining	its	code;	for	example,

we	cannot	guarantee	locally	that	the	rep	invariant	holds,

and	we	cannot	use	data	type	induction	with	any

confidence.

Modifiability	(the	ability	to	reimplement	an	abstraction

without	having	to	reimplement	any	other	code)	requires

even	more	than	locality—all	access	to	a	representation,

even	to	immutable	components,	must	occur	within	its

type’s	implementation.	If	access	occurs	in	some	other



module,	we	cannot	replace	the	implementation	without

affecting	that	other	module.	This	is	why	all	the	instance

variables	must	be	declared	private.

Thus,	it	is	crucial	that	access	to	the	representation	be

restricted	to	the	type’s	implementation.	It	is	desirable	to

have	the	programming	language	help	here	so	that

restricted	access	is	guaranteed	provided	the	implementor

does	not	expose	the	rep.	Otherwise,	restricted	access	is

another	property	that	must	be	proved	about	programs.

Java	provides	support	for	restricted	access	via	its

encapsulation	mechanisms.

Sidebar	5.6	summarizes	the	discussion	about	locality	and

modifiability.

Sidebar	5.6	Locality	and	Modifiability	for	Data	Abstraction

A	data	abstraction	implementation	provides	locality	if	using	code	cannot	modify	components	of
the	rep;	that	is,	it	must	not	expose	the	rep.

A	data	abstraction	implementation	provides	modifiability	if,	in	addition,	there	is	no	way	for	using
code	to	access	any	part	of	the	rep.

5.10	SUMMARY

This	chapter	has	discussed	data	abstractions:	what	they

are,	how	to	specify	their	behavior,	and	how	to	implement

them,	both	in	general	and	in	Java.	We	discussed	both

mutable	abstractions,	such	as	IntSet,	and	immutable
ones,	such	as	Poly.

We	also	discussed	some	important	aspects	of	data	type

implementations.	In	general,	we	want	all	objects	of	the

class	to	be	legal	representations	of	the	abstract	objects;

the	rep	invariant	defines	the	legal	representations.	The

abstraction	function	defines	the	meaning	of	the	rep	by

stating	the	way	in	which	the	legal	class	objects	represent

the	abstract	objects.	Both	the	rep	invariant	and	the

abstraction	function	should	be	included	as	comments	in

the	implementation	(in	the	private	section	of	the	class

declaration).	They	are	helpful	in	developing	the

implementation	since	they	force	the	implementor	to	be

explicit	about	assumptions.	They	are	also	helpful	to

anyone	who	examines	the	implementation	later	since

they	explain	what	must	be	understood	about	the	rep.

•	
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Furthermore,	the	rep	invariant	and	abstraction	function

should	be	implemented	(as	repOk	and	toString,
respectively)	since	this	makes	debugging	and	testing

easier.

In	addition,	we	explored	some	issues	that	must	be

considered	in	designing	and	implementing	data	types.

Care	must	be	taken	in	deciding	whether	or	not	a	type	is

mutable;	an	immutable	abstraction	can	have	a	mutable

rep,	however,	and	observers	can	even	modify	the	rep,

provided	these	modifications	are	“benevolent”	(i.e.,	not

visible	to	users).	Also,	care	is	needed	in	choosing	a	type’s

operations	so	that	it	serves	the	needs	of	its	users

adequately.	We	also	discussed	data	type	induction	and

how	it	is	used	to	prove	properties	of	objects.

Furthermore,	we	discussed	how	having	an	encapsulated

rep	is	crucial	for	obtaining	the	benefits	of	locality	and

modifiability.

EXERCISES

5.1	Implement	a	toString	method	for	Polys	(as	part	of
the	implementation	in	Figure	5.7).

5.2	Suppose	IntSets	were	implemented	using	a
Vector	as	in	Figure	5.6,	but	the	els	component	was
kept	sorted	in	increasing	size.	Give	the	rep	invariant

and	abstraction	function	for	this	implementation.

Also	implement	repOk	and	toString.

5.3	Suppose	Polys	(Figure	5.4)	were	implemented	with
the	zero	Poly	represented	by	the	empty	array.	Give
the	rep	invariant	and	abstraction	function	for	this

implementation,	and	implement	repOk	and
toString.

5.4	Suppose	we	wanted	a	way	to	create	a	Poly	(Figure
5.4)	by	reading	a	string	from	a	BufferedReader.
Specify	and	implement	such	an	operation.	Does	the

operation	need	to	be	implemented	inside	the	Poly
class	(e.g.,	the	one	in	Figure	5.7),	or	can	it	be	in	a

separate	class?

5.5	Bounded	queues	have	an	upper	bound,	established

when	a	queue	is	created,	on	the	number	of	integers



that	can	be	stored	in	the	queue.	Queues	are	mutable

and	provide	access	to	their	elements	in	first-in/first-

out	order.	Queue	operations	include

						IntQueue(int	n);
						void	enq(int	x);
						int	deq	(	);

The	constructor	creates	a	new	queue	with	maximum

size	n,	enq	adds	an	element	to	the	front	of	the	queue,
and	deq	removes	the	element	from	the	end	of	the
queue.	Provide	a	specification	of	IntQueue,
including	extra	operations	as	needed	for	adequacy.

Implement	your	specification.	Give	the	rep	invariant

and	abstraction	function	and	implement	repOk	and
toString.

5.6	Implement	sparse	polynomials.	Be	sure	to	include

the	rep	invariant	and	abstraction	function	and	to

implement	repOk	and	toString.

5.7	Specify	and	implement	a	rational	number	type.	Give

the	rep	invariant	and	abstraction	function	and

implement	repOk	and	toString.

5.8	Consider	a	map	data	abstraction	that	maps	Strings
to	ints.	Maps	allow	an	existing	mapping	to	be
looked	up.	Maps	are	also	mutable:	new	pairs	can	be

added	to	a	map,	and	an	existing	mapping	can	be

removed.	Give	a	specification	for	maps.	Be	sure	your

data	type	is	adequate,	and	if	any	operations	throw

exceptions,	explain	whether	they	are	checked	or

unchecked.	Also	implement	your	specification.	Give

the	rep	invariant	and	abstraction	function	and

implement	repOk	and	toString.

5.9	Discuss	whether	the	implementations	of	bounded

queues	and	maps	should	provide	their	own

implementations	of	equals	and	clone	and
implement	these	operations	if	they	are	needed.

5.10	Give	an	informal	argument	that	the	implementation

of	Poly	in	Figure	5.7	preserves	the	rep	invariant.

5.11	Give	an	informal	argument	that	the	implementation

of	Poly	in	Figure	5.7	is	correct.

5.12	Give	an	informal	argument	that	the	following



abstract	invariant	holds	for	Polys:

							p.degree	>	0	=>	p.coeff(p.degree)		≠	0

5.13	Provide	correctness	arguments	for	your

implementations	of	the	types	mentioned	previously

(rational	numbers,	sparse	polynomials,	bounded

queues,	and	maps).

5.14	Suppose	we	wanted	to	evaluate	a	Poly	(Figure	5.4)
at	a	given	point:

							int	eval(Poly	p,	int	x)	throws	NullPointerException
									//	EFFECTS:	If	p	is	null	throws	NullPointerException	else
									//					returns	the	value	of	p	at	x,	e.g.,	eval(x2+	3x,	2)	=	10.

Should	eval	be	an	operation	of	Poly?	Discuss.

5.15	A	student	proposes	a	type	matrix	with	operations	to
add	and	multiply	matrices	and	to	invert	a	matrix.

These	matrices	are	mutable;	for	example,	the

invert	operation	modifies	its	argument	to	contain
the	inverse	of	the	original	matrix.	A	second	student

claims	that	a	matrix	abstraction	ought	not	to	be

mutable.	Discuss.

5.16	A	student	says	that	as	long	as	programs	outside	a

type’s	implementation	cannot	modify	the	rep,	we

have	achieved	as	much	as	is	possible	from	data

abstraction.	Discuss.



6	Iteration	Abstraction

This	chapter	discusses	our	final	abstraction	mechanism,

the	iteration	abstraction,	or	iterator	for	short.	Iterators

are	a	generalization	of	the	iteration	mechanisms	available

in	most	programming	languages.	They	permit	users	to

iterate	over	arbitrary	types	of	data	in	a	convenient	and

efficient	way.

For	example,	an	obvious	use	of	a	set	is	to	perform	some

action	for	each	of	its	elements:

for	all	elements	of	the	set
				do	action

Such	a	loop	might	go	through	the	set	completely—for

example,	to	sum	all	elements	of	a	set.	Or	it	might	search

for	an	element	that	satisfies	some	criterion,	in	which	case

the	loop	can	stop	as	soon	as	the	desired	element	has	been

found.

IntSets	as	we	have	defined	them	so	far	provide	no
convenient	way	to	perform	such	loops.	For	example,

suppose	we	want	to	compute	the	sum	of	the	elements	in

an	IntSet:

public	static	int	setSum	(IntSet	s)	throws	NullPointerException
						//	EFFECTS:	If	s	is	null	throws	NullPointerException	else
						//					returns	the	sum	of	the	elements	of	s.

The	implementation	of	setSum	shown	in	Figure	6.1
illustrates	the	two	main	defects	of	our	IntSet
abstraction.	First,	to	loop	through	all	elements,	we	delete

each	element	returned	by	choose	so	that	it	will	not	be
chosen	again.	Thus,	two	operations,	choose	and
remove,	must	be	called	on	each	iteration.	This
inefficiency	could	be	avoided	by	having	choose	remove
the	chosen	element,	but	we	still	have	the	second	problem,

which	is	that	iterating	over	an	IntSet	destroys	it	by
removing	all	its	elements.	Such	destruction	may	be

acceptable	at	times	but	cannot	be	satisfactory	in	general.

Although	we	can	collect	the	removed	elements	and

reinsert	them	later,	as	is	done	in	Figure	6.1,	the	approach



is	clumsy	and	inefficient.

Figure	6.1	An	implementation	of	setSum

public	static	int	setSum	(IntSet	s)	throws	NullPointerException	{
				int[	]	a	=	new	int[s.size(	)];
				int	sum	=	0;
				for	(int	i	=	0;	i	<	a.length;	i++)	{
					a[i]	=	s.choose(	);
					sum	=	sum	+	a[i];
					s.remove(a[i]);	}
						//	restore	elements	of	s
				for	(int	i	=	0;	i	<	a.length;	i++)	s.insert(a[i]);
				return	sum;
}

If	setSum	were	an	IntSet	operation,	we	could
implement	it	efficiently	by	manipulating	the	rep	of

IntSet.	However,	setSum	does	not	make	sense	as	an
IntSet	operation;	it	seems	peripheral	to	the	concept	of	a
set.	Furthermore,	even	if	we	could	justify	making	it	an

operation,	what	about	other	similar	procedures	we	might

want?	There	must	be	a	way	to	implement	such

procedures	efficiently	outside	the	type.

To	support	iteration	adequately,	we	need	to	access	all

elements	in	a	collection	efficiently	and	without	destroying

the	collection.	How	might	we	do	this	for	IntSets?	One
possibility	is	to	provide	a	members	method:

public	int[	]	members	(	)
			//	EFFECTS:	Returns	an	array	containing	the	elements	of	this,
			//			each	exactly	once,	in	some	arbitrary	order.

Given	this	operation,	we	can	implement	setSum	as
shown	in	Figure	6.2.	Since	members	does	not	modify	its
argument,	we	no	longer	need	to	rebuild	the	IntSet	after
iterating.

Figure	6.2	Implementation	of	setSum	using	the	members	method

public	static	int	setSum	(IntSet	s)	{
			int[	]	a	=	s.members(	);
			int	sum	=	0;
			for	(int	i	=	0;	i	<	a.length;	i++)	sum	=	sum	+	a[i];
			return	sum;
}

Although	members	makes	it	easier	to	use	IntSets,	it	is
inefficient,	especially	if	the	IntSet	is	large.	First,	we
have	two	data	structures—the	IntSet	itself	and	the	array
—and,	if	the	set	is	large,	so	is	the	array.	Second,	in	the

case	of	a	search	loop,	we	have	probably	done	too	much



work	since	the	loop	need	not	examine	all	elements	of	the

collection	being	searched.	For	example,	if	we	were

searching	an	IntSet	for	a	negative	element,	we	could
stop	as	soon	as	we	encountered	the	first	negative

element.	However,	we	must	process	the	entire	collection

to	build	the	array.

An	alternative	to	members	is	an	operation	that	simply
returns	the	representing	vector.	However,	this	solution	is

very	bad	since	it	destroys	abstraction	by	exposing	the	rep.

Yet	another	possibility	is	to	change	the	IntSet
abstraction	to	encompass	the	notion	of	indexing.

However,	such	an	IndexedSet	is	a	more	complicated
abstraction	than	IntSet,	and	the	added	complexity	does
not	seem	intrinsic	to	the	notion	of	a	set.

What	is	needed	is	a	general	mechanism	of	iteration	that

is	convenient	and	efficient	and	that	preserves	abstraction.

Iterators	provide	the	needed	support.	An	iterator	is	a

special	kind	of	procedure	that	causes	the	items	we	want

to	iterate	over	to	be	produced	incrementally.	The

produced	items	can	be	used	in	other	modules	that	specify

actions	to	be	performed	for	each	item.	The	using	code

will	contain	some	sort	of	looping	structure,

		for	each	result	item	i	produced	by	iterator	A
								do	perform	some	action	on	i

Each	iteration	of	the	loop	produces	a	new	item,	which	is

then	acted	on	by	the	body	of	the	loop.

Note	the	separation	of	concerns	in	such	a	form.	The

iterator	is	responsible	for	producing	the	items,	while	the

code	containing	the	loop	defines	the	action	to	be

performed	on	them.	The	iterator	can	be	used	in	different

modules	that	perform	different	actions	on	the	items,	and

it	can	be	implemented	in	different	ways	without	affecting

these	modules.

Since	the	iterator	causes	items	to	be	produced	one	at	a

time,	it	avoids	the	space	and	time	problems	discussed

earlier.	We	need	not	construct	a	potentially	large	data

structure	to	contain	the	items.	Moreover,	if	the	using

code	is	performing	a	search	loop,	the	iterator	can	be



stopped	as	soon	as	the	item	of	interest	is	found.

As	mentioned	earlier,	iterators	are	a	generalization	of	the

iteration	mechanisms	available	in	most	programming

languages.	In	addition	to	some	form	of	while	loop,
programming	languages	typically	provide	a	for	loop	for
iterating	over	integers.	Such	iteration	is	useful	in

conjunction	with	arrays,	which	are	indexed,	but	does	not

mesh	well	with	nonindexed	collections	like	IntSet.
Iterators	provide	convenient	iteration	even	over

nonindexed	collections.

6.1	ITERATION	IN	JAVA

Java	does	not	provide	direct	support	for	iteration

abstraction.	Instead,	we	will	provide	iteration	by	a	special

kind	of	procedure,	which	we	will	refer	to	as	an	iterator.

Some	iterators	are	methods	of	data	abstractions,	and	a

data	abstraction	can	provide	several	iterator	methods.	In

addition,	there	can	be	standalone	iterators.

An	iterator	returns	a	special	kind	of	data	object	called	a

generator.	A	generator	keeps	track	of	the	state	of	an

iteration	in	its	rep.	It	has	a	hasNext	method	that	can	be
used	to	determine	whether	more	elements	remain	to	be

produced,	and	a	next	method	to	get	the	next	element
and	advance	the	state	of	the	generator	object	to	record

the	returning	of	that	element.

All	generators	belong	to	types	that	are	subtypes	of	the

Iterator	interface	(interfaces	will	be	discussed	in	detail
in	Chapter	7).	This	interface	is	described	in	Figure	6.3;	it

is	defined	by	the	java.util	package.	(The	Iterator
interface	provides	some	additional	methods	to	what	are

shown	in	the	figure,	but	we	will	not	use	them	in	this

book.)	The	specification	provides	a	generic	description	of

all	generator	types;	all	such	types	have	objects	with	the

two	methods	and	the	indicated	behavior.

NoSuchElementException	is	an	unchecked	exception
because	of	the	expectation	that	most	uses	of	a	generator

will	avoid	causing	the	exception	to	be	raised.

Figure	6.3	Specification	of	Iterator	interface

public	interface	Iterator	{



			public	boolean	hasNext	(	);
						//	EFFECTS:	Returns	true	if	there	are	more	elements	to	yield
						//			else	returns	false

			public	Object	next	(	)	throws	NoSuchElementException;
						//	MODIFIES:	this
						//	EFFECTS:	If	there	are	more	results	to	yield,	returns	the	next	r
esult
						//			and	modifies	the	state	of	this	to	record	the	yield.
						//			Otherwise,	throws	NoSuchElementException
}

Figure	6.4	Using	generators

//	loop	controlled	by	hasNext
Iterator	g	=	primesLT100(	);
while	(g.hasNext(	))	{
			int	x	=	((Integer)	g.next(	)).intValue(	);
			//	use	x
			}

//	loop	controlled	by	exception
Iterator	g	=	primesLT100(	);
try	{
			while	(true)	{
						int	x	=	((Integer)	g.next(	)).intValue(	);
						//	use	x
						}
catch	(NoSuchElementException	e)	{	}

Figure	6.4	shows	how	to	use	generators	to	do	iteration.

First,	a	generator	is	created	by	calling	an	iterator;	in	this

example,	the	iterator	primesLT100	returns	a	generator
that	will	produce	all	prime	numbers	less	than	100.	The

generator	is	typically	used	in	a	while	loop.	The	loop
body	uses	the	next	method	to	get	the	next	value
produced	by	the	iteration.	Either	the	loop	is	controlled	by

the	hasNext	method	or	the	loop	can	be	terminated	when
next	throws	an	exception.

6.2	SPECIFYING	ITERATORS

The	specification	of	an	iterator	explains	the	whole

iteration:	how	the	iterator	uses	its	arguments	to	produce

a	generator,	and	the	behavior	of	the	generator.	(See

Sidebar	6.1.)	The	specification	given	in	Figure	6.3

explains	what	the	generator	methods	do	but	is	otherwise

generic:	it	doesn’t	explain	exactly	what	any	particular

generator	does.	We	capture	the	missing	information	in

the	specification	of	the	iterator.

Figure	6.5	gives	the	specifications	of	two	iterators,	both	of



which	are	methods	of	data	abstractions.	The	terms
iterator	is	a	method	of	Poly	that	provides	the	ability	to
iterate	through	the	terms	of	the	Poly.	The	specification
explains	that	the	returned	generator	allows	iteration	over

this,	producing	all	the	exponents	of	its	Poly	for
nonzero	terms	up	to	the	degree.	Note	that	the

specification	indicates	the	type	of	object	(Integer)	that
will	actually	be	produced	by	the	generator.

The	figure	also	specifies	an	elements	iterator	for	sets;
this	method	would	replace	the	choose	method	described
earlier.	Two	points	are	of	interest	here.	First,	note	that

the	specification	of	elements	includes	a	requirement	on
the	code	using	the	generator.	It	is	not	clear	what	the

generator	would	do	if	the	set	were	modified	while	the

generator	is	being	used.	Therefore,	we	rule	out	such

modifications	in	the	specification	of	elements.	Almost
always	a	generator	over	a	mutable	object	will	have	such	a

requirement.	We	state	the	requirement	in	a	requires

clause	as	usual,	but	since	this	is	a	requirement	on	the	use

of	the	generator,	rather	than	on	the	call	to	the	iterator,	we

place	the	requires	clause	at	the	end	of	the	specification.

Normally,	a	requires	clause	is	the	very	first	part	of	a

specification.	In	fact,	an	iterator	might	have	two	requires

clauses:	one	ruling	out	certain	arguments	and	the	other

stating	constraints	on	using	the	returned	generator.

Sidebar	6.1	Iterators	and	Generators

An	iterator	is	a	procedure	that	returns	a	generator.	A	data	abstraction	can	have	one	or	more
iterator	methods,	and	there	can	also	be	standalone	iterators.

A	generator	is	an	object	that	produces	the	elements	used	in	the	iteration.	It	has	methods	to	get
the	next	element	and	to	determine	whether	there	are	any	more	elements.	The	generator’s	type
is	a	subtype	of	Iterator.

The	specification	of	an	iterator	defines	the	behavior	of	the	generator;	a	generator	has	no
specification	of	its	own.	The	iterator	specification	often	includes	a	requires	clause	at	the	end
constraining	the	code	that	uses	the	generator.

Figure	6.5	Two	iterator	methods

public	class	Poly	{
			//	as	before	plus:

			public	Iterator	terms	(	)
						//	EFFECTS:	Returns	a	generator	that	will	produce	exponents
						//			of	nonzero	terms	of	this	(as	Integers)	up	to	the	degree,
						//			in	order	of	increasing	exponent.
}

•	

•	

•	



public	class	IntSet	{
			//	as	before	plus:
			public	Iterator	elements	(	)
						//	EFFECTS:	Returns	a	generator	that	will	produce	all	the	elements
	of
						//			this	(as	Integers),	each	exactly	once,	in	arbitrary	order.
						//	REQUIRES:	this	must	not	be	modified	while	the	generator	is	in	u
se.
}

The	second	point	is	that,	unlike	the	choose	method,	the
elements	iterator	does	not	throw	any	exceptions.	It	is
typical	that	the	use	of	iterators	eliminates	problems

associated	with	certain	arguments	(like	the	empty	set)

that	would	arise	for	related	procedures	such	as	choose.

Although	both	of	these	data	abstractions	provide	only	one

iterator,	a	data	abstraction	can	have	many	iterators.	Also,

neither	terms	nor	elements	modifies	anything:	the
iterator	doesn’t	modify	this,	and	neither	does	the
generator	it	returns.	Iterators	are	usually	like	this,	but

modifications	are	occasionally	useful.	If	there	is	a

modification,	the	iterator	specification	must	explain	what

it	is,	and	whether	the	iterator	or	the	generator	does	the

modification.

Figure	6.6	Specification	of	allPrimes	iterator

public	class	Num	{

			public	static	Iterator	allPrimes	(	)
						//	EFFECTS:	Returns	a	generator	that	will	produce	all	primes
						//			(as	Integers),	each	exactly	once,	in	increasing	order.
}

In	addition	to	iterator	methods,	it	is	also	possible	to	have

standalone	iterators;	they	will	be	static	methods.	Figure

6.6	gives	a	specification	of	such	an	iterator,	the

allPrimes	iterator.	The	generator	returned	by
allPrimes	will	keep	producing	results	without	any
bound,	and	therefore	it	will	need	to	be	used	in	a	loop	that

bounds	the	iteration.

6.3	USING	ITERATORS

Figure	6.7	gives	some	examples	of	using	iterators	and	the

generators	they	return.	The	diff	routine	differentiates	a
Poly.	Note	that	the	code	does	not	catch	the
NegativeExponentException	of	the	Poly



constructor	because	it	never	calls	the	constructor	with	a

negative	exponent	(and	the	exception	is	unchecked).	The

printPrimes	routine	uses	the	allPrimes	iterator.
This	routine	uses	a	searching	loop:	the	iteration	stops	as

soon	as	enough	primes	have	been	printed.	The	max
routine	returns	the	largest	element	provided	by	its

generator.	This	implementation	illustrates	additional

ways	to	use	generators.	Generators	can	be	passed	as

arguments	to	routines.	In	such	a	case,	the	routine	has

abstracted	away	where	the	elements	are	coming	from:

they	might	be	coming	from	a	collection	like	IntSet	or
from	a	standalone	iterator	like	all-Primes.	Also,	the
code	in	max	primes	the	generator:	it	uses	it	before	the
loop	to	initialize	the	iteration.

Note	that	all	using	code	is	written	in	terms	of	the	generic

Iterator	type	described	in	Figure	6.3.	As	we	shall	see
in	Section	6.4,	iterators	actually	return	objects	belonging

to	classes	that	implement	this	type,	but	these	classes	are

never	visible	to	using	code.

Sidebar	6.2	on	page	134	summarizes	the	use	of

generators.

Figure	6.7	Using	iterators	and	generators

public	class	Comp	{
			public	static	Poly	diff	(Poly	p)	throws	NullPointerException	{
						//	EFFECTS:	If	p	is	null	throws	NullPointerException	else
						//			returns	the	poly	obtained	by	differentiating	p.
						Poly	q	=	new	Poly(	);
						Iterator	g	=	p.terms(	);
						while	(g.hasNext(	))	{
									int	exp	=	((Integer)	g.next(	)).intValue(	);
									if	(exp	==	0)	continue;	//	ignore	the	zero	term
									q	=	q.add(new	Poly(exp*p.coeff(exp),	exp-1));	}
								return	q;
				}

				public	static	void	printPrimes	(int	m)	{
							//	MODIFIES:	System.out
							//	EFFECTS:	Prints	all	the	primes	less	than	or	equal	to	m	on	System.out
							Iterator	g	=	Num.allPrimes(	);
							while	(true)	{
										Object	p	=	g.next(	);
										if	(p	>	m)	return;
										System.out.println(“The	next	prime	is:	”	+	p.toString(	));	}
				}

				public	static	int	max	(Iterator	g)	throws	EmptyException,
							NullPointerException	{
							//	REQUIRES:	g	contains	only	Integers
							//	MODIFIES:	g
							//	EFFECTS:	If	g	is	null	throws	NullPointerException;	if	g	is	emp
ty,



							//			throws	EmptyException;	else	consumes	all	elements	of	g
							//			and	returns	the	largest	int	in	g.
							try	{
										int	m	=	((Integer)	g.next(	)).intValue(	);
										while	(g.hasNext(	))	{
													int	x	=	g.next(	);
													if	(m	<	x)	m	=	x;	}
										return	m;	}
							catch	(NoSuchElementException	e)
										{	throw	new	EmptyException(“Comp.max”);	}
				}
}

Sidebar	6.2	Using	Generators

Using	code	interacts	with	a	generator	via	the	Iterator	interface.

Using	code	must	obey	the	constraint	imposed	on	it	by	the	iterator’s	requires	clause.

Generators	can	be	passed	as	arguments	and	returned	as	results.

It	is	sometimes	useful	to	prime	the	generator:	to	consume	some	of	the	produced	items	before
looping	over	the	rest	of	them.

6.4	IMPLEMENTING	ITERATORS

To	implement	an	iterator,	one	needs	to	write	its	code	and

define	and	implement	a	class	for	its	generator.	There	will

be	a	separate	generator	class	for	each	iterator.	These

classes	aren’t	visible	to	users:	users	don’t	see	their	class

declarations.	Instead,	user	code	is	written	in	terms	of	the

generic	Iterator	type,	as	was	illustrated	in	Figure	6.7.

Each	new	class	implements	the	Iterator	interface.
Such	classes	define	subtypes	of	types	defined	by	the

Iterator	interface.	Therefore,	code	written	in	terms	of
Iterator	types	will	be	able	to	use	objects	of	the	class.
This	is	why	users	don’t	need	to	know	about	the	new	class;

knowing	about	the	Iterator	interface	is	sufficient,
together	with	the	specification	of	the	iterator.

Figure	6.8	gives	the	implementation	of	the	terms
iterator	of	Poly,	using	the	rep	described	in	Figure	5.7.
The	generator	object	it	returns	is	an	object	of	type

PolyGen;	the	return	is	legal	because	PolyGen	is	a
subtype	of	Iterator.

The	PolyGen	class	is	also	shown	in	the	figure.	It	is
implemented	as	an	static	inner	class—that	is,	as	a	class

that	is	nested	inside	another	class.	Because	PolyGen	is
private,	no	code	outside	the	Poly	class	will	be	able	to
name	it;	therefore,	using	code	will	be	unable	to	declare

variables	of	type	PolyGen	or	construct	PolyGen	objects.

•	

•	

•	

•	



Instead,	using	code	will	obtain	PolyGen	objects	only	by
calling	the	terms	iterator	and	will	use	them	via	the
Iterator	interface.

Because	PolyGen	is	an	inner	class,	its	constructor	can	be
called	by	code	within	the	Poly	class,	and	its	code	can
access	private	instance	variables	and	methods	of	Poly
objects.	This	is	appropriate	since	PolyGen	is	really	part
of	the	Poly	implementation—the	part	that	provides	the
terms	iterator.	Furthermore,	the	inner	class	must
preserve	the	representation	invariant	of	Poly	just	like
other	Poly	code.

Figure	6.8	Implementation	of	the	terms	iterator

public	class	Poly	{
			private	int[	]	trms;
			private	int	deg;

			public	Iterator	terms	(	)	{	return	new	PolyGen(this);	}

			//	inner	class
			private	static	class	PolyGen	implements	Iterator	{
						private	Poly	p;			//	the	Poly	being	iterated
						private	int	n;			//	the	next	term	to	consider

						PolyGen	(Poly	it)	{
									//	REQUIRES:	it	!=	null
									p	=	it;
									if	(p.trms[0]	==	0)	n	=	1;	else	n	=	0;	}

						public	boolean	hasNext	(	)	{	return	n	<=	p.deg;	}

						public	Object	next	(	)	throws	NoSuchElementException	{
									for	(int	e	=	n;	e	<=	p.deg;	e++)
												if	(p.trms[e]	!=	0)	{	n	=	e	+	1;	return	new	Integer(e);	}
									throw	new	NoSuchElementException(“Poly.terms”);	}
			}	//	end	PolyGen
}

Note	that	no	specification	is	given	for	PolyGen.	This	is
because	it	is	fully	specified	already:	its	objects	must	be

generators,	and	they	must	obey	the	specification	of	the

terms	iterator.

Note	also	that	the	exception	thrown	in	the	next	method
identifies	the	terms	iterator	as	the	source	of	the
problem.	This	is	appropriate	because	users	are	aware	of

the	iterator	but	not	the	inner	class	that	implements	the

associated	generator;	therefore,	the	information	is	being

conveyed	at	a	level	that	makes	sense	to	users.



Figure	6.9	Implementation	of	allPrimes	iterator

public	class	Num	{

			public	static	Iterator	allPrimes(	)	{	return	new	PrimesGen(	);	}

			//	inner	class
			private	static	class	PrimesGen	implements	Iterator	{
						private	Vector	ps;		//	primes	yielded
						private	int	p;	//	next	candidate	to	try

						PrimesGen	(	)	{	p	=	2;	ps	=	new						Vector(	);	}

						public	boolean	hasNext	(	)	{	return	true;	}

						public	Object	next	(	)	{
									if	(p	==	2)	{	p	=	3;		return	2;	}
									for	(int	n	=	p;							true;	n	=	n	+	2)
													for	(int	i	=	0;	i	<	ps.size(	);	i++)	{
																int	el	=	((Integer)	ps.get(i)).intValue(	);
																	if	(n%el	==	0)	break;	//	not	a	prime
																	if	(el*el	>	n)	{	//	have	a	prime
																				ps.add(new	Integer(n));	p	=	n	+	2;	return	n;	}
														}
							}
				}	//	end	PrimesGen
}

Figure	6.9	contains	an	implementation	of	the

allPrimes	iterator	that	was	specified	in	Figure	6.6.
Since	all	primes	are	odd	except	for	2,	the	loop	only

considers	odd	numbers	as	potential	primes,	and	2	is

handled	specially.	The	implementation	keeps	all	the	odd

primes	generated	so	far	in	the	ps	array	and	uses	them	to
determine	whether	the	next	candidate	is	a	prime.

Note	that	the	header	of	the	PrimesGen	next	method
does	not	list	NoSuchElementException	since	it	does
not	throw	this	exception.	However,	the	specification	of

Iterator	indicates	that	this	exception	can	be	raised	by
next.	It	is	acceptable	for	the	subtype	method	to	have
fewer	exceptions	than	the	corresponding	supertype

method.	From	the	point	of	view	of	the	user,	this	rule

makes	sense:	when	the	call	happens,	the	user	is	prepared

to	handle	the	exceptions	listed	in	the	header	of	the

method	he	or	she	knows	about.	If	some	of	those

exceptions	do	not	happen,	it	is	not	a	problem.	We	will

discuss	this	issue	further	in	Chapter	7.

Sidebar	6.3	Implementing	Iterators

An	iterator’s	implementation	requires	the	implementation	of	a	class	for	the	associated•	



generator.

The	generator	class	is	a	static	inner	class:	it	is	nested	inside	the	class	containing	the	iterator
and	can	access	the	private	information	of	its	containing	class.

The	generator	class	defines	a	subtype	of	Iterator.

The	implementation	of	the	generator	assumes	using	code	obeys	constraints	imposed	on	it	by
the	requires	clause	of	the	iterator.

Sidebar	6.3	summarizes	the	implementation	of	iterators.

6.5	REP	INVARIANTS	AND	ABSTRACTION
FUNCTIONS	FOR	GENERATORS

We	need	to	define	rep	invariants	and	abstractions

functions	for	generators,	just	as	we	do	for	ordinary

abstract	types.	This	section	explains	how	to	do	this.

Rep	invariants	for	generators	are	similar	to	those	for

ordinary	abstract	types;	the	only	difference	is	that	we	will

not	provide	a	method	to	check	them.	The	rep	invariant

for	PolyGen	is

				//	c.p	≠	null	&&	(0	<=	c.n	<=	c.p.deg)

Note	how	this	rep	invariant	is	expressed	using	instance

variables	of	Poly.	Note	also	how	the	requirement	that
c.p	not	be	null	is	satisfied	because	of	the	requires
clause	of	the	constructor	of	PolyGen.

The	rep	invariant	for	PrimesGen	is

//		c.ps	is	not	null	and
//				all	elements	of	c.ps	are	primes,	and	they	are	sorted	in	ascending	
order,
//				and	they	include	all	primes	<	c.p	and	>	2.

Note	that	this	invariant	would	be	quite	expensive	to

check!

To	define	the	abstraction	function	for	a	generator,	we

need	to	understand	what	the	abstract	state	of	a	generator

is.	All	generators	have	the	same	abstract	state:	a	sequence

of	the	items	that	remain	to	be	generated.	The	abstraction

function	thus	needs	to	map	the	rep	to	this	sequence.

Here	are	the	abstraction	functions	for	PrimesGen	and
PolyGen:

//	abstraction	function	for	PrimesGen
//				AF(c)	=	[	p1,	p2,	…	]	such	that
//				each	pi	is	an	Integer	and	pi	is	a	prime	and	pi	>=	c.p	and
//				every	prime	>=	c.p	is	in	the	sequence	and
//				pi	>	pj	for	all	i	>	j	>=	1.

•	

•	

•	



//	abstraction	function	for	PolyGen
//			AF(c)	=	[	x1,	…,	xn	]	such	that
//			each	xi	is	an	Integer	and
//			every	index	i	>=	n	of	a	nonzero	element	of	c.p.trms	is	in
//			the	sequence	and	no	other	elements	are	in	the	sequence
//			and	xi	>	xj	for	all	i	>	j	>=	1.

6.6	ORDERED	LISTS

This	section	provides	another	example	of	an	iterator.	This

iterator	is	part	of	OrderedIntList—a	mutable
abstraction	that	keeps	its	elements	in	sorted	order.	The

smallToBig	iterator	will	produce	the	elements	of	the
list	in	this	order.	Note	that	OrderedIntList	would	not
be	adequate	without	the	iterator	because	there	would	be

no	convenient	way	to	find	out	what	is	in	the	list	without

removing	elements	from	the	list.

The	specification	of	OrderedIntList	is	given	in	Figure
6.10.	The	addEl	and	remEl	methods	throw	an	exception
when	the	element	is	already	in	the	ordered	list.	This

choice	reflects	a	belief	that	users	will	want	to	know	about

the	situation,	without	having	to	check	for	it	explicitly	(by

calling	isIn).

Figure	6.10	Specification	of	ordered	lists

public	class	OrderedIntList	{
			//	OVERVIEW:	An	ordered	list	is	a	mutable	ordered	list	of	integers.
			//			A	typical	list	is	a	sequence	[x1,	…,	xn]	where	xi	<	xj	if	i	<	j.

			//	constructors
			public	OrderedIntList	(	)
			//	EFFECTS:	Initializes	this	to	be	an	empty	ordered	list.

			//	methods
			public	void	addEl	(int	el)	throws	DuplicateException
						//	MODIFIES:		this
						//	EFFECTS:	If	el	is	in	this,	throws	DuplicateException;
						//			otherwise,	adds	el	to	this.

			public	void	remEl	(int	el)	throws	NotFoundException
						//	MODIFIES:		this
						//	EFFECTS:	If	el	is	not	in	this,	throws	NotFoundException;
						//			otherwise,	removes	el	from	this.

			public	boolean	isIn	(int	el)
						//	EFFECTS:	If	el	is	in	this	returns	true	else	returns	false.

			public	boolean	isEmpty	(	)
						//	EFFECTS:	Returns	true	if	this	is	empty	else	returns	false.

			public	int	least	(	)	throws	EmptyException
						//	EFFECTS:	If	this	is	empty,	throws	EmptyException;
						//			otherwise,	returns	the	smallest	element	of	this.

			public	Iterator	smallToBig	(	)
						//	EFFECTS:	Returns	a	generator	that	will	produce	the	elements	of	this
						//			(as	Integers),	each	exactly	once,	in	order	from	smallest	to	l
argest.



						//	REQUIRES:	this	must	not	be	modified	while	the	generator	is	in	u
se.

			public	boolean	repOk	(	)
			public	String	toString	(	)
			public	Object	clone	(	)
}

Furthermore,	since	users	are	likely	to	make	calls	that

throw	the	exceptions,	the	exceptions	should	be	checked.

The	implementation	of	OrderedIntList	uses	a	sorted
tree.	The	idea	is	that	each	node	of	the	tree	contains	a

value	and	two	subnodes,	one	on	the	left	and	one	on	the

right.	The	two	subnodes	are	themselves	ordered	lists,	and

therefore	the	rep	is	recursive.	The	tree	is	sorted	so	that	all

the	values	in	the	left	subnode	are	less	than	the	value	in

the	parent	node,	and	all	values	in	the	right	subnode	are

greater	than	the	value	in	the	parent	node.

Figure	6.11	gives	part	of	the	implementation	of	ordered

lists.	Note	that	the	implementation	of	addEl	implicitly
propagates	the	DuplicateException	raised	by	its
recursive	calls;	the	implementation	of	remEl	is	similar.

The	smallToBig	iterator	is	implemented	in	Figure	6.12.
The	generator	starts	by	producing	the	elements	of	the	left

subtree.	When	all	these	elements	have	been	produced,	it

returns	the	value	of	the	top	node	of	the	tree	and	then

produces	the	elements	of	the	right	subtree.	Because	it	is

important	for	both	generator	methods,	and	especially	the

hasNext	method,	to	execute	efficiently,	the
implementation	keeps	track	of	how	many	elements	are

left	to	be	produced.	It	does	this	by	computing	how	many

elements	are	in	the	list	at	the	time	the	iteration	begins.

The	abstraction	function	and	rep	invariant	for

OrderedIntList	are

//	the	abstraction	function	is:
//				AF(c)	=	if	c.empty	then	[	]	else	AF(c.left)	+	[	c.val	]	+	AF(c.right)
//	the	rep	invariant	is:
//					I(c)	=	c.empty	||	(	c.left	≠	null	&&	c.right	≠	null	&&
//							I(c.left)	&&	I(c.right)	&&
//							(!c.left.isEmpty	=>	c.left.greatest	<	c.val)	&&
//							(!c.right.isEmpty	=>	c.val	<	c.right.least)	)

Here	[]	is	the	empty	sequence,	+	concatenates
sequences,	and	c.left.	greatest	is	the	largest
element	of	c.left.	Note	that	both	the	abstraction



function	and	the	rep	invariant	are	defined	recursively.

This	is	what	you	would	expect	for	a	recursive

implementation!

The	abstraction	function	and	rep	invariant	for	the

generator	are

//	the	abstraction	function	is:
//			AF(c)	=	if	c.cnt	=	0	then	[	]
//					else	if	|AF(c.child)|	=	c.cnt	then	AF(c.child)
//					else	AF(c.child)	+	[Integer(c.me.val)]	+	AF(OLGen(c.right))

Figure	6.11	Part	of	the	implementation	of	ordered	list

public	class	OrderedIntList	{
			private	boolean	empty;
			private	OrderedIntList	left,	right;
			private	int	val;

			public	OrderedIntList	(	)	{	empty	=	true;	}

			public	void	addEl	(int	el)	throws	DuplicateException	{
						if	(empty)	{
									left	=	new	OrderedIntList(	);	right	=	new	OrderedIntList(	);
									val	=	el;	empty	=	false;	return;	}
						if	(el	==val)
									throw	new	DuplicateException(“OrderedIntList.addEl”);
						if	(el	<	val)	left.addEl(el);	else	right.addEl(el);	}

			public	void	remEl	(int	el)	throws	NotFoundException	{
						if	(empty)	throw	new	NotFoundException(“OrderedIntList.remEl”);
						if	(el	==	val)
									try	{	val	=	right.least(	);	right.remEl(val);	}
									catch	(EmptyException	e)	{	empty	=	left.empty;	val	=	left.val;
												right	=	left.right;	left	=	left.left;	return;	}
						else	if	(el	<	val)	left.remEl(el);	else	right.remEl(el);	}

			public	boolean	isIn	(int	el)	{
						if	(empty)	return	false;
						if	(el	==	val)	return	true;
						if	(el	<	val)	return	left.isIn(el);	else	return	right.isIn(el);
				}

			public	boolean	isEmpty	(	)	{	return	empty;	}

			public	int	least	(	)	throws	EmptyException	{
						if	(empty)	throw	new	EmptyException(“OrderedIntList.least”);
						try	{	return	left.least(	);	}
						catch	(EmptyException	e)	{	return	val;	}
}

Figure	6.12	Implementation	of	ordered	list	iterator

public	Iterator	smallToBig	(	)	{	return	new	OLGen(this,	count(	));	}

private	int	count	(	)	{
			if	(empty)	return	0;
			return	1	+	left.count(	)	+	right.count(	);	}



//	inner	class
private	static	class	OLGen	implements	Iterator	{
			private	int	cnt;	//	count	of	number	of	elements	left	to	generate
			private	OLGen	child;	//	the	current	sub-generator
			private	OrderedIntList	me;	//	my	node

			OLGen	(OrderedIntList	o,	int	n)	{
			//	REQUIRES:	o	!=	null
						cnt	=	n;
						if	(cnt	>	0)	{	me	=	o;
									child	=	new	OLGen(o.left,	o.left.count(	));	}
				}

			public	boolean	hasNext	(	)	{	return	cnt	>	0;	}

			public	Object	next	(	)	throws	NoSuchElementException	{
						if	(cnt	==	0)
									throw	new	NoSuchElementException(“OrderedIntList.smallToBig”);
						cnt--;
						try	{	return	new	Integer(child.next(	));	}
						catch	(NoSuchElementException	e)	{	}
						//	if	get	here,	must	have	just	finished	on	the	left;
						child	=	new	OLGen(me.right,	cnt);
						return	new	Integer(me.val);	}
}	//	end	of	OLGen

//	the	rep	invariant	is:
//			I(c)	=	c.cnt	=	0	||	(c.cnt	>	0	&&
//				c.me	≠	null	&&	c.child	≠	null	&&
//					(c.cnt	=	c.child.cnt	+	1	||
//							c.cnt	=	c.child.cnt	+	c.me.right.count	+	1))

Note	how	the	rep	invariant	depends	on	the	requires

clause	of	the	smallToBig	iterator	that	the	ordered	list
not	be	modified	while	the	generator	is	in	use.

6.7	DESIGN	ISSUES

Most	data	types	will	include	iterators	among	their

operations,	especially	types	like	IntSet	and
OrderedIntList	whose	objects	are	collections	of	other
objects.	Iterators	are	frequently	needed	for	adequacy;

they	make	elements	of	a	collection	accessible	in	a	way

that	is	both	efficient	and	convenient.

A	type	might	have	several	iterators.	For	example,

OrderedIntList	might	have	the	method,

public	Iterator	bigToSmall	(	)
			//	EFFECTS:	Returns	a	generator	that	will	produce	the	elements	of	thi
s
			//			(as	Integers),	each	exactly	once,	in	order	from	largest	to	small
est.
			//	REQUIRES:	this	must	not	be	modified	while	the	generator	is	in	use.

in	addition	to	the	smallToBig	method	discussed	earlier.

For	mutable	collections,	we	have	consistently	required



that	the	loop	body	not	modify	the	collection	being

iterated	over.	If	we	omit	this	requirement,	the	generator

returned	by	the	iterator	must	behave	in	a	well-defined

way	even	when	modifications	occur.	For	example,

suppose	integer	n	is	deleted	from	an	IntSet	while	the
generator	returned	by	elements	is	in	use;	should	n	be
produced	by	the	generator	or	not?

One	approach	is	to	require	that	a	generator	produce	the

elements	contained	in	its	collection	argument	at	the	time

it	is	created	by	the	iterator,	even	if	modifications	occur

later.	The	behavior	of	a	generator	specified	in	this	way	is

well	defined,	but	the	implementation	is	likely	to	be

inefficient.	For	example,	if	the	elements	iterator	had	to
return	this	sort	of	generator,	its	implementation	would

have	to	provide	the	generator	with	a	copy	of	the	els
array—just	what	we	objected	to	in	the	members	method.
Because	the	approach	of	constraining	the	loop	body

avoids	such	inefficiencies,	it	will	be	preferred	most	of	the

time.	A	related	issue	is	whether	the	iterator	or	the

generator	it	returns	can	modify	the	collection.	As	a

general	convention,	such	modifications	should	be

avoided.

Modifications	by	the	loop	body	or	the	iterator	or

generator	can	sometimes	be	useful.	For	example,

consider	a	program	that	performs	tasks	waiting	on	a	task

queue:

			Iterator	g	=	q.allTasks(	);
			while	(g.hasNext(	))	{
						Task	t	=	(Task)	g.next(	);
					//	perform	t
					//	if	t	generates	a	new	task	nt,	enqueue	it	by	performing	q.enq(nt)
}

When	the	task	being	performed	generates	another	task,

we	simply	enqueue	it	to	be	performed	later;	the	generator

returned	by	iterator	allTasks	will	present	it	for
execution	at	the	appropriate	time.	However,	examples

like	this	are	rare;	usually	neither	the	generator	nor	the

loop	body	will	modify	the	collection.

6.8	SUMMARY

This	chapter	identified	a	problem	in	the	adequacy	of	data



types	that	are	collections	of	objects.	Since	a	common	use

of	a	collection	is	to	perform	some	action	for	its	elements,

we	need	a	way	to	access	all	elements.	This	method	should

be	efficient	in	space	and	time,	convenient	to	use,	and	not

destructive	of	the	collection.	In	addition,	it	should

support	abstraction	by	specification.

Iterators	solve	this	problem.	They	return	a	special	kind	of

object,	called	a	generator,	that	produces	the	items	in	the

collection	one	at	a	time.	Producing	items	incrementally

means	that	extra	space	to	store	the	items	is	not	needed,

and	production	can	be	stopped	as	soon	as	the	desired

object	has	been	found.	Iterators	support	abstraction	by

specification	for	the	containing	type	by	encapsulating	the

way	the	items	are	produced;	the	approach	depends	on

knowledge	of	the	rep,	but	using	programs	are	shielded

from	this	knowledge.

Generators	are	objects	of	Iterator	types.	Such	types
are	subtypes	of	the	type	defined	by	the	Iterator
interface.	Users	of	the	generator	are	not	aware	of	the

class	that	implements	the	interface;	using	code	is	written

entirely	in	terms	of	the	Iterator	interface.

Iterators	are	useful	in	their	own	right,	as	was	illustrated

by	the	allPrimes	example.	However,	their	main	use	is
as	operations	of	data	types.	We	shall	see	other	examples

of	such	use	in	the	rest	of	the	book.

EXERCISES

6.1	Specify	a	procedure,	isPrimes,	that	determines
whether	an	integer	is	prime,	and	then	implement	it

using	allPrimes	(Figure	6.6).

6.2	Implement	the	elements	iterator	for	IntSet	(see
Figure	6.5).	Be	sure	to	give	the	rep	invariant	and

abstraction	function.

6.3	Complete	the	implementation	of	OrderedIntList
provided	in	Figures	6.11	and	6.12	by	providing

implementations	for	clone,	toString,	repOk,	and
equals	(if	necessary).

6.4	Implement	the	bigToSmall	iterator	for
OrderedIntLists	as	an	extra	method	in	the



implementation	provided	in	Figures	6.11	and	6.12.

bigToSmall	was	specified	in	Section	6.6.	Also
discuss	whether	this	iterator	is	needed	in	order	for

OrderedIntLists	to	be	adequate.

6.5	Specify	and	implement	an	iterator	that	provides	all

the	nonzero	unit	polynomials	of	a	Poly	in	order	of
increasing	degree.	For	example,	for	the	Poly	x	+
7x ,	it	would	produce	the	Polys	x	and	7x .	You	can
define	this	either	as	a	Poly	operation	or	not	as	you
prefer,	but	you	should	justify	your	choice.

6.6	Implement	the	following	iterator:

							static	Iterator	filter	(Iterator	g,	Check	x)
										throws	NullPointerException
														//	REQUIRES:	g	contains	only	Integers
														//	MODIFIES:	g
														//	EFFECTS:	If	g	is	null	throws	NullPointerException	else
														//			returns	a	generator	that	produces	in	order,	each	exac
tly	once,
														//			all	elements	e	produced	by	g	for	which	x.checker(e)	i
s	true.

Here	Check	is	a	type	whose	objects	have	a	method:

							public	boolean	checker(Integer)

that	determines	whether	its	argument	satisfies	some

predicate.

6.7	Implement	the	following	iterator	and	associated

generator:

							static	Iterator	perms	(int[	]	a)	throws	NullPointerException
										//	EFFECTS:	If	a	is	null	throws	NullPointerException,	else
										//			returns	a	generator	that	will	produce	the	permutations	of
	a,
										//			each	exactly	once,	in	arbitrary	order.
										//			All	objects	in	the	generator	will	be	int	arrays.
										//	REQUIRES:	a	not	be	modified	while	generator	is	in	use.

Be	sure	to	give	the	rep	invariant	and	abstraction

function	for	the	generator.

6.8	Discuss	the	adequacy	of	Poly	without	the	terms
iterator.	How	would	the	adequacy	be	affected	by

providing	an	iterator	allCoeffs	that	produced	all
nonzero	coefficients	up	to	the	degree?	How	about

adding	an	iterator	allTerms	that	provided	all	the
exponents	up	to	the	degree?

6.9	Consider	a	Table	type	that	maps	Strings	to	ints;

3 3



this	type	was	discussed	in	the	exercises	in	Chapter	5.

Is	this	type	adequate	without	iterators?	Define	any

iterators	that	are	needed	and	implement	them	as	an

extension	to	your	implementation	of	Table.

6.10	Consider	the	bounded	queue	type	that	was	discussed

in	the	exercises	in	Chapter	5.	Is	this	type	adequate

without	iterators?	Define	any	iterators	that	are

needed	and	implement	them	as	an	extension	to	your

implementation	of	bounded	queues.

6.11	Consider	an	IntBag	type.	Bags	are	like	sets	except
that	they	can	contain	the	same	integer	multiple

times.	Define	an	IntBag	type	by	giving	a
specification	for	it	and	justify	the	adequacy	of	your

definition.	Then	provide	an	implementation	for	the

type	including	the	rep	invariant	and	abstraction

functions	for	the	type	and	for	any	generator	types.

Also	discuss	the	performance	of	your

implementation.



7	Type	Hierarchy

This	chapter	discusses	a	way	to	enhance	the	utility	of	data

abstraction	by	defining	families	of	related	types.	All

members	of	a	family	have	similar	behavior:	they	all	have

certain	methods,	and	calls	on	those	methods	behave	in

similar	ways.	Family	members	may	differ	by	extending

the	behavior	of	the	common	methods	or	by	providing

additional	methods.

A	type	family	might	correspond	to	the	kind	of	hierarchy

found	in	the	real	world;	for	example,	Busses	and	Cars
are	both	specialized	kinds	of	Vehicles,	or	Dogs	and
Cats	are	special	kinds	of	Mammals.	Or	it	might
correspond	to	concepts	that	only	exist	within	programs;

for	example,	a	BufferedReader	is	a	specialized	kind	of
Reader.

A	type	family	is	defined	by	a	type	hierarchy	(see	Sidebar

7.1).	At	the	top	of	the	hierarchy	is	a	type	whose

specification	defines	the	behavior	common	to	all	family

members,	including	the	signatures	and	behavior	of	all	the

common	methods.	Other	family	members	are	defined	to

be	subtypes	of	this	type,	which	is	referred	to	as	their

supertype.	The	hierarchy	can	be	more	than	two	levels:

subtypes	can	themselves	have	subtypes,	and	so	on.

Type	families	are	used	in	two	different	ways.	They	can	be

used	to	define	multiple	implementations	of	a	type.	In	this

case,	the	subtypes	do	not	add	any	new	behavior,	except

that	each	of	them	has	its	own	constructors.	Rather,	the

class	implementing	the	subtype	implements	exactly	the

behavior	defined	by	the	supertype.	For	example,	we	could

use	a	type	family	to	provide	both	sparse	and	dense

polynomials,	so	that	the	most	efficient	representation

could	be	used	for	each	polynomial	object.

Sidebar	7.1	Type	Hierarchy

Type	hierarchy	is	used	to	define	type	families	consisting	of	a	supertype	and	its	subtypes.	The
hierarchy	can	extend	through	many	levels.

Some	type	families	are	used	to	provide	multiple	implementations	of	a	type:	the	subtypes

•	

•	



provide	different	implementations	of	their	supertype.

More	generally,	though,	subtypes	extend	the	behavior	of	their	supertype,	for	example,	by
providing	extra	methods.

The	substitution	principle	provides	abstraction	by	specification	for	type	families	by	requiring	that
subtypes	behave	in	accordance	with	the	specification	of	their	supertype.

More	generally,	though,	the	subtypes	in	a	type	family

extend	the	behavior	of	their	supertypes,	for	example,	by

providing	additional	methods.	The	hierarchy	defining

such	a	type	family	can	be	multilevel.	Furthermore,	at	the

bottom	of	the	hierarchy	there	might	be	multiple

implementations	of	some	subtype.

Type	hierarchy	requires	the	members	of	the	type	family

to	have	related	behavior.	In	particular,	the	supertype’s

behavior	must	be	supported	by	the	subtypes:	subtype

objects	can	be	substituted	for	supertype	objects	without

affecting	the	behavior	of	the	using	code.	This	property	is

referred	to	as	the	substitution	principle.	It	allows	using

code	to	be	written	in	terms	of	the	supertype	specification,

yet	work	correctly	when	using	objects	of	the	subtype.	For

example,	code	can	be	written	in	terms	of	the	Reader
type,	yet	work	correctly	when	using	a	BufferedReader.

The	substitution	principle	provides	abstraction	by

specification	for	a	type	family.	It	allows	us	to	abstract

from	the	differences	among	the	subtypes	to	the

commonalities,	which	are	captured	in	the	supertype

specification.	The	substitution	principle	is	discussed	in

Section	7.9.

7.1	ASSIGNMENT	AND	DISPATCHING

The	utility	of	type	hierarchy	rests	on	a	loosening	of	the

rules	governing	assignment	and	argument	passing	and	on

the	way	calls	are	dispatched	to	code.	Both	of	these	issues

were	discussed	in	Chapter	2,	but	we	discuss	them	again

here	since	they	are	central	to	understanding	how

hierarchy	works.

7.1.1	Assignment

A	variable	declared	to	belong	to	one	type	can	actually

refer	to	an	object	belonging	to	some	subtype	of	that	type.

In	particular,	if	S	is	a	subtype	of	T,	S	objects	can	be
assigned	to	variables	of	type	T,	and	they	can	be	passed	as

•	

•	



arguments	or	results	where	a	T	is	expected.

For	example,	suppose	that	DensePoly	and	SparsePoly
are	subtypes	of	Poly.	(The	idea	is	that	DensePoly
provides	a	good	implementation	of	Polys	that	have
relatively	few	zero	coefficients	below	the	degree	term,	and

Sparse-Poly	is	good	for	the	Polys	that	don’t	match
this	criterion.)	Then	the	following	code	is	permitted:

					Poly	p1	=	new	DensePoly(	);	//	the	zero	Poly

					Poly	p2	=	new	SparsePoly(3,	20);	//	the	Poly	3x20.

Thus,	variables	of	type	Poly	can	refer	to	DensePoly	and
SparsePoly	objects.

Having	assignments	like	these	means	that	the	type	of

object	referred	to	by	a	variable	is	not	necessarily	the	same

as	what	is	declared	for	the	variable.	For	example,	p1	is
declared	to	have	type	Poly	but	in	fact	refers	to	a
DensePoly	object.	To	distinguish	these	two	types,	we
refer	to	an	object’s	apparent	type	and	its	actual	type.	The

apparent	type	is	what	the	compiler	can	deduce	given	the

information	available	to	it	(from	declarations);	the	actual

type	is	the	type	the	object	really	has.	For	example,	the

object	referred	to	by	p1	has	apparent	type	Poly	but
actual	type	DensePoly.	The	actual	type	of	an	object	will
always	be	a	subtype	of	its	apparent	type.	(As	discussed	in

Chapter	2,	recall	that	we	consider	that	a	type	is	a	subtype

of	itself.)

The	compiler	does	type	checking	based	on	the

information	available	to	it:	it	uses	the	apparent	types,	not

the	actual	types,	to	do	the	checking.	In	particular,	it

determines	what	method	calls	are	legal	based	on	the

apparent	type.	For	example,

				int	d	=	p1.degree(	);

is	considered	to	be	legal	since	Poly,	the	apparent	type	of
p1,	has	a	method	named	degree	that	takes	no
arguments	and	returns	an	int.

The	goal	of	the	checking	is	to	ensure	that	when	a	method

call	is	executed,	the	object	actually	has	a	method	with	the

appropriate	signature.	For	this	to	make	sense,	it	is



essential	that	the	object	p1	refers	to	has	all	the	methods
indicated	by	the	supertype	with	the	expected	signatures.

Thus,	DensePoly	and	SparsePoly	must	have	all	the
methods	declared	for	Poly	with	the	expected	signatures.
Java	ensures	that	this	condition	is	satisfied.

In	the	preceding	example,	suppose	that	Poly	did	not
have	a	degree	method.	In	this	case,	the	call	will	be
rejected	by	the	compiler	even	if	the	object	referred	to	by

p1	actually	has	such	a	method.	An	object	belonging	to	a
subtype	is	created	in	code	that	knows	it	is	dealing	with

the	subtype.	That	code	can	use	the	extra	subtype

methods.	But	code	written	in	terms	of	the	supertype	can

only	use	the	supertype	methods.

7.1.2	Dispatching

The	compiler	may	not	be	able	to	determine	what	code	to

run	when	a	method	is	called.	The	code	to	run	depends	on

the	actual	type	of	the	object,	while	the	compiler	knows

only	the	apparent	type.	For	example,	consider	the

compilation	of

			static	Poly	diff(Poly	p)	{
						//	differentiates	p
						Iterator	g	=	p.terms(	);
							...
			}

When	this	routine	is	compiled,	the	compiler	does	not

know	whether	the	actual	type	of	the	object	p	refers	to	is	a
DensePoly	or	a	SparsePoly,	yet	it	must	call	the
implementation	of	terms	for	DensePoly	if	p	is	a
DensePoly,	and	the	implementation	of	terms	for
SparsePoly	if	p	is	a	SparsePoly.	(It	must	call	the
code	determined	by	the	actual	type	since	the

representations	are	different	and	the	code	works

differently	in	the	two	cases.)

As	discussed	in	Chapter	2,	calling	the	right	method	is

achieved	by	a	runtime	mechanism	called	dispatching.

The	compiler	does	not	generate	code	to	call	the	method

directly.	Instead,	it	generates	code	to	find	the	method’s

code	and	then	branch	to	it.

Figure	7.1	A	Poly	object	with	a	dispatch	vector



Sidebar	7.2	Assignment	and	Dispatching

The	compiler	deduces	an	apparent	type	for	each	object	by	using	the	information	in	variable	and
method	declarations.

Each	object	has	an	actual	type	that	it	receives	when	it	is	created:	this	is	the	type	defined	by	the
class	that	constructs	it.

The	compiler	ensures	the	apparent	type	it	deduces	for	an	object	is	always	a	supertype	of	the
actual	type	of	the	object.

The	compiler	determines	what	calls	are	legal	based	on	the	object’s	apparent	type.

Dispatching	causes	method	calls	to	go	to	the	object’s	actual	code—that	is,	the	code	provided
by	its	class.

There	are	several	ways	to	implement	dispatching.	One

approach	is	to	have	objects	contain,	in	addition	to	their

instance	variables,	a	pointer	to	a	dispatch	vector,	which

contains	pointers	to	the	implementations	of	the	object’s

methods.	This	structure	is	illustrated	in	Figure	7.1.	Code

to	call	a	method	retrieves	the	dispatch	vector	from	the

object,	retrieves	the	address	of	the	method’s	code	from

the	appropriate	slot	of	the	dispatch	vector,	and	then

branches	to	that	address.	For	example,	to	call	the	terms
method	of	Poly	p,	the	calling	code	would	call	the	code
pointed	at	by	the	fourth	slot	of	p’s	dispatch	vector.

Sidebar	7.2	summarizes	assignment	and	dispatching.

7.2	DEFINING	A	TYPE	HIERARCHY

The	first	step	in	defining	a	type	hierarchy	is	to	define	the

type	at	the	top	of	the	hierarchy.	This	type	has	a

specification	like	those	we	are	familiar	with,	except	that	it

may	be	incomplete—for	example,	lacking	constructors.

Specifications	of	subtypes	are	given	relative	to	those	of

their	supertypes.	Rather	than	restate	the	parts	of	the

supertype	specification	that	don’t	change,	subtype

specifications	focus	on	what	is	new.	Therefore,	the

subtype	specification	must	define	the	subtype

constructors,	plus	any	extra	methods	provided	by	the

•	

•	

•	

•	

•	



subtype.	In	addition,	if	the	subtype	changes	the	behavior

of	some	supertype	methods,	specifications	must	be

provided	for	those	methods.	Only	limited	changes	to	the

behavior	of	supertype	methods	are	allowed;	this	point	is

discussed	in	Section	7.9.

Implementations	of	supertypes	are	usually	somewhat

different	from	what	we	have	seen	so	far.	Some	supertypes

aren’t	implemented	at	all;	others	may	have	only	partial

implementations,	in	which	some	methods	are

implemented	but	others	are	not.	Furthermore,	a

supertype	implementation	may	provide	extra	information

to	potential	subtypes,	giving	them	access	to	instance

variables	or	to	methods	that	users	can’t	call.

When	supertypes	are	implemented,	even	only	partially,

subtypes	are	then	implemented	as	extensions	of	the

supertype	implementation.	Reps	of	subtype	objects

contain	within	them	the	instance	variables	defined	in	the

implementation	of	the	supertype.	Some	subtype	methods

are	inherited	from	the	supertype’s	implementation	and

need	not	be	implemented	by	the	subtype’s

implementation.	However,	the	subtype	implementation

can	also	reimplement	these	methods.

7.3	DEFINING	HIERARCHIES	IN	JAVA

Type	hierarchies	are	defined	in	Java	using	the

inheritance	mechanism.	This	mechanism	allows	a	class

to	be	a	subclass	of	one	other	class	(its	superclass)	and	to

implement	zero	or	more	interfaces.

Supertypes	in	Java	are	defined	by	both	classes	and

interfaces.	In	either	case,	the	class	or	interface	provides	a

specification	for	the	type.	An	interface	only	defines	a

specification;	it	does	not	contain	any	code	implementing

the	supertype.	Interfaces	are	discussed	in	Section	7.7.

When	a	supertype	is	defined	by	a	class,	then	in	addition

to	the	specification,	the	class	may	provide	a	full	or	partial

implementation.

There	are	two	kinds	of	classes	in	Java:	concrete	classes

and	abstract	classes.	Concrete	classes	provide	a	full

implementation	of	the	type.	Abstract	classes	provide	at



most	a	partial	implementation	of	the	type.	They	have	no

objects	(since	some	of	their	methods	are	not	yet

implemented),	and	using	code	cannot	call	their

constructors.

Both	kinds	of	classes	can	contain	normal	methods	(like

we	have	seen	so	far)	and	final	methods.	Final	methods

cannot	be	reimplemented	by	subclasses;	we	will	not	use

them	in	this	book,	but	they	are	occasionally	useful	to

ensure	that	the	behavior	of	a	method	is	fixed	by	the

supertype	and	cannot	be	changed	in	any	subtype.

Abstract	classes	may	in	addition	have	abstract	methods;

these	are	methods	that	are	not	implemented	by	the

superclass	and,	therefore,	must	be	implemented	by	some

subclass.	However,	the	distinction	between	these

categories	of	methods	is	of	interest	only	to	implementors

of	subclasses;	it	is	not	of	interest	to	users.

A	subclass	declares	its	superclass	by	stating	in	its	header

that	it	extends	that	class.	This	will	automatically	cause
it	to	have	all	the	methods	of	its	superclass	with	the	same

names	and	signatures	as	defined	in	the	superclass.	In

addition,	it	may	provide	some	extra	methods.

A	concrete	subclass	must	contain	implementations	of	the

subclass	constructors	and	the	extra	methods.	In	addition,

it	must	implement	the	abstract	methods	of	its	superclass

and	may	reimplement,	or	override,	the	normal	methods.

It	inherits	from	its	superclass	the	implementations	of	the

final	methods	and	any	normal	methods	that	it	does	not

override.	Any	methods	it	overrides	must	have	signatures

identical	to	what	the	superclass	defines,	except	that	the

subclass	method	can	throw	fewer	exception	types.

The	representation	of	a	subclass	object	consists	of	the

instance	variables	declared	for	the	superclass	and	those

declared	for	the	subclass.	When	implementing	the

subclass,	it	may	be	necessary	to	have	access	to	the

representation	details	of	the	superclass	implementation.

This	will	be	possible	only	if	the	superclass	made	parts	of

its	implementation	accessible	to	the	subclass.	An

important	issue	in	designing	a	superclass	is	to	determine

the	interface	it	provides	to	its	subclasses.	It’s	best	if



subclasses	can	interact	with	superclasses	entirely	via	the

public	interface	since	this	preserves	full	abstraction	and

allows	the	superclass	to	be	reimplemented	without

affecting	the	implementations	of	its	subclasses.	But	that

interface	may	be	inadequate	to	permit	efficient

subclasses.	In	that	case,	the	superclass	can	declare

protected	methods,	constructors,	and	instance	variables

that	are	visible	to	subclasses.	However,	protected

members	are	also	package	visible:	they	are	accessible	to

other	parts	of	the	superclass’s	package.	Therefore,	their

visibility	is	not	as	limited	as	one	might	want:	the	rep	is

exposed	to	other	code	in	the	package.

Sidebar	7.3	Defining	a	Hierarchy

A	supertype	is	defined	by	either	a	class	or	an	interface,	which	provides	its	specification	and,	in
the	case	of	the	class,	provides	a	partial	or	complete	implementation.

An	abstract	class	provides	only	a	partial	implementation;	it	has	no	objects	and	no	constructors
that	users	can	call.

A	subclass	can	inherit	the	implementations	of	its	superclass’s	methods,	but	it	can	also	override
those	implementations	(for	nonfinal	methods).

The	rep	of	a	subclass	consists	of	its	own	instance	variables	and	those	of	its	superclass,	but	it
can	access	the	superclass	instance	variables	only	if	they	are	declared	to	be	protected.

Sidebar	7.3	summarizes	this	discussion.

Every	class	that	does	not	explicitly	extend	some	other

class	implicitly	extends	Object.	Thus,	every	class	is	a
subclass	of	Object	and	must	provide	correct
implementations	for	the	Object	methods,	as	discussed
in	Chapter	5.

7.4	A	SIMPLE	EXAMPLE

The	first	example	concerns	a	family	of	integer	set	types.

In	this	case,	the	class	at	the	top	of	the	hierarchy	is	not

abstract:	IntSet	provides	a	minimal	(adequate)	set	of
methods;	subtypes	will	provide	additional	methods.

IntSet	has	only	normal	methods	that	it	implements	and
that	its	subclasses	can	override.	A	specification	for

IntSet	is	given	in	Figure	7.2;	it	is	similar	to	ones	we
have	seen	for	IntSet	in	earlier	chapters,	except	that	it
defines	a	subset	method.

A	portion	of	the	implementation	of	IntSet	is	given	in
Figure	7.3(a	more	complete	implementation	for	IntSet

•	

•	

•	

•	



can	be	found	in	Figure	5.6).	The	elements	of	the	IntSet
are	stored	in	the	els	vector.	The	main	point	to	note	is
that	there	are	no	protected	members.	This	means	that

subclasses	of	IntSet	have	no	special	access	to	the
components	of	the	superclass	part	of	their	rep.	This	lack

of	access	is	acceptable	here	because	the	elements
iterator	provides	adequate	power.

Figure	7.2		Specification	for	IntSet

			public	class	IntSet	{
					//	OVERVIEW:	IntSets	are	mutable,	unbounded	sets	of	integers.
					//				A	typical	IntSet	is	{x1...,	xn}.

					//	constructors
					public	IntSet	(	)
								//	EFFECTS:	Initializes	this	to	be	empty.

					//	methods
					public	void	insert	(int	x)
								//	MODIFIES:	this
								//	EFFECTS:	Adds	x	to	the	elements	of	this.
	
					public	void	remove	(int	x)
								//	MODIFIES:	this
							//	EFFECTS:	Removes	x	from	this.

					public	boolean	isIn	(int	x)
							//	EFFECTS:	If	x	is	in	this	returns	true	else	returns	false.

					public	int	size	(	)
							//	EFFECTS:	Returns	the	cardinality	of	this.

					public	Iterator	elements	(	)
							//	EFFECTs:	Returns	a	generator	that	produces	all	elements	of	this
							//			(as	Integers),	each	exactly	once,	in	arbitrary	order.
							//	REQUIRES:	this	not	be	modified	while	the	generator	is	in	use.

					public	boolean	subset	(IntSet	s)
							//	EFFECTS:	Returns	true	if	this	is	a	subset	of	s	else	returns	fa
lse.

					public	boolean	repok	(	)
			}

Figure	7.3		Partial	Implementation	of	IntSet

			public	class	IntSet	{
						private	Vector	els;	//	the	elements

						public	IntSet	(	)	{	els	=	new	Vector	(	);	}

						private	int	getIndex	(Integer	x)	{	...	}

						public	boolean	isIn	(int	x)	{
									return	getIndex(new	Integer(x))	>=	0;	}

						public	boolean	subset	(IntSet	s)	{
									if	(s	==	null)	return	false;
									for	(int	i	=	0;	i	<	els.size(	);	i++)
													if	(!s.isIn(((Integer)	els.get(i)).intValue(	)))
													return	false;
													return	true;	}



									//	implementations	of	other	methods	go	here
						}

Now	consider	a	type	MaxIntSet,	which	is	a	subtype	of
IntSet.	An	MaxIntSet	object	behaves	just	like	an
IntSet	object	except	that	it	has	an	extra	method	that
returns	the	largest	element	of	the	set.	The	specification

for	MaxIntSet	is	given	in	Figure	7.4.	Note	that	the
specification	relies	on	the	IntSet	specification	and	only
defines	what	is	new,	both	in	the	overview	clause	and	in

the	specifications	of	operations.	In	the	case	of

MaxIntSet,	no	specifications	of	the	supertype	methods
have	changed,	and	therefore	only	the	new	operations,	the

max	method	and	the	MaxIntSet	constructor,	have	been
specified.	All	other	methods	have	the	specifications

provided	for	them	in	the	specification	of	IntSet.

An	easy	way	to	implement	MaxIntSet	is	to	allow
IntSet	to	keep	track	of	the	elements	of	the	set.
However,	to	make	it	easy	to	find	the	maximum	element,

it	is	desirable	for	the	subclass	to	have	an	instance

variable:

			private	int	biggest;	//	the	maximum	element	(if	set	is	not	empty)

Thus,	MaxIntSet	objects	have	two	instance	variables:
els	(from	the	superclass)	and	biggest	(from	the
subclass).	When	a	new	element	is	inserted,	if	it	is	bigger

than	the	current	biggest,	the	value	of	biggest	is
changed.	When	an	element	is	removed,	if	it	is	the

biggest,	we	need	to	reset	biggest	to	hold	the	new
maximum.	Computing	the	new	maximum	can	be

accomplished	using	the	elements	iterator.

Figure	7.4	Specification	for	MaxIntSet

			public	class	MaxIntSet	extends	IntSet	{
						//	OVERVIEW:	MaxIntSet	is	a	subtype	of	IntSet	with	an	additional
						//			method,	max,	to	determine	the	maximum	element	of	the	set.

						//	constructors
						public	MaxIntSet	(	)
									//	EFFECTS:	Makes	this	be	the	empty	MaxIntSet.

						//	methods
						public	int	max	(	)	throws	EmptyException
									//	EFFECTS:	If	this	is	empty	throws	EmptyException	else	returns
	the
									//			largest	element	of	this.



			}

Figure	7.5	shows	the	implementation	of	MaxIntSet.	The
class	implements	the	constructor	and	the	max	method.	In
addition,	it	overrides	the	implementations	of	insert,
remove,	and	repok.	However,	the	implementations	of
size,	isIn,	elements,	subset,	and	toString
are	inherited	from	IntSet.

First,	note	the	implementation	of	the	constructor.	The

very	first	thing	a	subclass	constructor	must	do	is	to	call	a

superclass	constructor	to	initialize	the	superclass

instance	variables;	here	we	make	the	call	explicitly	(using

the	syntax	super(	)).	If	the	subclass	constructor	does
not	contain	this	call,	Java	will	automatically	insert	a	call

to	the	superclass	constructor	with	no	arguments.	Thus,	in

this	case,	the	call	could	have	been	omitted,	for	example,	is

also	a	correct	implementation	of	the	constructor.

However,	if	a	call	to	a	superclass	constructor	that	has

arguments	is	needed,	the	call	must	be	made	explicitly.	In

either	case,	by	the	time	the	rest	of	the	MaxIntSet
constructor	starts	to	run,	the	els	array	has	already	been
initialized.	There	is	no	work	for	the	MaxIntSet
constructor	to	do	at	this	point,	since	biggest	has	no
value	when	the	set	is	empty.

			public	MaxIntSet	(	)	{	}

Figure	7.5		Implementation	of	MaxIntSet

			public	class	MaxIntSet	extends	IntSet	{
							private	int	biggest;	//	the	biggest	element	if	set	is	not	empty

							public	MaxIntSet	(	)	{	super(	);	}

							public	void	insert	(int	x)	{
										if	(size	(	)	==	0	||	x	>	biggest)	biggest	=	x;
										super.insert(x);	}

							public	void	remove	(int	x)	{
										super.remove(x);
										if	(size(	)	==	0	||	x	<	biggest)	return;
										Iterator	g	=	elements(	);
										biggest	=	((Integer)	g.next(	)).intValue(	);
										while	(g.hasNext(	)	{
													int	z	=	((Integer)	g.next(	)).intValue(	);
													if	(z	>	biggest)	biggest	=	z;	}
							}

							public	int	max	(	)	throws	EmptyException	{
										if	(size(	)	==	0)	throw	new	EmptyException	("MaxIntSet.max");
										return	biggest;	}



							public	boolean	repok	(	)	{
										if	(!super.repok(	))	return	false;
										if	(size(	)	==	0)	return	true;
										boolean	found	=	false;
										Iterator	g	=	elements	(	);
										while	(g.hasNext(	))	{
													int	z	=	((Integer)	g.next(	)).intValue(	);
													if	(z	>	biggest)	return	false;
													if	(z	==	biggest)	found	=	true;	}
									return		found;
						}
			}

To	implement	the	methods	of	MaxIntSet,	we	need	to
make	use	of	the	overridden	methods	of	IntSet.	For
example,	for	insert,	we	want	IntSet’s	insert
method	to	do	the	actual	work.	Within	a	subclass,	all	the

overridden	methods	of	the	superclass	are	available.

However,	there	is	a	naming	issue:	how	do	we	distinguish

the	overriding	method	(the	one	being	implemented	for

MaxIntSet)	from	the	overridden	method?	Java	resolves
this	issue	by	using	a	compound	form:	for	example,

super.insert,	to	name	the	overridden	method.	A
name	without	the	prefix—for	example,	insert—means
the	overriding	one,	and	so	does	the	form	this.insert.
Examples	of	uses	of	overridden	methods	occur	in	the

implementations	of	insert	and	remove.

Although	the	overridden	methods	are	visible	to	the

subclasses,	they	are	not	accessible	to	users	of	subclass

objects.	For	example,	if	x	is	a	MaxIntSet	object,
x.insert	names	the	implementation	of	insert
provided	by	MaxIntSet,	and	there	is	no	way	for	using
code	to	name	the	insert	method	provided	by	IntSet.

The	rep	invariant	and	abstraction	function	for	a	subclass

are	typically	defined	in	terms	of	those	for	the	superclass.

Thus,	we	have

				//	The	abstraction	function	is:
				//			AF_MaxIntSet(c)	=	AF_IntSet(c)

Here	we	have	introduced	notation	to	distinguish	the	two

abstraction	functions;	the	one	for	IntSet	is	AF_IntSet,
and	the	one	for	MaxIntSet	is	AF_MaxIntSet.	In	this
example,	the	biggest	field	does	not	affect	what	set	a
MaxIntSet	object	represents;	therefore,
AF_MaxIntSet	simply	produces	the	same	set	as



AF_IntSet.	(Note	that	it	is	reasonable	to	apply
AF_IntSet	to	an	MaxIntSet	object	since	such	an	object
has	all	the	IntSet	instance	variables.)	The	fact	that	the
two	abstraction	functions	are	the	same	reflects	the	fact

that	MaxIntSet	relies	on	IntSet	to	store	the	set
elements.

The	rep	invariant	for	MaxIntSet	is

			//	the	rep	invariant	is:
			//			I_MaxIntSet(c)=	c.size	>	0	=>
			//					(c.biggest	in	AF_IntSet(c)	&&
			//								for	all	x	in	AF_IntSet(c)	(x	>=	c.biggest))

Thus,	the	rep	invariant	is	defined	in	terms	of	the

abstraction	function	for	IntSet.	Note	that	it	does	not
include	the	rep	invariant	of	IntSet	for	the	simple	reason
that	preserving	that	rep	invariant	is	the	job	of	IntSet’s
implementation,	and	there	is	no	way	that	the

implementation	of	MaxIntSet	can	interfere	since	it	has
only	public	access	to	the	IntSet	part	of	its	rep.	On	the
other	hand,	the	implementation	of	repok	for	a	subclass
should	always	check	the	invariant	for	the	superclass	since

the	subclass	rep	cannot	be	correct	if	the	superclass	part	of

the	rep	is	not	correct.	This	point	is	illustrated	by	the

implementation	of	repok	shown	in	Figure	7.5.

We	might	not	be	happy	with	the	implementation	of

remove	since	it	sometimes	has	to	go	through	the	els
array	twice—once	to	remove	x	and	again	to	recompute
biggest.	To	do	better,	however,	MaxIntSet	would
require	access	to	the	IntSet	rep,	which	could	be
accomplished	by	having	IntSet	declare	els	to	be
protected.	In	this	case,	the	rep	invariant	of
MaxIntSet	must	include	the	rep	invariant	of	IntSet
(since	the	implementation	of	MaxIntSet	could	cause	the
rep	invariant	to	be	violated),	giving:

			//	the	rep	invariant	is:
			//		I_MaxIntSet(c)	=	I_IntSet(c)	&&	c.size	>	0	=>
			//				(c.biggest	in	AF_IntSet(c)	&&
			//				for	all	x	in	AF_IntSet(c)	(x	<=	c.biggest)	)

Sidebar	7.4	summarizes	the	definitions	of	the	abstraction

function	and	rep	invariant	for	subclasses	of	concrete

classes.



Sidebar	7.4	Rep	Invariant	and	Abstraction	Function	for	Subclasses	of	Concrete
Superclasses

The	abstraction	function	for	a	subclass,	AF_sub,	is	typically	defined	using	AF_super,	the
abstraction	function	of	the	superclass.

The	subclass	rep	invariant,	I_sub,	needs	to	include	a	check	on	the	superclass	rep	invariant,
I_super,	only	if	the	superclass	has	some	protected	members.	However,	repok	for	the
subclass	should	always	check	repok	for	the	superclass.

Figure	7.6		An	exception	type	with	more	information

			public	MyException	extends	Exception	{
						//	overview:	MyException	objects	contain	an	int	as	well	as	a	strin
g.
					private	int	val;

					public	MyException	(String	s,	int	v)	{	super(s);	val	=	v;	}
					public	MyException	(int	v)	{	super(	);	val	=	v;	}
					public	int	valueOf	(	)	{	return	val;	}
			}

7.5	EXCEPTION	TYPES

Now	we	have	introduced	enough	material	to	explain

exception	types.	Exception	types	are	subtypes	of

Throwable,	and	the	implementation	of	Throwable
provides	methods	that	access	the	string	within	the

exception	object.	New	exception	types	can	therefore	be

implemented	just	by	defining	their	constructors.	It	is	also

possible	to	define	an	exception	type	that	has	additional

methods	and	that	has	more	information	in	its	objects.

Figure	7.6	shows	such	a	type.	Its	constructors	require	an

int	argument,	and	its	method,	valueOf,	allows	programs
to	access	the	int.

7.6	ABSTRACT	CLASSES

An	abstract	class	provides	only	a	partial	implementation

of	a	type.	It	may	have	some	instance	variables,	and	if	it

does,	it	will	also	have	one	or	more	constructors.	These

constructors	cannot	be	called	by	its	users,	since	an

abstract	class	has	no	objects,	but	the	constructors	can	be

used	by	subclasses	to	initialize	the	superclass’s	part	of	the

rep.

Typically,	an	abstract	class	contains	both	abstract

methods	and	regular	(nonabstract)	methods.	It	provides

implementations	of	the	nonabstract	methods.	These

implementations	often	make	use	of	the	abstract	methods,

•	

•	



which	allows	the	superclass	to	define	the	generic	part	of

the	implementation,	with	the	subclasses	filling	in	the

details.	(This	is	referred	to	as	the	template	pattern	as

discussed	further	in	Chapter	15.)	Implementing	methods

in	the	superclass	is	desirable:	we	implement	them	just

once,	even	though	there	may	be	many	subclasses.	Not

only	will	subclasses	have	less	code,	but	they	will	be	easier

to	get	correct.

For	example,	suppose	we	wanted	to	define	a	type

SortedIntSet,	which	is	like	an	IntSet	except	that	the
elements	iterator	provides	access	to	the	elements	in
sorted	order.	A	specification	is	given	in	Figure	7.7.	Note

that	a	specification	is	given	for	elements	since	its
specification	has	changed:	it	produces	the	elements	in

sorted	order.	Note	also	that	SortedIntSet	provides	an
additional	subset	method,	and	therefore	its	subset
method	is	overloaded.	It	has	two	subset	methods:

			public	boolean	subset	(IntSet	s)	//	inherited
			public	boolean	subset	(SortedIntSet	s)	//	extra

Since	no	specification	is	given	for	the	extra	subset
method,	it	must	have	the	same	specification	as	the

inherited	subset	method.	The	reason	a	second	subset
method	is	provided	is	to	obtain	better	performance	in	the

case	where	the	argument	is	known	to	be	a

SortedIntSet.

To	implement	SortedIntSet,	we	might	like	to	use	an
ordered	list.	However,	if	SortedIntSet	is	implemented
by	a	subclass	of	IntSet	as	defined	in	Figure	7.3,	we	have
a	problem:	every	SortedIntSet	object	will	contain
within	it	instance	variables	inherited	from	IntSet.
These	instance	variables	are	no	longer	interesting,	since

we	do	not	want	to	keep	elements	of	a	SortedIntSet	in
the	els	vector.

We	can	obtain	efficient	subtypes	whose	objects	do	not

contain	unused	instance	variables	by	not	having	these

variables	in	the	superclass.	However,	if	the	IntSet	class
does	not	have	a	way	to	store	the	set	elements,	it	can’t

actually	have	any	objects.	Therefore,	it	must	be	abstract.



Figure	7.8	shows	part	of	the	implementation	of	an

abstract	class	for	IntSet.	Here	insert,	remove,
elements,	and	repok	are	abstract.	isIn,	subset,
and	toString	are	implemented	by	using	one	of	the
abstract	methods	(elements).	Although	size	could	be
implemented	using	elements,	this	would	be	inefficient.
Furthermore,	all	subclasses	will	need	a	way	to	implement

size	efficiently.	Therefore,	IntSet	has	an	instance
variable,	sz,	to	track	the	size.	This	means	the	definer	of
IntSet	must	decide	whether	to	make	it	accessible	to
subclasses,	or	to	hide	it,	providing	access	through

protected	methods.	If	we	hide	it,	IntSet	can	maintain
the	invariant

Figure	7.7	Specification	of	SortedIntSet

			public	class	SortedIntSet	extends	IntSet	{
						//	OVERVIEW:	A	sorted	int	set	is	an	int	set	whose	elements	are
						//	accessible	in	sorted	order.

						//	constructors:
						public	SortedIntSet(	)
									//	EFFECTS:	Makes	this	be	the	empty	sorted	set.

						//	methods:
					public	Iterator	elements	(	)
							//	EFFECTS:	Returns	a	generator	that	will	produce	all	elements	of	this,
							//			each	exactly	once,	in	ascending	order.
							//	REQUIRES:	this	not	be	modified	while	the	generator	is	in	use.

					public	int	max	(	)	throws	EmptyException
								//	EFFECTS:	If	this	is	empty	throws	EmptyException	else	returns
								//			the	largest	element	of	this.

					public	boolean	subset	(SortedIntSet	s)
			}

			sz	>=	0

However,	this	is	quite	uninteresting:	what	matters	is	that

sz	is	the	size	of	the	set	and	this	can	only	be	maintained
by	the	subclasses.	Therefore,	we	will	allow	subclasses

direct	access	to	sz;	this	is	why	it	is	declared	to	be
protected.	Since	no	rep	invariant	is	guaranteed	by

IntSet,	its	repok	method	is	abstract.	Note	that	the
class	has	no	abstraction	function;	this	is	typical	for	an

abstract	class	since	the	real	implementations	are

provided	by	the	subclasses.

Figure	7.9	shows	a	partial	implementation	of

SortedIntSet	as	a	subclass	of	IntSet	as	defined	in



Figure	7.8.	This	subclass	must	implement	all	the	abstract

methods	but	can	inherit	the	nonabstract	methods	such	as

size.	The	subclass	uses	the	OrderedIntList	type
defined	in	Figure	6.10.	Note	that	the	implementation	for

the	extra	subset	method	can	be	more	efficient	than	that
of	the	inherited	subset	method;	the	extra	method	will	be

called	when	the	object	and	the	argument	both	have	the

apparent	type	SortedIntSet.	Note	also	that	the
inherited	method	is	overridden	so	that	the	more	efficient

implementation	can	be	provided	when	the	argument	is	a

SortedIntSet.

Figure	7.8	Implementation	of	abstract	IntSet

			public	abstract	class	IntSet	{
						protected	int	sz;	//	the	size

						//	constructors
						public	IntSet	(	)	{	sz	=	0;	}

						//	abstract	methods
						public	abstract	void	insert	(int	x);
						public	abstract	void	remove	(int	x);
						public	abstract	Iterator	elements	(	);
						public	abstract	boolean	repok	(	);

						//	methods
						public	boolean	isIn	(int	x)	{
									Iterator	g	=	elements	(	);
									Integer	z	=	new	Integer(x);
									while	(g.hasNext(	))
												if	(g.next(	).equals(z))	return	true;
									return	false;	}

						public	int	size	(	)	{	return	sz;	}
						
						//	implementations	of	subset	and	toString	go	here
			}

The	rep	invariant	and	abstraction	function	for

SortedIntSet	are	given	in	Figure	7.9.	The	abstraction
function	maps	the	els	ordered	list	to	a	set;	it	treats	the

ordered	list	as	a	sequence,	as	described	in	the

specification	of	Ordered-IntList,	and	uses	the	[]
notation	to	access	the	elements	of	the	sequence.	The	rep

invariant	constrains	both	the	SortedIntSet	instance
variable,	els,	and	the	IntSet	instance	variable,	sz.	Note
that	it	assumes	els	is	sorted	since	this	is	true	of	all

OrderedIntList	objects.

Figure	7.9	Partial	implementation	of	SortedIntSet



			public	class	SortedIntSet	extends	IntSet	{
						private	OrderedIntList	els;
					//	the	abstraction	function	is:
					//			AF(c)	=	c.els[1],…,	c.els[c.sz]
					//	the	rep	invariant	is:	c.els	!=	null	&&	c.sz	=	c.els.size

					public	SortedIntSet	(	)	{	els	=	new	OrderedIntList(	);	}

					public	int	max	(	)	throws	EmptyException	{
								if	(sz	==	0)	throw	new	EmptyException("SortedIntSet.max");
								return	els.greatest(	);
				}

					public	Iterator	elements	(	)	{	return	els.elements(	);	}

					public	boolean	subset	(IntSet	s)	{
								try	{	return	subset((SortedIntSet)	s);	}
											catch	(ClassCastException	e)	{	return	super.subset(s);	}
					}

					public	boolean	subset	(SortedIntSet	s)	{
								//	implementation	in	here	takes	advantage	of	fact	that
								//	smallToBig	of	OrderedIntList	returns	els	in	ascending	order.
								...
					}

					//	implementations	of	insert,	remove,	and	repok	go	here
			}

Subclasses	can	also	be	abstract.	They	might	continue	to

list	some	of	the	abstract	superclass	methods	as	abstract,

or	they	might	introduce	new	ones	of	their	own.

Sidebar	7.5	summarizes	the	use	of	protected	members.

Sidebar	7.5	Use	of	Protected	Members

It	is	desirable	to	avoid	the	use	of	protected	members	for	two	reasons:	without	them,	the
superclass	can	be	reimplemented	without	affecting	the	implementation	of	any	subclasses;	and
protected	members	are	package	visible,	which	means	that	other	code	in	the	package	can
interfere	with	the	superclass	implementation.

Protected	members	are	introduced	to	enable	efficient	implementations	of	subclasses.	There
can	be	protected	instance	variables,	or	the	instance	variables	might	be	private,	with	access
given	via	protected	methods.	The	latter	approach	is	worthwhile	if	it	allows	the	superclass	to
maintain	a	meaningful	invariant.

7.7	INTERFACES

A	class	is	used	to	define	a	type	and	also	to	provide	a

complete	or	partial	implementation.	By	contrast,	an

interface	defines	only	a	type.	It	contains	only	nonstatic,

public	methods,	and	all	of	its	methods	are	abstract.	It

does	not	provide	any	implementation.	Instead,	it	is

implemented	by	a	class	that	has	an	implements	clause
in	its	header.

•	

•	



For	example,	the	interface	defining	the	Iterator	type	is
given	in	Figure	7.10.	Since	this	is	an	interface,	we	do	not

need	to	declare	that	its	methods	are	public;	however,	we

will	continue	to	declare	the	methods	to	be	public	as	a

convention.

In	addition	to	being	more	convenient	when	all	the

methods	are	abstract,	interfaces	also	provide	a	way	of

defining	types	that	have	multiple	supertypes.	A	class	can

extend	only	one	class,	but	it	can,	in	addition,	implement

one	or	more	interfaces.	For	example,	a	SortedIntSet

might	implement	a	Sorted-Collection	interface.	This
can	be	expressed	by

					public	class	SortedIntSet	extends	IntSet
								implements	SortedCollection	{	...	}

SortedIntSet	is	a	subtype	of	both	IntSet	and
SortedCollection.

Figure	7.10	Iterator	interface

			public	interface	Iterator	{

						public	boolean	hasNext	(	);
									//	EFFECTS:	Returns	true	if	there	are	more	items	to	produce
									//		else	returns	false.

						public	Object	next	(	)	throws	NoSuchElementException;
									//	MODIFIES:	this
									//	EFFECTS:	If	there	are	no	more	items	to	produce,	throw
									//			NoSuchElementException.	Otherwise	returns	the	next	item
									//			and	changes	the	state	of	this	to	reflect	the	return.
			}

7.8	MULTIPLE	IMPLEMENTATIONS

Hierarchy	can	be	used	to	provide	multiple

implementations	of	a	type.	This	use	can	be	thought	of	as

defining	a	very	constrained	type	family,	in	which	all

members	have	exactly	the	same	methods	and	behavior.

For	example,	there	might	be	both	sparse	and	dense

implementations	of	polynomials.	Furthermore,	in	a

program	that	uses	polynomials,	it	might	be	desirable	to

use	both	implementations.	This	allows	each	Poly	to	be
represented	in	the	way	that	is	best	for	it.	Yet	one	wants	to

consider	objects	from	different	implementations	as

belonging	to	the	same	type.



When	inheritance	is	used	to	provide	multiple

implementations,	the	type	being	implemented	will	be

defined	either	by	an	interface	or	by	an	abstract	class:	the

whole	point	is	to	defer	implementation	details	to

subclasses.	Furthermore,	the	subclasses	will	provide

exactly	the	behavior	defined	by	the	specification	of	the

interface	or	abstract	class,	except	that	they	must	provide

constructors.

The	implementation	subclasses	are	largely	invisible	to

users.	The	only	place	where	users	need	to	be	aware	of

them	is	when	they	create	new	objects.	At	that	point,	the

code	must	call	the	constructor	of	the	appropriate

subclass.	For	example,	the	programmer	of	code	that	uses

Poly	must	decide	whether	to	create	a	sparse	or	dense
Poly	whenever	a	new	Poly	object	is	created.

7.8.1	Lists

As	a	first	example,	consider	the	IntList	abstraction
specified	in	Figure	7.11.	Here	we	will	use	one	subclass	to

implement	the	empty	list	and	another	to	implement

nonempty	lists.

In	this	case,	the	type	at	the	top	of	the	hierarchy	is	defined

by	an	abstract	class.	This	class	is	illustrated	in	Figure

7.12.	It	has	no	instance	variables,	and	there	is	no

constructor	since	there	is	no	rep.	toString	and	equals	are

implemented	using	the	elements	iterator.	Two
definitions	are	given	for	equals	(i.e.,	equals	is
overloaded)	to	improve	performance	in	the	common	case

where	the	calling	code	is	checking	the	equality	of	two

IntList	objects.	This	is	similar	to	the	overloading	of	the
subset	method	for	IntSet.

Figure	7.11	Specification	of	IntList

			public	abstract	class	IntList	{
						//	OVERVIEW:	IntLists	are	immutable	lists	of	Objects.	A	typical
						//			IntList	is	a	sequence	[x1,	…,	xn].

						//	methods
						public	abstract	Object	first	(	)	throws	EmptyException;
									//	EFFECTS:	If	this	is	empty	throws	EmptyException	else
									//			returns	first	element	of	this.

						public	abstract	IntList	rest	(	)	throws	EmptyException;
									//	EFFECTS:	If	this	is	empty	throws	EmptyException	else	returns
	the
									//			list	containing	all	but	the	first	element	of	this,	in	the	



original	order.

						public	abstract	Iterator	elements	(	);
									//	EFFECTS:	Returns	a	generator	that	will	produce	the	elements	
of	this,
									//			each	exactly	once,	in	their	order	in	this.

						public	abstract	IntList	addEl	(Object	x);
									//	EFFECTS:	Adds	x	to	the	beginning	of	this.

						public	abstract	int	size	(	);
									//	EFFECTS:	Returns	a	count	of	the	number	of	elements	of	this.

						public	abstract	boolean	repok	(	);
						public	String	toString	(	)
						public	boolean	equals	(IntList	o)
			}

Figure	7.12	Implementation	of	IntList

			public	abstract	class	IntList	{
						//	Overview:	IntLists	are	immutable	lists	of	Objects.	A	typical
						//			IntList	is	a	sequence	[x1,	...,	xn].

						//	abstract	methods
						public	abstract	Object	first	(	)	throws	EmptyException;
						public	abstract	IntList	rest	(	)	throws	EmptyException;
						public	abstract	Iterator	elements	(	);
						public	abstract	IntList	addEl	(Object	x);
						public	abstract	int	size	(	);
						public	abstract	boolean	repok	(	);

						//	methods
						public	String	toString	(	)	{	...	}
						public	boolean	equals	(Object	o)	{
									try	{	return	equals	((IntList)	o);	}
									catch	(ClassCastException	e)	{	return	false;	}
						}
						public	boolean	equals	(IntList	o)	{
									//	compare	elements	using	elements	iterator
						}
			}

Figure	7.13	shows	parts	of	the	implementation	of	the

empty	list	and	the	nonempty	list.	In	the	implementation

of	the	empty	list,	there	is	no	need	for	any	instance

variables,	so	we	save	space	here.	Also,	the

implementations	of	the	methods	are	more	efficient	than

would	be	possible	without	multiple	implementations,

since	tests	are	avoided;	for	example,	first	always
throws	an	exception	in	EmptyIntList	and	never	throws
an	exception	in	FullIntList.

These	implementations	illustrate	an	important	point

about	using	hierarchy	to	obtain	multiple

implementations:	the	subclasses	in	the	hierarchy	may	not

be	independent	of	one	another.	Thus,	EmptyIntList
uses	the	FullIntList	constructor	(in	addEl),	and
FullIntList	uses	the	EmptyIntList	constructor	in



its	constructor.	This	is	different	from	hierarchies	that

provide	extended	behavior;	in	that	case,	subclasses	can

be	implemented	independently	of	one	another.

Figure	7.13	Partial	implementations	of	full	and	empty	lists

				public	class	EmptyIntList	extends	IntList	{

							public	EmptyIntList	(	)	{	};

							public	Object	first	(	)	throws	EmptyException	{
										throw	new	EmptyException("EmptyIntList.first");	}
							public	IntList	addEl	(Object	x)	{	return	new	FullIntList(x);	}
							public	boolean	repok	(	)	{	return	true;	}
							public	String	toString	(	)	{	return	"IntList:	[	]";	}
							public	boolean	equals	(Object	x)	{	return	(x	instanceof	EmptyIntList);	}
							//implementations	of	rest	and	size	go	here
							public	Iterator	elements	(	)	{	return	new	EmptyGen(	);	}

							static	private	class	EmptyGen	implements	Iterator	{
										EmptyGen	(	)	{	}
										public	boolean	hasNext	(	)	{	return	false;	}
										public	Object	next	(	)	throws	NoSuchElementException	{
													throw	new	NoSuchElementException("IntList.elements");	}
							}	//	end	EmptyGen
				}

				public	class	FullIntList	extends	IntList	{
							private	int	sz;
							private	Object	val;
							private	IntList	next;

							public	FullIntList	(Object	x)	{
										sz	=	1;	val	=	x;	next	=	new	EmptyIntList(	);	}

							public	Object	first	(	)	{	return	val;	}
							public	Object	rest	(	)	{	return	next;	}
							public	IntList	addEl	(Object	x)	{
										FullIntList	n	=	new	FullIntList(x);
										n.next	=	this;
										n.sz	=	this.sz	+	1;
										return	n;	}
							//implementations	of	elements,	size,	repok	go	here
					}

Another	point	is	that	it	isn’t	useful	for	these	subtypes	to

provide	an	overloaded	definition	of	equals;	that	is,	there
is	no	point	for	EmptyIntList	to	provide:

			public	boolean	equals	(EmptyIntList	x)

The	whole	point	of	multiple	implementations	is	that

using	code	is	written	entirely	in	terms	of	the	supertype,

except	for	creating	objects.	Therefore,	an	overloaded

definition	of	equals	would	never	be	called.

One	problem	with	the	implementations	shown	in	Figure



7.13	is	that	there	will	be	many	empty	list	objects.	This	is

unnecessary	since	all	empty	list	objects	are	exactly	the

same,	and	lists	are	immutable.	If	we	can	use	just	one

empty	list	object,	this	will	improve	performance	by

avoiding	the	creation	and	later	garbage	collection	of	the

extra	empty	list	objects.	We	will	show	how	to	have	just

one	empty	list	object	in	Chapter	15,	when	we	talk	about

the	singleton	pattern.

7.8.2	Polynomials

As	a	second	example,	consider	the	Poly	type	whose
specification	was	given	in	Figure	5.4,	and	suppose	we

want	to	provide	different	implementations	for	sparse	and

dense	polynomials.	We	will	use	the	abstract	class	shown

in	Figure	7.14	to	provide	a	partial	implementation	of

Poly.	Although	most	methods	are	abstract,	some	are	not.
We	have	elected	to	keep	the	degree	as	an	instance

variable	of	Poly,	since	this	is	useful	information	for	all
Poly	subclasses.	Furthermore,	we	have	made	deg
protected,	so	that	subclasses	can	access	it	directly,

although	we	have	provided	a	constructor	to	initialize	deg.
We	provide	direct	access	to	deg	because	Poly	cannot	by
itself	preserve	any	interesting	rep	invariant	on	it.

The	implementation	of	DensePoly	is	similar	to	what	we
saw	before	(in	Figures	5.7	and	5.8),	including	the	use	of

deg.	The	main	difference	is	that	we	don’t	need	to
implement	the	methods	provided	by	the	superclass.	A

portion	of	the	implementation	is	given	in	Figure	7.15.

Since	the	point	of	the	hierarchy	in	this	example	is	to

provide	efficient	implementations	for	Poly	objects,	we
need	to	decide	within	the	implementations	of	various

Poly	methods,	such	as	add,	whether	the	new	Poly
object	should	be	dense	or	sparse.	This	requirement

complicates	the	implementation.	For	example,	the	add
method	of	DensePoly	in	Figure	7.15	lets	SparsePoly
handle	the	case	of	adding	a	sparse	and	a	dense	Poly;
otherwise,	the	result	is	a	dense	Poly.	However,	this	latter
decision	might	be	wrong,	since	the	addition	might

introduce	many	intermediate	zeros.	Therefore,	at	the	end

of	add,	we	might	check	for	this	condition	and	convert	to	a



SparsePoly	object,	if	necessary.	The	decision	could	be
based	on	the	number	of	nonzero	coefficients	relative	to

the	degree.	Similarly,	in	the	sparse	implementation,	we

could	convert	to	the	dense	representation	if	the	new

Poly	has	lots	of	nonzero	coefficients	for	terms	below	the
degree.

Figure	7.14	Partial	implementation	of	Poly

			public	abstract	class	Poly	{
						protected	int	deg;			//	the	degree
						//	constructor
						protected	Poly	(int	n)	{	deg	=	n;	}

						//	abstract	methods	coeff,	repok,	add,	mul,	minus,	terms

						//	methods
						public	int	degree	(	)	{	return	deg;	}
						public	boolean	equals	(Object	o)	{
									try	{	return	equals((Poly)	o);	}
									catch	(ClassCastException	e)	{	return	false;	}
						}
						public	boolean	equals	(Poly	p)	{
									if	(p	==	null	||	deg	!=	p.deg)	return	false;
									Iterator	tg	=	terms(	);
									Iterator	pg	=	p.terms(	);
									while	(tg.hasNext(	))	{
												int	tx	=	((Integer)	tg.next(	)).intValue(	);
												int	px	=	((Integer)	pg.next(	)).intValue(	);
												if	(tx	!=	px	||	coeff(tx)	!=	p.coeff(px))	return	false);	}
									return	true;	}
						public	sub	(Poly	p)	{	return	add(p.minus(	));	}
						public	String	toString(	)	{	...	}
			}

Figure	7.15	Part	of	the	DensePoly	class

			public	class	DensePoly	extends	Poly	{
						private	int[	]	trms;	//	coefficients	up	to	degree

						public	DensePoly	(	)	{
									super(0);	trms	=	new	int[1];	}
						public	DensePoly	(int	c,	int	n)	throws	NegExpException	{	...	}
						private	DensePoly	(int	n)	{	super(n);	trms	=	new	int[n+1];	}

						//	implementations	of	coeff,	add,	mul,	minus,
						//	terms,	and	repok	go	here

						public	Poly	add	(Poly	q)	throws	NullPointerException	{
									if	(q	instanceof	SparsePoly)	return	q.add(p);
									DensePoly	la,	sm;
									if	(deg	>	q.deg)	{la	=	this;	sm	=	(DensePoly)	q;}
												else	{la	=	(DensePoly)	q;	sm	=	this;}
									int	newdeg	=	la.deg;	//	new	degree	is	the	larger	degree
									if	(sm.deg	==	la.deg)	//	unless	there	are	trailing	zeros
												for	(int	k	=	sm.deg;	k	>	0;	k--)
															if	(sm.trms[k]	+	la.trms[k]	!=	0)	break;	else	newdeg--;
									DensePoly	r	=	new	DensePoly(newdeg);	//	get	a	new	DensePoly
									int	i;
									for	(i	=	0;	i	<=	sm.deg	&&	i	<=	newdeg;	i++)
												r.trms[i]	=	sm.trms[i]	+	la.trms[i];
									for	(int	j	=	i;	j	<=	newdeg;	j++)	r.trms[j]	=	la.trms[j];
									return	r;	}
				}



These	conversions	mean	that	DensePoly	must	have	an
efficient	way	of	creating	a	SparsePoly	and	vice	versa.
For	example,	we	might	provide

				SparsePoly	(int[	]	trms)
							//	EFFECTS:	Initializes	this	to	be	same	poly	as	is	represented	by	trms
							//			in	the	DensePoly	implementation.

Obviously,	such	a	constructor	cannot	be	public!	Making	it

protected	won’t	work	since	DensePoly	is	not	a	subclass
of	SparsePoly.	Instead,	the	constructor	is	package
visible,	which	means	that	we	must	place	all	the

implementations	in	the	same	package	so	that	they	have

special	abilities	to	access	one	another’s	implementation.

When	multiple	implementations	are	written	with

knowledge	of	one	another,	this	is	a	reasonable	thing	to

do.

One	final	point:	It	would	be	nice	if	users	could	ignore	the

distinction	between	dense	and	sparse	representations

altogether.	If	we	do	this,	however,	users	will	need	a

generic	way	to	create	new	monomials.	This	can	be

provided	by	another	class	containing	static	methods	that

can	be	used	to	create	objects;	we	will	discuss	this

technique	further	in	Chapter	15	when	we	discuss	the

factory	pattern.	For	example,	we	might	have

			public	class	polyProcs	{

						public	static	Poly	makePoly	(	)
									//	EFFECTS:	Returns	the	zero	Poly.

						public	static	Poly	makePoly	(int	c,	int	n)	throws	NegExpException
									//	EFFECTS:	If	n	<	0	throws	NegExpException	else	returns

									//		the	monomial	cxn.
			}

The	first	makePoly	method	returns	a	DensePoly;	the
second	chooses	between	a	sparse	and	dense

representation	based	on	the	value	of	n.

7.9	THE	MEANING	OF	SUBTYPES

Subtypes	must	satisfy	the	substitution	principle	so	that

users	can	write	and	reason	about	code	just	using	the

supertype	specification.	When	the	code	runs,	the	objects

it	uses	may	belong	to	subtypes;	nevertheless,	we	want	the

code	to	behave	just	as	it	would	have	if	it	used	supertype



objects,	and	we	want	reasoning	based	on	the	supertype

specification	to	still	be	valid.

Thus,	the	substitution	principle	requires	that	the	subtype

specification	support	reasoning	based	on	the	supertype

specification.	Three	properties	must	be	supported:

Signature	Rule.	The	subtype	objects	must	have	all	the

methods	of	the	supertype,	and	the	signatures	of	the

subtype	methods	must	be	compatible	with	the

signatures	of	the	corresponding	supertype	methods.

Methods	Rule.	Calls	of	these	subtype	methods	must

“behave	like”	calls	to	the	corresponding	supertype

methods.

Properties	Rule.	The	subtype	must	preserve	all

properties	that	can	be	proved	about	supertype	objects.

All	of	these	rules	concern	only	specifications:	we	are

interested	in	whether	the	supertype	and	subtype

specifications	are	sufficiently	similar	that	the	substitution

principle	is	satisfied.

The	signature	rule	guarantees	that	every	call	that	is	type

correct	according	to	the	supertype’s	definition	is	also	type

correct	for	the	subtype.	This	requirement	is	enforced	by

the	Java	compiler.	In	Java,	the	subtype	must	have	all	the

supertype	methods,	with	identical	signatures	except	that

a	sub-type	method	can	have	fewer	exceptions	than	the

corresponding	supertype	method.	The	rule	about

exceptions	makes	sense:	code	written	in	terms	of	the

supertype	can	handle	the	exceptions	listed	in	the	method

header	in	the	supertype	but	will	also	work	in	a	type-

correct	manner	if	those	exceptions	are	not	thrown.

Java’s	notion	of	compatibility	is	a	little	stricter	than

necessary:	Java	requires	that	the	return	type	of	the	sub-

and	super-method	be	identical,	when,	in	fact,	there	would

be	no	type	problems	if	the	subtype	method	returned	a

subtype	of	the	supertype	method.	For	example,	it	would

be	nice	if	a	type	Foo	had

			Foo	clone	(	)

since	then	the	result	could	be	used	without	casts,	for

•	

•	

•	



example,

			Foo	x	=	y.clone(	);

(assume	y	is	a	Foo	object).	However,	Java	requires
clone	to	have	the	signature

			Object	clone	(	)

which	leads	to	using	code	having	to	cast	the	result

returned	by	clone,	for	example,

			Foo	x	=	(Foo)	y.clone(	);

The	other	two	requirements	guarantee	that	subtype

objects	behave	enough	like	supertype	objects	that	code

written	in	terms	of	the	supertype	won’t	notice	the

difference.	These	requirements	cannot	be	checked	by	a

compiler	since	they	require	reasoning	about	the	meaning

of	specifications.

7.9.1	The	Methods	Rule

The	methods	rule	is	concerned	with	calls	on	methods

defined	by	the	super-type.	Of	course,	when	the	objects

concerned	belong	to	subtypes,	the	calls	actually	go	to	the

code	provided	by	the	implementation	of	the	subtype.	The

rule	says	that	we	can	still	reason	about	the	meanings	of

these	calls	using	the	supertype	specification	even	though

the	subtype	code	is	running.	Here	are	some	examples	of

this	kind	of	reasoning:

For	any	IntSet,	if	we	call	y.insert(x),	we	know	x
is	in	the	set	when	the	call	returns.

For	any	Poly,	if	a	call	p.coeff(3)	returns	6,	we
know	that	the	degree	of	p	is	at	least	3.

All	the	examples	given	so	far	have	obeyed	this

requirement.	In	fact,	our	subtype	methods	have	all	had

exactly	the	same	specification	as	the	corresponding

supertype	method,	with	one	exception,	the	elements
method	of	SortedIntSet.	Whenever	a	method	is

respecified,	there	is	a	potential	for	doing	things	wrong.	In

the	case	of	elements,	the	new	behavior	is	acceptable
because	we	have	taken	advantage	of	the	nondeterminism

in	the	specification	of	the	elements	method	of	IntSet:

•	

•	



its	specification	allows	various	orders	for	producing	the

elements,	and	one	of	these	orders	is	the	sorted	order

produced	by	SortedIntSet’s	elements.	When	we	give

new	specifications	for	supertype	methods	in	subtypes,	we

often	take	advantage	of	nondeterminism	like	this.

To	understand	better	how	the	specification	of	a	subtype

method	is	allowed	to	differ	from	that	of	the

corresponding	supertype	method,	we	need	to	consider

the	pre-	and	postconditions.	The	precondition,	which	is

defined	by	the	requires	clause,	is	what	must	be

guaranteed	to	hold	by	the	caller	in	order	to	make	the	call.

The	postcondition,	which	is	defined	by	the	effects	clause,

is	what	is	guaranteed	to	hold	right	after	the	call

(assuming	that	the	precondition	held	when	the	call	was

made).

A	subtype	method	can	weaken	the	precondition	and	can

strengthen	the	postcondition.

Precondition	Rule:	pre 	=>	pre

Postcondition	Rule:	(pre 	&&	post )	=>	post	

Both	conditions	must	be	satisfied	to	achieve	compatibility

between	the	suband	supertype	methods.

Weakening	the	precondition	means	that	the	subtype

method	requires	less	from	its	caller	than	the	supertype

method	does.	This	rule	makes	sense	because	when	code

is	written	in	terms	of	the	supertype	specification,	it	must

satisfy	the	supertype	method’s	precondition.	Since	this

precondition	implies	that	of	the	subtype,	we	can	be	sure

that	the	call	to	the	subtype	method	will	be	legal	if	the	call

to	the	supertype	method	is	legal.

For	example,	suppose	we	had	defined	the	following

IntSet	method:

			public	void	addZero	(	)
					//	REQUIRES:	this	is	not	empty
					//	EFFECTS:	Adds	0	to	this

Then	in	a	subtype	of	IntSet,	we	could	redefine	the
method	to	have	the	following	specification:

			public	void	addZero	(	)
					//	EFFECTS:	Adds	0	to	this

•	 super sub

•	 super sub super



The	subtype	definition	satisfies	the	precondition	rule

because	it	has	a	weaker	precondition.

Just	satisfying	the	precondition	rule	is	not	sufficient	for

the	specification	of	the	subtype	method	to	be	correct,

since	we	also	need	to	take	the	effect	of	the	call	into

account.	This	is	captured	in	the	postcondition	rule.	This

rule	says	that	the	subtype	method	provides	more	than	the

supertype	method:	when	it	returns	everything	that	the

supertype	method	would	provide	is	assured,	and	maybe

some	additional	effects	as	well.	This	rule	makes	sense

because	the	calling	code	depends	on	the	postcondition	of

the	supertype	method,	but	this	follows	from	the

postcondition	of	the	subtype	method.	However,	the

calling	code	depends	on	the	method’s	postcondition	only

if	the	call	satisfies	the	precondition	(since	otherwise	the

method	can	do	anything);	this	is	why	the	rule	is	stated	as

it	is.

For	example,	the	subtype	definition	for	addZero	given
before	satisfies	the	postcondition	rule	since	its

postcondition	is	identical	to	that	of	the	supertype

method.	However,	the	following	definition	of	addZero
would	also	be	legal:

			public	void	addZero	(	)
						//	EFFECTS:	If	this	is	not	empty,	adds	0	to	this	else
						//		adds	1	to	this.

If	the	call	satisfies	the	supertype	method’s	precondition,

the	effect	of	the	subtype	method	is	as	expected;	if	the	call

doesn’t	satisfy	the	precondition,	then	anything	could

happen.	In	the	subtype,	we	have	simply	decided	on	a

particular	thing.

The	definition	of	the	elements	iterator	in
SortedIntSet	strengthens	the	postcondition.	Here
both	methods	have	the	same	precondition,	namely	true,
meaning	that	all	calls	are	legal.	The	postcondition	in	the

subtype	promised	sorted	order;	and	from	this	we	can

deduce	the	arbitrary	order	indicated	in	the	specification

of	the	supertype	method.

Another	example	is	the	following.	Suppose	we	define	a

subtype	of	IntSet	that,	in	addition	to	tracking	the



current	members	of	the	set,	also	keeps	a	log	of	all

elements	that	were	ever	in	the	set.	The	overview	section

might	say

						//	OVERVIEW:	A	LogIntSet	is	an	IntSet	plus	a	log.	The	log	is	also	
a	set;
						//		it	contains	all	the	integers	that	have	ever	been	members	of	th
e	set.

Here	is	the	specification	of	insert	for	LogIntSet:

			public	void	insert	(int	x)
						//	MODIFIES:	this
						//	EFFECTS:	Adds	x	to	the	set	and	also	to	the	log.

This	method	is	legal	because	its	postcondition	implies

that	of	the	supertype	insert	method:	it	does	add	x	to
the	set,	but	it	does	something	else	as	well.

However,	suppose	that	we	defined	a	subtype	of	IntSet
in	which	we	redefined	insert:

			public	void	insert	(int	x)
						//	MODIFIES:	this
						//	EFFECTS:	If	x	is	odd	adds	it	to	this	else	does	nothing.

In	this	case,	we	have	violated	the	requirement;	clearly

this	postcondition	does	not	imply	that	of	IntSet’s
insert	method.	Furthermore,	a	program	written	in
terms	of	the	IntSet	specification	would	clearly	expect
even	numbers	to	be	added	to	the	set	as	well	as	odd	ones!

Another	example	of	an	illegal	subtype	method	is	the

following.	Ordered-IntList	(see	Figure	6.10)	has	an
addEl	method:

			public	void	addEl	(int	x)	throws	DuplicateException
						//	MODIFIES:	this
						//	EFFECTS:	If	x	is	in	this	throws	DuplicateException	else
						//		adds	x	to	this.

Suppose	we	defined	a	subtype	of	OrderedIntList	in
which	the	addEl	method	does	not	throw	the	exception:

			public	void	addEl	(int	x)
						//	MODIFIES:	this
						//	EFFECTS:	If	x	is	not	in	this	adds	it	to	this.

This	method	satisfies	the	signature	rule	because	it	is

allowable	for	the	subtype	method	to	throw	fewer

exceptions	than	the	supertype	specification.	However,	it



fails	the	methods	rule	because	the	postcondition	rule	is

not	satisfied:	the	two	methods	have	different	behavior	in

the	case	where	x	is	already	in	the	list.

An	example	of	a	case	where	not	throwing	the	exception	is

acceptable	is	the	allPrimes	generator.	The	next
method	of	Iterator	throws
NoSuchElementException	if	there	are	no	more
elements.	However,	the	next	method	for	the
allPrimes	generator	does	not	throw	the	exception;	this
is	allowed	because	there	is	always	a	larger	prime	to	be

produced.

As	a	final	example,	consider	int	versus	long.	The	ints
are	32	bits,	while	the	longs	are	64	bits.	Furthermore,	the
two	types	have	different	behaviors	in	certain	cases.	For

example,	if	adding	two	ints	results	in	an	overflow,	the
overflow	will	not	happen	if	the	same	two	values	are

longs.	Therefore	int	is	not	a	subtype	of	long,	and
neither	is	long	a	subtype	of	int.

7.9.2	The	Properties	Rule

In	addition	to	reasoning	about	the	effects	of	individual

calls,	we	also	reason	about	properties	of	objects.	Some

properties	are	invariants:	they	are	always	true	for	objects

of	the	type.	For	example,	the	size	of	an	IntSet	is	always
greater	than	or	equal	to	zero.	Others	are	evolution

properties;	they	involve	reasoning	about	how	objects

evolve	over	time.	For	example,	if	we	know	a	polynomial

has	degree	6,	we	know	it	will	always	have	this	degree
(since	polynomials	are	immutable).

To	show	that	a	subtype	satisfies	the	properties	rule,	we

must	prove	that	it	preserves	each	property	of	the

supertype.	In	the	case	of	an	invariant	property,	we	do	the

normal	sort	of	proof	using	datatype	induction:	creators

and	producers	of	the	subtype	must	establish	the

invariant,	and	all	methods	of	the	subtype	must	preserve

the	invariant.	Note	that	now	we	are	concerned	with	the

“extra”	methods	as	well	as	the	inherited	methods:	all

methods	must	preserve	the	invariant.	Also,	we	must

consider	the	subtype	constructors	and	ensure	that	they

establish	the	invariant.



In	the	case	of	an	evolution	property,	we	must	show	that

every	method	preserves	it.	For	example,	suppose	we	want

to	show	that	the	degree	of	a	Poly	doesn’t	change.	Before
we	considered	subtypes,	the	way	we	would	show	this	is	to

assume	that	the	degree	of	some	Poly	object	p	is	a	certain
value	x,	and	then	argue	that	each	Poly	method	does	not
change	this	value.	With	subtypes,	we	need	to	make	the

same	argument	for	all	the	subtype	methods—for	example,

for	all	DensePoly	methods	and	all	SparsePoly
methods.

The	properties	of	interest	must	be	defined	in	the

overview	section	of	the	supertype	specification.	The

invariant	properties	come	from	the	abstract	model.	For

example,	because	IntSets	are	modeled	as	mathematical
sets,	they	must	have	a	size	greater	than	or	equal	to	zero,

and	they	also	must	not	contain	duplicate	elements.	Also,

because	OrderedIntLists	are	modeled	as	sequences
that	are	sorted	in	ascending	order,	we	know	their

elements	appear	in	sorted	order.

As	another	example	of	an	invariant	property,	consider	a

FatSet	type	whose	objects	are	never	empty.	This	fact
would	need	to	be	captured	in	the	overview	section:

						//	OVERVIEW:	A	FatSet	is	a	mutable	set	of	integers	whose	size
						//			is	always	at	least	1.

Assume	that	FatSet	does	not	have	a	remove	method
but	instead	has	a	removeNonEmpty	method:

			public	void	removeNonEmpty	(int	x)
						//	MODIFIES:	this
						//	EFFECTS:	If	x	is	in	this	and	this	contains	other	elements
						//				removes	x	from	this.

and,	furthermore,	that	every	FatSet	constructor	creates
a	set	containing	at	least	one	element.	Therefore,	we	can

indeed	prove	that	FatSet	objects	have	size	greater	than
zero.

Now	consider	ThinSet,	which	has	all	the	FatSet
methods	with	identical	specifications,	plus

			public	void	remove	(int	x)
						//	MODIFIES:	this
						//	EFFECTS:	Removes	x	from	this.



ThinSet	is	not	a	legal	subtype	of	FatSet	because	its
extra	method	can	cause	its	object	to	become	empty;

therefore,	it	does	not	preserve	the	supertype’s	invariant.

The	only	evolution	property	we	have	seen	so	far	(and	the

most	common	one)	is	immutability.	Here	is	a	different

example.	Consider	a	type	SimpleSet	that	has	only
insert	and	isIn	methods	so	that	SimpleSet	objects
only	grow.	This	fact	must	be	indicated	in	the	overview:

						//	OVERVIEW:	A	SimpleSet	is	a	mutable	set	of	integers.
						//			SimpleSet	objects	can	grow	over	time	but	not	shrink.

IntSet	cannot	be	a	subtype	of	SimpleSet	because	its
remove	method	causes	sets	to	shrink.

An	immutable	type	usually	will	have	only	immutable

subtypes,	but	this	is	not	a	requirement.	Saying	that	a	type

is	immutable	means	that	mutations	cannot	be	observed

using	supertype	methods.	For	example,	suppose	a	type

Point2	represents	points	in	the	plane,	and	the	overview
section	states	that	Point2	objects	are	immutable.
Point2	could	have	a	subtype	whose	objects	are	lines	in
the	plane,	consisting	of	a	point	in	the	plane	and	an	angle.

This	would	be	a	legitimate	subtype	even	if	it	provided	a

method	that	allowed	the	angle	to	change,	since	that

change	would	not	be	visible	using	calls	on	supertype

methods.

Sidebar	7.6	summarizes	the	reasoning	about	the

substitution	principle.

Sidebar	7.6	Reasoning	about	the	Substitution	Principle

The	signature	rule	ensures	that	if	a	program	is	type-correct	based	on	the	supertype
specification,	it	is	also	type-correct	with	respect	to	the	subtype	specification.

The	methods	rule	ensures	that	reasoning	about	calls	of	supertype	methods	is	valid	even
though	the	calls	actually	go	to	code	that	implements	a	subtype.

The	properties	rule	ensures	that	reasoning	about	properties	of	objects	based	on	the	supertype
specification	is	still	valid	when	objects	belong	to	a	subtype.	The	properties	must	be	stated	in
the	overview	section	of	the	supertype	specification.

7.9.3	Equality

In	Chapter	5,	we	discussed	the	meaning	of	the	equals
method:	if	two	objects	are	equals,	it	will	never	be
possible	to	distinguish	them	in	the	future	using	methods

of	their	type.	As	discussed	previously,	this	means	that	for

•	
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mutable	types,	objects	are	equals	only	if	they	are	the
very	same	object,	while	for	immutable	types,	they	are

equals	if	they	have	the	same	state.

When	there	are	subtypes	of	immutable	types,	the	subtype

objects	might	have	more	state,	or	they	might	even	be

mutable.	Therefore,	subtype	objects	might	be

distinguishable,	even	though	code	that	uses	them	via	the

supertype	interface	cannot	distinguish	them.

For	example,	consider	a	type,	Point2,	which	represents
points	in	two-space;	its	equals	method	returns	true	if
the	x	and	y	coordinates	are	equal.	Now	suppose	type
Point3,	which	represents	points	in	three-space,	is
defined	to	be	a	subtype	of	Point2;	Point3’s	equals
will	return	true	only	if	all	three	coordinates	are	equal.	To

implement	this	behavior	properly,	Point3	must	provide
its	own	extra	equals	method,	and	it	must	also	override
equals	for	Point2	and	Object,	as	shown	in	Figure	7.16.
Overriding	these	methods	ensures	that	equals	works
properly	on	Point3	objects	regardless	of	their	apparent
type.

Figure	7.16	Partial	implementation	of	Point3

			public	class	Point3	extends	Point2	{
						private	int	z;	//	the	z	coordinate

						public	boolean	equals	(Object	p)	{	//	overriding	definition
									if	(p	instanceof	Point3)	return	equals((Point3)	p);
									return	super.equals(p);	}

						public	boolean	equals	(Point2	p)	{	//	overriding	definition
									if	(p	instanceof	Point3)	return	equals((Point3)	p);
									return	super.equals(p);	}

						public	boolean	equals	(Point3	p)	{	//	extra	definition
									if	(p	==	null	||	z	!=	p.z)	return	false;
									return	super.equals(p);	}
			}

7.10	DISCUSSION	OF	TYPE	HIERARCHY

There	are	three	different	kinds	of	supertypes	(see	Sidebar

7.7).	Some	are	incomplete:	they	serve	just	to	establish

constraints	on	the	behavior	of	subtypes,	but	their

specifications	are	so	loose	that	using	code	is	unlikely	to

be	written	in	terms	of	the	supertype	specification.

For	example,	suppose	we	wanted	to	define	a	number	of



collection	types	so	that	similar	methods	would	have

similar	names.	Some	collection	subtypes	might	be

mutable	while	others	are	not.	The	supertype	would	define

both	observers	and	mutators	but,	of	course,	the	mutators

would	not	do	anything	for	the	immutable	subtypes.	For

example,	we	might	have

			public	void	put	(Object	x)	throws	NotSupportedException
						//	MODIFIES:	this
						//	EFFECTS:	If	this	is	mutable	adds	x	to	this
						//			else	throws	NotSupportedException.

Such	a	supertype	is	useless	as	far	as	using	code	is

concerned,	or	at	least	for	code	that	uses	the	mutators.

However,	the	supertype	does	serve	to	standardize	the

method	names	so	that	all	the	collection	subtypes	that	are

mutable	will	have	a	method	named	put	that	adds	its
argument	to	the	collection.	The	collection	types	in

java.util	are	defined	like	this.

Sidebar	7.7	Kinds	of	Supertypes

Incomplete	supertypes	establish	naming	conventions	for	subtype	methods	but	do	not	provide
useful	specifications	for	those	methods.	Therefore,	using	code	is	typically	not	written	in	terms
of	them.

Complete	supertypes	provide	entire	data	abstractions,	with	useful	specifications	for	all	the
methods.

Snippets	provide	just	a	few	methods,	not	enough	to	qualify	as	an	entire	data	abstraction.
However,	those	methods	are	specified	in	a	way	that	allows	using	code	to	be	written	in	terms	of
the	supertype.

Other	supertypes	allow	using	code	to	be	written	in	terms

of	the	supertype	specification,	although	that	code	may

actually	use	subtype	objects.	Some	of	these	supertypes

are	complete:	they	define	data	abstractions	with	a	full

complement	of	methods.	For	example,	Reader	is	like
this.	Other	supertypes	define	snippets:	they	define	one	or

a	few	methods	but	not	a	complete	data	abstraction.	For

example,	Cloneable	is	a	snippet:	it	indicates	only	that
subtypes	have	a	clone	method.	Snippets	are	always
defined	by	interfaces.	We	will	see	other	examples	of

snippets	in	Chapter	8.

Regardless	of	the	kind	of	supertype,	however,	subtypes

must	satisfy	the	substitution	principle.	When	supertypes

aren’t	complete,	this	can	be	easy.	For	example,

supertypes	that	define	snippets	typically	have	only	one	or

•	
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two	methods	and	no	properties	that	subtypes	must

preserve.	Also,	incomplete	supertypes	typically	have	no

properties	because	the	whole	point	is	to	leave	the	details

up	to	the	subtypes.

The	substitution	principle	precludes	the	use	of

inheritance	as	a	simple	code-sharing	mechanism	because

it	requires	that	the	subtype	be	similar	to	the	supertype.	It

is	important	to	keep	this	in	mind	because	many

programming	languages	(not	Java)	encourage	misuse	of

inheritance,	for	example,	by	allowing	objects	of	the

subclass	to	not	provide	some	methods	of	the	superclass.

7.11	SUMMARY

This	chapter	has	discussed	inheritance	and	how	it	can	be

used	to	define	type	families	and	multiple

implementations.

The	use	of	type	families	in	program	design	allows	a	new

kind	of	abstraction:	the	designer	abstracts	from

properties	of	a	related	group	of	types	to	identify	what	all

of	those	types	have	in	common.	When	used

appropriately,	this	kind	of	abstraction	can	improve	the

structure	of	programs	in	several	ways:

By	grouping	the	related	types	into	a	family,	the

designer	makes	the	relationship	among	them	clear,

thus	making	the	program	as	a	whole	easier	to

understand.	For	example,	a	program	that	treats

different	kinds	of	windows	as	a	family	is	easier	to

understand	than	one	that	just	has	a	bunch	of	different

window	types	because	the	similarities	among	the	set	of

types	have	been	carefully	delineated.

Hierarchy	allows	the	definition	of	abstractions	that

work	over	the	entire	family.	For	example,	a	procedure

that	works	on	windows	will	be	able	to	do	its	job	no

matter	what	kind	of	specialized	window	is	passed	it	as

an	argument.

Hierarchy	provides	a	kind	of	extensibility.	New	kinds

of	subtypes	can	be	added	later,	if	necessary,	to	provide

extended	behavior.	Yet	all	code	defined	to	work	using

objects	of	the	existing	types	in	the	family	will	continue

•	
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to	work	when	actually	using	objects	belonging	to

subtypes,	even	subtypes	that	did	not	exist	at	the	time

the	using	code	was	written.	This	kind	of	extensibility	is

similar	to	that	provided	by	other	abstraction

mechanisms.	For	example,	it’s	like	the	ability	to

replace	the	implementation	of	a	data	abstraction

without	affecting	the	correctness	of	using	code;	but	it

allows	the	invention	of	new	abstractions,	rather	than

just	new	implementations.

Sidebar	7.8	summarizes	the	benefits	of	hierarchy.

Type	families	are	a	valuable	tool	in	designing	and

structuring	programs.	However	they	must	be	used

properly.	This	requires	understanding	when	to	use

hierarchy	and	what	it	means	for	one	type	to	be	a	subtype

of	another.	Such	understanding	allows	type	families	to	be

used	both	correctly	and	appropriately.

Sidebar	7.8	Benefits	of	Hierarchy

Hierarchy	can	be	used	to	define	the	relationship	among	a	group	of	types,	making	it	easier	to
understand	the	group	as	a	whole.

Hierarchy	allows	code	to	be	written	in	terms	of	a	supertype,	yet	work	for	many	types—all	the
subtypes	of	that	supertype.

Hierarchy	provides	extensibility:	code	can	be	written	in	terms	of	a	supertype,	yet	continue	to
work	when	subtypes	are	defined	later.

All	of	these	benefits	can	be	obtained	only	if	subtypes	obey	the	substitution	principle.

EXERCISES

7.1	Define	and	implement	a	subtype	of	IntList	(see
Figures	7.11	and	7.12)	that	provides	methods	to

return	the	smallest	and	largest	elements	of	the	list.

Be	sure	to	define	the	rep	invariant	and	abstraction

function,	and	to	implement	repok.

7.2	Define	and	implement	a	type	MaxMinSet.	This	type
is	a	subtype	of	MaxIntSet	(see	Figures	7.4	and	7.5);
it	provides	one	extra	method

								public	int	min	(	)	throws	EmptyException
											//	EFFECTS:	If	this	is	empty	throws	EmptyException	else
											//			returns	the	smallest	elements	of	this.

Be	sure	to	define	the	rep	invariant	and	abstraction

function	and	to	implement	repok.

7.3	Define	and	implement	a	type

•	

•	
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ExtendedOrderedIntList,	which	is	a	subtype	of
OrderedIntList	(see	Figure	6.10).
ExtendedOrderedIntList	provides	a
bigToSmall	iterator	that	returns	the	elements	of
the	list	from	largest	to	smallest.	Be	sure	to	define	the

rep	invariant	and	abstraction	function	and	to

implement	repok.

7.4	Define	and	implement	a	type

ExtendedSortedIntSet,	which	is	a	subtype	of
SortedIntSet	(see	Figures	7.7	and	7.9).
ExtendedSortedIntSet	provides	a
reverseElements	iterator	that	returns	the
elements	of	the	set	in	reverse	order,	from	largest	to

smallest.	Be	sure	to	define	the	rep	invariant	and

abstraction	function	and	to	implement	repok.	Hint:
You	will	probably	need	to	reimplement

SortedIntSet,	and	ExtendedOrderedIntList
may	be	useful	in	the	implementation.

7.5	Give	the	rep	invariants	and	abstraction	functions	for

EmptyIntList	and	FullIntList	(see	Figure
7.13).

7.6	Complete	the	implementation	of	DensePoly	and
provide	the	implementation	of	SparsePoly.	Decide
how	to	choose	the	representation	for	the	new	objects

returned	by	add	and	mul	and	justify	your	decision.

7.7	Provide	multiple	implementations	for	IntSet,
including	at	least	one	that	is	good	for	small	sets	(e.g.,

it	might	store	the	elements	in	a	vector)	and	one	that

is	good	for	large	sets	(e.g.,	it	might	store	the	elements

in	a	hash	table).	(Hash	tables	are	provided	in
java.util.)

7.8	Consider	a	type	Counter	with	the	following
operations:

								public	Counter	(	)	//	EFFECTS:	Makes	this	contain	0.
								public	int	get	(	)	//	EFFECTS:	Returns	the	value	of	this.
								public	void	incr	(	)
											//	MODIFIES:	this
											//	EFFECTS:	Increments	the	value	of	this.

Complete	the	specification	of	Counter	by	providing
the	overview	section.	Be	sure	to	identify	all



properties	of	Counter	objects.

7.9	Now	consider	a	potential	subtype	of	Counter,
Counter2,	with	the	following	extra	operations:

								public	Counter2	(	)	//	EFFECTS:	Makes	this	contain	0							.
								public	void	incr	(	)
											//	MODIFIES:	this
											//	EFFECTS:	Makes	this	contain	twice	its	current	value.

Is	Counter2	a	legitimate	subtype	of	Counter?
Explain	by	arguing	that	either	the	substitution

principle	is	violated	(for	a	non-subtype)	or	that	it

holds	(for	a	subtype).	Discuss	how	each	operation	of

Counter2	either	upholds	or	violates	the
substitution	principle.

7.10	Now	consider	another	potential	subtype	of	Counter,
Counter3,	with	the	following	extra	operations:

								public	Counter3	(int	n)	//	EFFECTS:	makes	this	contain	n
								public	void	incr	(int	n)
											//	MODIFIES:	this
											//	EFFECTS:	If	n	>	0	adds	n	to	this.

Is	Counter3	a	legitimate	subtype	of	Counter?
Explain	by	arguing	that	either	the	substitution

principle	is	violated	(for	a	non-subtype)	or	that	it

holds	(for	a	subtype).	Discuss	how	each	operation	of

Counter3	either	upholds	or	violates	the
substitution	principle.

7.11	Consider	a	type	IntBag,	with	operations	to	insert
and	remove	elements,	as	well	as	all	the	observers	of
IntSet.	Bags	are	like	sets	except	that	elements	can
occur	multiple	times	in	a	bag.	Is	IntBag	a	legitimate
subtype	of	IntSet?	Explain	by	arguing	that	either
the	substitution	principle	is	violated	(for	a	non-

subtype)	or	that	it	holds	(for	a	subtype).



8	Polymorphic	Abstractions

In	the	preceding	chapters,	we	have	defined	a	number	of

collection	types	in	which	all	elements	of	the	collection	are

ints.	Such	collections	are	rather	limiting.	For	example,
suppose	we	wanted	a	set	that	contained	Strings.	We

would	not	be	able	to	use	our	implementation	of	IntSet
for	this	purpose.	Instead,	we	would	need	to	provide	a

separate	implementation	for	a	StringSet.	And	if	we
later	discovered	the	need	for	a	set	of	characters,	we	would

need	yet	another	new	implementation.

Having	to	define	a	new	version	of	a	collection	abstraction

each	time	we	need	to	store	a	different	type	of	element	is

not	very	satisfactory.	Instead,	it	would	be	better	to	define

the	collection	type	just	once	yet	have	it	work	for	all	types

of	elements.

This	goal	can	be	accomplished	by	defining	polymorphic

abstractions.	These	abstractions	are	called	polymorphic

because	they	work	for	many	types.	(See	Sidebar	8.1.)	A

data	abstraction	might	be	polymorphic	with	respect	to

the	type	of	elements	its	objects	contain—for	example,	the

Vector	abstraction	is	polymorphic	with	respect	to	its
element	type.	Or	a	procedure	or	iterator	might	be

polymorphic	with	respect	to	the	types	of	one	or	more	of

its	arguments.	For	example,	we	could	define	a	routine	to

remove	an	element	of	an	arbitrary	type	from	a	vector.

Sidebar	8.1	Polymorphism

Polymorphism	generalizes	abstractions	so	that	they	work	for	many	types.	It	allows	us	to	avoid
having	to	redefine	abstractions	when	we	want	to	use	them	for	more	types;	instead,	a	single
abstraction	becomes	much	more	widely	useful.

A	procedure	or	iterator	can	be	polymorphic	with	respect	to	the	types	of	one	or	more	arguments.
A	data	abstraction	can	be	polymorphic	with	respect	to	the	types	of	elements	its	objects	contain.

In	Java,	polymorphism	is	expressed	through	hierarchy.

Certain	arguments	are	declared	to	belong	to	some

supertype,	and	then	the	actual	arguments	can	be	objects

belonging	to	subtypes	of	that	type.	That	supertype	is

often	Object.	In	this	case,	the	polymorphic	abstraction

•	
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is	limited	to	using	Object	methods	such	as	equals	on
its	parameters.	Sometimes	the	polymorphic	abstraction

needs	to	use	additional	methods,	however,	and	in	that

case	the	supertype	is	chosen	to	provide	those	methods.

8.1	POLYMORPHIC	DATA	ABSTRACTIONS

Figure	8.1	provides	a	specification	of	a	Set	abstraction.
Set	objects	contain	heterogeneous	collections	of
elements	(similar	to	Vector).	The	specification	of	Set	is
similar	to	that	of	IntSet	except	that	its	methods	(such
as	insert	and	isIn)	take	Objects	as	arguments	or
return	them	as	results.	Because	objects	can	be	compared

in	various	ways	(using	either	==	or	equals),	the
overview	states	what	equality	test	is	being	used.

Because	the	Set	stores	Objects,	the	question	of	whether
null	can	be	a	legal	element	comes	up.	This	question	is
explicitly	answered	(in	the	negative)	in	the	overview

section	of	the	specification;	the	restriction	is	enforced	by

insert,	as	indicated	in	its	specification.

A	partial	implementation	of	Set	is	shown	in	Figure	8.2.
This	implementation	differs	little	from	the	one	given	for

IntSet	in	Figure	5.6,	and	its	rep	invariant	and
abstraction	function	are	similar	to	those	of	IntSet:

Figure	8.1	Partial	specification	of	Set

			public	class	Set	{
						//	OVERVIEW:	Sets	are	unbounded,	mutable	sets	of	objects.
						//			null	is	never	an	element	of	a	Set.	The	methods	use	equals
						//			to	determine	equality	of	elements.

						//	constructors
						public	Set	(	)
									//	EFFECTS:	Initializes	this	to	be	empty.

						//	methods
									public	void	insert	(Object	x)	throws	NullPointerException
									//	MODIFIES:		this
									//	EFFECTS:	If	x	is	null	throws	NullPointerException	else
									//		adds	x	to	the	elements	of	this.

						public	void	remove	(Object	x)
									//	MODIFIES:		this
									//	EFFECTS:	If	x	is	in	this,	removes	x	from	this,	else	does	not
hing.

						public	boolean	isIn	(Object	x)
									//	EFFECTS:	Returns	true	if	x	is	in	this	else	returns	false.

						public	boolean	subset	(Set	s)
									//	EFFECTS:	If	all	elements	of	this	are	elements	of	s	returns	t
rue
									//		else	returns	false	specifications	of	size	and	elements.



									//	Specifications	of	size	and	elements
				}

	

						//	the	abstraction	function	is:
						//			AF(c)	=	c.els[i]	|	0	<=	i	<	c.sz
						//	the	rep	invariant	I(c)	is:
						//				c.els	!=	null	&&	for	all	0	<=	i	<	c.size	(	c.els[i]	!=	null	)	&&
						//				for	all	0	<=	i	<	j	<	c.els.size	(	!c.els[i].equals(c.els[j]	)

This	abstraction	function	produces	the	objects	in	c.els
rather	than	the	ints	contained	within	those	objects.	The
rep	invariant	includes	the	condition	that	the	set	not

contain	null;	it	depends	on	the	equals	method	to
determine	equality	of	elements.

Figure	8.2	Partial	implementation	of	Set

			public	class	Set	{

						private	Vector	els;
	

						public	Set	(	)	{	els	=	new	Vector(	);	}
						private	Set	(Vector	x)	{	els	=	x;	}
						
						
						public	void	insert	(Object	x)	throws	NullPointerException	{
									if	(getIndex(x)	<	0)	els.add(x);	}
						

						private	int	getIndex	(Object	x)	{
									for	(int	i	=	0;	i	<	els.size(	);	i++)
												if	(x.equals(els.get(i))	return	i;
									return	-1;	}
						
						
						public	boolean	subset	(Set	s)	{
						if	(s	==	null)	return	false;
						for	(int	i	=	0;	i	<	els.size(	);	i++)
									if	(!s.isIn(els.get(i)))	return	false;
						return	true;	}

			public	Object	clone	(	)	{	return	new	Set((Vector)	els.clone(	));	}
}

Note	that	insert	stores	its	argument	object	in	the	set
rather	than	a	clone	of	the	object.	This	behavior	is

indicated	in	its	specification,	which	says	it	adds	x	to	the
set,	meaning	that	very	object,	and	not	a	clone	of	it;	if	a

clone	had	been	required,	the	specification	would	have

said	so	explicitly.	Note	also	that	the	clone	method	does
not	clone	the	set	elements	but	only	clones	the	els	vector.
Therefore,	the	cloned	set	shares	its	elements	with	the	set

being	cloned.	Neither	of	these	implementations	exposes



the	rep	because	the	state	of	a	set,	or,	indeed,	of	almost

any	polymorphic	collection,	consists	only	of	the	identities

of	its	elements	and	not	their	states.

8.2	USING	POLYMORPHIC	DATA	ABSTRACTIONS

Polymorphic	data	abstractions	are	used	similarly	to	their

nonpolymorphic	counterparts,	with	two	main	differences.

First,	only	objects	can	be	stored	in	the	collection,	and

therefore,	primitive	values	like	ints	must	be	wrapped	in
their	corresponding	object	type.	Second,	observers	that

return	elements	of	the	collection	will	return	Object,	and
therefore	the	using	code	will	need	to	cast	to	the	expected

type	and,	in	the	case	of	a	primitive	value,	unwrap.

For	example,	here	is	code	that	uses	Set	to	store	a
collection	of	ints:

			Set	s	=	new	Set(	);
			s.insert(new	Integer(3));
			...
			Iterator	g	=	s.elements(	);
			while	(g.hasNext(	))	{
						int	i	=	((Integer)	g.next(	)).intValue(	);
						...	}

There	is	one	important	difference	between	this	code	and

code	using	an	IntSet.	An	IntSet	stores	only	ints,	and
that	guarantee	is	provided	by	the	compiler:	it	isn’t

possible	to	call	insert	on	an	IntSet	object	passing
something	other	than	an	int	as	an	argument.	No	such
guarantee	is	provided	for	Sets.	Even	though	a	typical	use
is	to	have	a	homogeneous	Set	in	which	all	elements	are
of	the	same	type,	the	compiler	will	not	enforce	the

constraint.	This	means	that	a	class	of	errors	is	possible

when	using	polymorphic	collections	that	cannot	happen

when	using	a	specific	collection	like	IntSet.

8.3	EQUALITY	REVISITED

A	collection	like	Set	determines	whether	an	element	is	a
member	of	the	collection	by	using	the	equals	method.
Therefore,	the	contents	of	an	object	of	the	collection	type

depends	on	how	equals	is	implemented	for	the
elements.

For	example,	equals	for	Vector	actually	returns	true	if



the	two	vectors	have	the	same	state;	other	collection

types	in	java.util	define	equals	similarly.	This
means	that	you	have	to	be	careful	when	you	store	vectors

in	a	Set.

If	you	are	using	the	set	to	keep	track	of	distinct	vector

objects,	the	implementation	in	Figure	8.2	won’t	do	what

you	want.	For	example,	consider	the	following	code:

			Set	s	=	new	Set(	);
			Vector	x	=	new	Vector(	);
			Vector	y	=	new	Vector(	);
			s.insert(x);
			s.insert(y);	//	y	is	not	added	to	s	since	it	appears	to	be	in	it	alre
ady
			x.add(new	Integer(3));
			if	(s.isIn(y))	//	won′t	get	here

Since	y	has	the	same	state	as	x	when	it	is	inserted	in	s,	it
appears	to	already	be	in	s,	and	therefore	it	is	not	added
again.	However,	once	the	state	of	x	changes,	y	is	no
longer	equals	to	x;	and	therefore	the	call	to	isIn
returns	false.

It	may	seem	that	the	way	to	avoid	this	problem	is	to	use

==	instead	of	equals	to	compare	the	elements,	but	this
approach	won’t	work	properly	for	immutable	types.	For

example,	you	probably	don’t	want	the	set	to	contain	two

copies	of	the	string	“abc”!

One	way	to	solve	the	problem	is	to	wrap	the	vectors	in

container	objects	when	you	intend	to	distinguish	distinct

vector	objects.	Figure	8.3	gives	the	specification	and

implementation	of	such	a	type.	A	container	is	immutable,

and	two	containers	are	equals	if	they	contain	the	very
same	object.	Note	that	Container	is	itself	polymorphic.

Now	we	can	insert	both	x	and	y	in	the	set,	even	when
they	have	the	same	state:

			Set	s	=	new	Set(	);
			Vector	x	=	new	Vector(	);
			Vector	y	=	new	Vector(	);
			s.insert(new	Container(x));
			s.insert(new	Container(y));
			x.add(new	Integer(3));
			if	(s.isIn(new	Container(y)))	//	will	get	here

This	code	causes	s	to	contain	two	elements,	one	for
vector	x	and	the	other	for	vector	y.	Therefore,	even
though	x	is	modified,	we	still	find	y	in	the	set.	Note	that



now	we	must	pass	containers	as	arguments	to	Set
methods.

Figure	8.3	The	Container	type	and	its	implementation

			public	class	Container	{
						//	OVERVIEW:	A	Container	contains	a	single	object.	Two	Containers	
are
						//		equals	if	they	contain	the	very	same	object.	Containers	are	im
mutable.
			
						private	Object	el;
			
			
						//	constructor
						public	Container	(Object	x)	{
									//	EFFECTS:	Makes	this	contain	x.
									el	=	x;	}
			
			
						//	methods
						public	Object	get	(	)	{
									//	EFFECTS:	Returns	the	object	in	the	container.
									return	el;	}
			
			
						public	boolean	equals	(Object	x)	{
									if	(!	x	instanceOf	Container)	return	false;
									return	(el	==	((Container)	x.el));	}
			}

8.4	ADDITIONAL	METHODS

The	Set	type,	and	many	other	polymorphic	data
abstractions,	use	only	Object	methods	on	their
parameters,	but	some	abstractions	need	additional

methods.

For	example,	suppose	we	want	to	define	an

OrderedList	type,	a	polymorphic	version	of
OrderedIntList	(see	Figure	6.10).	To	define	such	a
type,	we	need	a	way	to	order	the	elements.	Object	does
not	provide	a	way	to	do	this.

The	required	ability	can	be	achieved	by	defining	a

supertype,	all	of	whose	subtypes	have	a	comparison

method.	Such	a	type,	called	Comparable,	is	defined	in
java.util;	its	specification	is	given	in	Figure	8.4.

One	point	to	note	here	is	that	various	objects	might	not

be	comparable.	compareTo	might	be	called	with	null	or
with	an	argument	belonging	to	a	type	that	is	not	a

subtype	of	Comparable.	But	even	if	the	argument
belongs	to	a	subtype	of	Comparable,	there	can	still	be	a
problem.	For	example,	both



Figure	8.4	The	Comparable	interface

			public	interface	Comparable	{
						//	OVERVIEW:	Subtypes	of	Comparable	provide	a	method	to	determine
						//				the	ordering	of	their	objects.	This	ordering	must	be	a	total
	order
						//				over	their	objects,	and	it	should	be	both	transitive	and	sym
metric.
						//				Furthermore	x.compareTo(y)	==	0	implies	x.equals(y).

						public	int	compareTo	(Object	x)	throws	ClassCastException,
												NullPointerException;
								//	EFFECTS:	If	x	is	null,	throws	NullPointerException;	if
								//					this	and	x	aren’t	comparable,	throws	ClassCastException.
								//				Otherwise,	if	this	is	less	than	x	returns	-1;	if	this	equa
ls
								//					x	returns	0;	and	if	this	is	greater	than	x,	returns	1.
				}

Integer	and	String	are	subtypes	of	Comparable,	yet
x.compareTo(s),	where	x	is	an	Integer	and	s	is	a
String,	does	not	make	sense.	Attempts	to	do
comparisons	like	this	will	cause	compareTo	to	throw
ClassCastException.

Given	the	Comparable	interface,	we	can	define
OrderedList.	Figure	8.5	provides	a	partial	specification
and	implementation.	As	was	the	case	with	Set,	the
specification	and	implementation	are	similar	to	those	of

the	related	type,	OrderedIntList;	its	implementation
can	be	found	in	Figures	6.11	and	6.12.	The	main

differences	are:	arguments	and	results	are	now

Comparables,	where	before	they	were	ints,	and	the
comparison	is	done	using	compareTo,	as	indicated	in
the	overview.

OrderedList	actually	ensures	that	the	elements	of	the
list	are	homogeneous.	This	happens	because	compareTo
throws	an	exception	if	the	objects	aren’t	comparable—

that	is,	if	they	don’t	belong	to	related	types	for	which	a

comparison	makes	sense.	The	type	of	element	in	the	list

is	determined	when	the	first	element	is	added;	if	the	list

becomes	empty,	this	type	can	switch	to	something

different	when	the	next	element	is	added.	Note	that

addEl	makes	sure	the	first	element	is	comparable,	by
rejecting	an	attempt	to	add	null	to	the	list.

To	enable	elements	of	a	type	to	be	stored	in	an

OrderedList,	the	type	must	be	a	subtype	of
Comparable.	Every	type	for	which	this	makes	sense



should	be	defined	in	this	way.

Figure	8.5	Partial	specification	and	implementation	of	ordered	lists

			public	class	OrderedList	{
						//	OVERVIEW:	An	ordered	list	is	a	mutable	ordered	list	of	Comparable	
objects.
						//			A	typical	list	is	a	sequence	[x1,	…,	xn]	where	xi	<	xj	if	i	<	j	.
						//			The	ordering	of	the	elements	is	done	using	their	compareTo	me
thod.

						private	boolean	empty;
						private	OrderedList	left,	right;
						private	Comparable	val;

						//	constructors
						public	OrderedList	(	)	{
									//	EFFECTS:	Initializes	this	to	be	an	empty	ordered	list.
									empty	=	true;	}

						//	methods
						public	void	addEl	(Comparable	el)	throws	NullPointerException,
													DuplicateException,	ClassCastException	{
									//	MODIFIES:	this
									//	EFFECTS:	If	el	is	in	this,	throws	DuplicateException;	if	el	is	null
									//		throws	NullPointerException;	if	el	cannot	be	compared	to	ot
her	elements
									//		of	this	throws	ClassCastException;	otherwise,	adds	el	to	th
is.
									if	(val	==	null)	throw	new	NullPointerException("OrderedList.addEl");
									if	(empty)	{
												left	=	new	OrderedList(	);	right	=	new	OrderedList(	);
												val	=	el;	empty	=	false;	return;	}
									int	n	=	el.compareTo(val);
									if	(n	==	0)	throw	new	DuplicateException("OrderedList.addEl");
									if	(n	<	0)	left.addEl(el);	else	right.addEl(el);	}

			public	void	remEl	(Comparable	el)	throws	NotFoundException
						//	modifies:	this
						//	effects:	If	el	is	not	in	this,	throws	NotFoundException;
						//			otherwise,	removes	el	from	this.
			public	boolean	isIn	(Comparable	el)
						//	effects:	If	el	is	in	this	returns	true	else	returns	false.
	}

8.5	MORE	FLEXIBILITY

Using	a	supertype	like	Comparable	to	capture	the
requirements	of	a	polymorphic	abstraction	with	respect

to	the	methods	it	uses	on	its	parameters	requires

preplanning.	The	supertype	must	be	defined	first,	before

any	types	that	ought	to	be	its	subtypes	are	defined;	then

those	types	can	be	defined	to	“implement”	the	supertype.

Such	preplanning	is	not	always	possible.	Sometimes	a

collection	type	is	defined	after	some	of	the	desired

element	types.	In	this	case,	we	need	another	way	to

access	the	methods	used	in	the	collection.

This	can	be	accomplished	by	defining	an	interface	whose



objects	have	the	required	methods,	but	now	the	element

types	are	not	subtypes	of	that	interface.	Instead,	for	each

type	that	will	be	used	for	elements	in	the	collection,	a

special	subtype	of	the	interface	type	must	be	defined.

For	example,	suppose	we	wanted	a	set	that	maintained	a

running	sum	of	its	elements.	Each	time	an	element	is

inserted,	the	sum	is	incremented;	when	an	element	is

removed,	the	sum	is	decremented.	To	maintain	the	sum,

however,	the	collection	needs	to	use	methods	of	its

element	type—one	to	add,	and	one	to	subtract.	We	can

capture	this	requirement	in	the	Adder	interface	defined
in	Figure	8.6.	In	addition	to	the	add	and	sub	methods,
note	that	we	also	require	a	way	of	obtaining	the	zero
object	for	the	element	type.

The	Adder	interface	is	not	intended	to	be	a	supertype	of
the	types	whose	elements	can	be	added.	Instead,	it

provides	objects	whose	methods	can	be	used	to	add	or

subtract	elements	of	some	related	type.	For	each	related

type,	a	subtype	of	Adder	must	be	defined.	Figure	8.7
shows	the	class	defining	the	subtype	of	Adder	that	adds
Polys.	It	isn’t	necessary	to	provide	a	specification	for	this
type	since	it	is	just	an	implementation	of	Adder.	Here	we
have	chosen	to	store	the	zero	polynomial	in	the	rep;

alternatively,	we	could	create	the	zero	polynomial	each

time	zero	is	called.

One	point	to	note	here	is	that	the	Adder	methods	are	not
identical	to	methods	of	the	related	type.	In	this	case,

Poly	has	methods	named	add	and	sub,	but	they	have
different	signatures	than	the	related	Adder	methods;
also,	Poly	does	not	have	a	zero	method.	As	another
example,	we	could	define	an	IntegerAdder	class	that
would	add	Integers,	even	though	Integers	don’t	have
any	arithmetic	methods.

Figure	8.6	The	Adder	interface

			public	interface	Adder	{
						//	OVERVIEW:	All	subtypes	of	Adder	provide	a	means	to	add	and
						//				subtract	the	elements	of	some	related	object	type.

						public	Object	add	(Object	x,	Object	y)	throws	NullPointerException,
														ClassCastException;
										//	EFFECTS:	If	x	or	y	is	null,	throws	NullPointerException;	if	x	
and	y	are



										//		not	addable,	throws	ClassCastException;	else	returns	the	s
um	of	x	and	y.

						public	Object	sub	(Object	x,	Object	y)	throws	NullPointerException,
														ClassCastException;
										//	EFFECTS:	If	x	or	y	is	null,	throws	NullPointerException;	if	x	
and	y
										//		are	not	addable,	throws	ClassCastException;
										//		else	returns	the	difference	of	x	and	y.

						public	Object	zero	(	)
									//	EFFECTS:	Returns	the	object	that	represents	zero	for	the	rel
ated	type.
		}

SumSet	is	defined	in	terms	of	the	Adder	interface;
Figure	8.8	provides	a	partial	specification	and

implementation.	SumSet	objects	are	actually
homogeneous	(like	OrderedList),	but	in	this	case,	the
element	type	is	determined	when	the	set	is	created,	by

means	of	the	Adder	object	that	is	an	argument	of	the
constructor.

Here	is	an	example	of	using	this	type:

			Adder	a	=	new	PolyAdder(	);
			SumSet	s	=	new	Sumset(a);
			s.insert(new	Poly(3,	7));
			s.insert(new	Poly(4,	8));
			Poly	p	=	(Poly)	s.sum(	);

SumSet	object	s	will	only	be	able	to	store	Poly	objects.

A	type	like	SumSet	is	somewhat	inconvenient	to	use
because	of	the	need	to	define	a	related	subtype	of	Adder
for	each	element	type.	For	this	reason,	it	can	be	useful	to

combine	the	use	of	the	Adder	with	the	use	of	a	type	like
Comparable.	For	example,	we	could	define	a	type
Addable,	with	the	following	methods:

Figure	8.7	The	PolyAdder	class

			public	class	PolyAdder	implements	Adder	{

						private	Poly	z;			//	the	zero	Poly

						public	PolyAdder	(	)	{	z	=	new	Poly(	);	}

						public	Object	add	(Object	x,	Object	y)	throws	NullPointerException,
													ClassCastException	{
									if	(x	==	null	||	y	==	null)
												throw	new	NullPointerException("PolyAdder.add");
									return	((Poly)	x).add((Poly)	y);	}

						public	Object	sub	(Object	x,	Object	y)	throws	NullPointerException,
													ClassCastException	{
									if	(x	==	null	||	y	==	null)



												throw	new	NullPointerException("PolyAdder.sub");
									return	((Poly)	x).sub((Poly)	y);	}

						public	Object	zero	(	)	{	return	z;	}
			}

			public	Object	add	(Object	x)	throws	NullPointerException,
									ClassCastException
			public	Object	sub	(Object	x)	throws	NullPointerException,
									ClassCastException
			public	Object	zero	(	)

Then	element	types	defined	later	can	be	defined	as

subtypes	of	Addable.	For	example,	if	Poly	were	defined
after	Addable	had	been	defined,	we	could	have	it
implement	Addable,	although	it	would	need	to	have
additional	methods	to	match	the	Addable	interface.

Figure	8.8	Partial	specification	and	implementation	of	SumSet

			public	class	SumSet	{
						//	OVERVIEW:SumSets	are	mutable	sets	of	objects	plus	a	sum
						//	of	the	current	objects	in	the	set.	The	sum	is	computed	using
						//	an	Adder	object.	All	elements	of	the	set	are	addable	using	the	Adder.
									
									
						private	Vector	els;			//	the	elements
						private	Object	s;		//	the	sum	of	the	elements
						private	Adder	a;	//	the	object	used	to	do	adding	and	subtracting
									

						//	constructor
						public	SumSet	(Adder	p)	throws	NullPointerException	{
									//	EFFECTS:	Makes	this	be	the	empty	set	whose	elements	can	be
									//	added	using	p,	with	initial	sum	p.zero	.
									els	=	new	Vector(	);	a	=	p;	s	=	p.zero(	);	}

						public	void	insert	(Object	x)	throws	NullPointerException,
													ClassCastException	{
									//	MODIFIES:	this
									//	EFFECTS:	If	x	is	null	throws	NullPointerException;	if	x	cann
ot	be
									//				added	to	the	other	elements	of	this	throws	ClassCastException;
									//				else	adds	x	to	the	set	and	adjusts	the	sum.
									Object	z	=	a.add(s,	x);
									int	i	=	getIndex(x);
									if	(i	<	0)	{	els.add(x);	s	=	z;	}
						}

						public	Object	sum	(	)	{
									//	EFFECTS:	Returns	the	sum	of	the	elements	of	this.
													return	s;	}

With	this	approach,	SumSet	would	have	two
constructors:

			public	SumSet	(Adder	p)	throws	NullPointerException
			public	SumSet	(	)

The	second	constructor	would	be	used	for	types	that	are



subtypes	of	Addable.

Some	of	the	collection	types	in	java.util	are	defined
like	this.	They	make	use	of	Comparable	and	also	of	a
type	Comparator:

			public	interface	Comparator	{
						public	int	compare	(Object	x,	Object	y)
												throws	NullPointerException,	ClassCastException;
									//	EFFECTS:	If	x	or	y	is	null	throws	NullPointerException;
									//			if	x	and	y	aren’t	comparable	throws	ClassCastException.
									//			Otherwise,	if	x	is	less	than	y,	returns	-1;
									//			if	x	equals	y,	returns	0;	and	if	x	is	greater	than	y,	retu
rns	1.
				}

Comparator	is	defined	in	java.util.

8.6	POLYMORPHIC	PROCEDURES

All	of	the	examples	so	far	have	involved	data

abstractions,	but	the	same	techniques	can	be	used	for

procedures.	Figure	8.9	gives	the	specifications	of	some

polymorphic	procedures.	Here	there	are	two	definitions

of	sort.	The	first	works	if	the	elements	of	v	belong	to
subtypes	of	Comparable.	The	second	takes	a
Comparator	as	an	argument.

8.7	SUMMARY

Polymorphic	abstractions	are	desirable	because	they

provide	a	way	to	abstract	from	the	types	of	parameters.

In	this	way,	we	can	achieve	a	more	powerful	abstraction,

one	that	works	for	many	types	rather	than	just	a	single

type.	Procedures,	iterators,	and	data	abstractions	can	all

benefit	from	this	technique.

A	polymorphic	abstraction	usually	requires	access	to

certain	methods	of	its	parameters.	Sometimes	the

methods	that	all	objects	have,	the	ones	that	are	defined

by	Object,	are	sufficient.	However,	sometimes	more
methods	are	needed.	In	this	case,	the	polymorphic

abstraction	makes	use	of	an	interface	to	define	the

needed	methods.

There	are	two	different	ways	of	defining	this	interface.

The	first	uses	an	interface	that	is	intended	to	be	a

supertype	of	the	element	types.	Comparable	is	an
example	of	such	an	interface.	We	will	call	this	the	element



subtype	approach	since	each	potential	type	of	element

must	be	defined	as	a	subtype	of	the	interface.

Figure	8.9	Some	polymorphic	procedures

			class	Vectors	{
						//	OVERVIEW:	Provides	useful	procedures	for	manipulating	vectors.
			
							public	static	int	search	(Vector	v,	Object	o)
													throws	NotFoundException,	NullPointerException
								//	EFFECTS:	If	v	is	null	throws	NullPointerException	else	if	o	i
s	in	v
								//			returns	an	index	where	o	is	stored	else	throws	NotFoundException.
								//			Uses	equals	to	compare	o	with	the	elements	of	v.
			
								public	static	sort	(Vector	v)	throws	ClassCastException
										//	MODIFIES:	v
										//	EFFECTS:	If	v	is	not	null	,	sorts	it	into	ascending	order	u
sing
										//			the	compareTo	method	of	Comparable;	if	some	element	of	v	
are
										//			null	or	aren’t	comparable	throws	ClassCastException.
				
								public	static	sort	(Vector	v,	Comparator	c)
														throws	ClassCastException
										//	MODIFIES:	v
										//	EFFECTS:	If	v	is	not	null,	sorts	it	into	ascending	order	us
ing	the
										//			compare	method	of	c;	if	some	elements	of	v	are	null	or	ar
en’t
										//		comparable	using	c	throws	ClassCastException.
				}

The	problem	with	this	approach	is	that	it	requires

preplanning.	If	the	polymorphic	abstraction	is	invented

after	some	desirable	element	types	have	already	been

defined,	it	is	too	late	to	make	those	types	subtypes	of	the

interface.	In	this	case,	another	approach	is	used:	the

interface	is	a	supertype	of	types	that	are	related	to	the

element	types.	Objects	belonging	to	a	subtype	of	the

interface	have	methods	that	provide	the	needed

functionality	for	objects	of	the	related	element	type.

Adder	is	an	example	of	such	an	interface.	We	will	call

this	the	related	subtype	approach	since	for	each	element

type	a	related	type	that	is	a	subtype	of	the	interface	must

be	defined.

The	related	subtype	approach	is	less	convenient	than	the

element	subtype	approach	because	of	the	need	to	define

the	extra	subtypes.	Furthermore,	when	element	types	are

defined	after	the	polymorphic	abstraction,	the	element

subtype	approach	will	work.	Therefore,	sometimes

polymorphic	abstractions	allow	both	approaches;	the

using	code	selects	the	approach	when	it	constructs	the



polymorphic	collection	or	calls	the	polymorphic

procedure.	Sidebar	8.2	summarizes	this	discussion.

Sidebar	8.2	Requirements	of	Polymorphic	Abstractions

Almost	all	polymorphic	abstractions	need	to	use	methods	on	their	parameters,	but	sometimes
only	methods	of	Object	are	required.

Polymorphic	abstractions	that	need	more	than	Object	methods	make	use	of	an	associated
interface	to	define	their	requirements.

In	the	element	subtype	approach,	all	potential	element	types	must	be	subtypes	of	the
associated	interface.

In	the	related	subtype	approach,	a	subtype	of	the	interface	must	be	defined	for	each	potential
element	type.

Some	polymorphic	abstractions	combine	the	approaches,	allowing	the	user	to	select	the	one
that	works	best	for	the	parameter	type	of	interest.

EXERCISES

8.1	Complete	the	implementation	of	OrderedList	(see
Figure	8.5).	Be	sure	to	define	the	abstraction	function

and	rep	invariant	and	to	implement	toString	and
repOk.

8.2	Implement	IntegerAdder,	which	is	a	subtype	of
the	Adder	interface	(see	Figure	8.6).

8.3	Complete	the	implementation	of	SumSet	(see	Figure
8.8).	Be	sure	to	define	the	rep	invariant	and

abstraction	function	and	to	implement	toString
and	repOk.

8.4	Specify	and	implement	a	version	of	SumSet	that
allows	users	to	supply	the	required	methods	using

either	Adder	or	Addable.	Be	sure	to	define	the	rep
invariant	and	abstraction	function	and	to	implement

toString	and	repOk.

8.5	Extend	the	specification	and	implementation	of	Poly
(see	Figures	5.4,	5.7,	and	5.8)	to	make	it	a	subtype	of

Addable.

8.6	Specify	and	implement	a	polymorphic	list;	this	type

is	like	IntList	(see	Figure	7.11)	except	that	it	stores
arbitrary	objects	rather	than	ints.	Be	sure	to	define
the	rep	invariant	and	abstraction	function	and	to

implement	toString	and	repOk.

8.7	Specify	and	implement	a	Bag	type	that	can	hold
elements	of	arbitrary	types.	Bags	are	like	sets	except

that	they	can	contain	multiple	copies	of	an	element.

•	

•	

•	

•	
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Your	bags	should	have	insert,	remove,	elements,
and	size	methods,	plus	a	method

									public	int	card	(Object	x)
												//	EFFECTS:	Returns	a	count	of	the	number	of	occurrences	of	x	
in	this.

Be	sure	to	define	the	rep	invariant	and

abstraction	function	and	to	implement

toString	and	repOk.

8.8	Suppose	we	want	to	define	a	procedure	to	search	an

arbitrary	collection	for	a	match	with	an	element:

									public	static	int	search	(Object	c,	Object	x)	throws
															NullPointerException,	NotFoundException,
															ClassCastException
											//	EFFECTS:	If	c	is	null	throws	NullPointerException,	else	if
											//		c	is	not	searchable,	throws	ClassCastException,	else
											//		if	x	is	in	c	returns	an	index	where	x	can	be	found,
											//		else	throws	NotFoundException.

Here	we	require	a	notion	of	searchable:	search
requires	a	way	to	find	elements	of	c	by	their	index
and	to	determine	the	size	of	c.	Define	a	related
subtype	interface	Indexer	that	provides	the	needed
methods	and	then	implement	search	using	that
interface.

8.9	Define	and	implement	VectorIndexer,	which	is	a
subtype	of	Indexer,	as	defined	in	the	preceding
exercise.	VectorIndexer	allows	a	vector	to	be
searched.



9	Specifications

Throughout	this	book,	we	emphasize	the	importance	of

specifications	in	all	stages	of	program	development.	Our

main	premise	is	that	the	proper	use	of	abstraction	is	the

key	to	good	programming.	Without	specifications,

abstractions	are	too	intangible	to	be	helpful.	In	this

chapter,	we	discuss	the	meaning	of	specifications	and

some	criteria	to	consider	when	writing	them.	We	also

discuss	two	primary	uses	of	specifications.

9.1	SPECIFICATIONS	AND	SPECIFICAND	SETS

The	purpose	of	a	specification	is	to	define	the	behavior	of

an	abstraction.	Users	will	rely	on	this	behavior,	while

implementors	must	provide	it.	An	implementation	that

provides	the	described	behavior	is	said	to	satisfy	the

specification.

We	define	the	meaning	of	a	specification	to	be	the	set	of

all	program	modules	that	satisfy	it.	We	call	this	the

specificand	set	of	the	specification.	As	an	example,

consider	the	specification

				static	int	p	(int	y)
							//	REQUIRES:	y	>	0
							//	EFFECTS:	Returns	x	such	that	x	>	y.

Sidebar	9.1	Specifications

A	specification	describes	the	behavior	of	some	abstraction.

An	implementation	satisfies	a	specification	if	it	provides	the	described	behavior.

The	meaning	of	a	specification	is	the	set	of	all	programs	that	satisfy	it.	This	set	is	called	the
specificand	set.

This	specification	is	satisfied	by	any	procedure	named	P
that,	when	called	with	an	argument	greater	than	zero,

returns	a	value	greater	than	its	argument.	Members	of

the	specificand	set	include

				static	int	p	(int	y)	{	return	y+1;	}
				static	int	p	(int	y)	{	return	y*2;	}
				static	int	p	(int	y)	{	return	y*3;	}

Like	every	specification,	this	one	is	satisfied	by	an	infinite

•	

•	

•	



number	of	programs.	Sidebar	9.1	summarizes	these

definitions.

It	is	important	to	remember	that	a	specification,	its

specificand	set,	and	a	particular	member	of	the

specificand	set	are	very	different	kinds	of	things,	as

different	as	a	program,	the	set	of	all	possible	executions

of	that	program,	and	an	execution	of	that	program	on	a

single	set	of	data.

9.2	SOME	CRITERIA	FOR	SPECIFICATIONS

Good	specifications	take	many	forms,	but	all	of	them

have	certain	attributes	in	common.	Three	important

attributes—restrictiveness,	generality,	and	clarity—are

discussed	in	this	section.	They	are	summarized	in	Sidebar

9.2.

9.2.1	Restrictiveness

There	is	a	vast	difference	between	knowing	that	some

members	of	a	specification’s	specificand	set	are

appropriate	and	knowing	that	all	members	are

appropriate.	This	is	similar	to	the	difference	between

knowing	that	a	program	works	on	some	inputs	and

knowing	that	it	works	on	all	inputs,	a	difference	we	will

emphasize	in	Chapter	10	when	we	discuss	testing.	A	good

specification	should	be	restrictive	enough	to	rule	out	any

implementation	that	is	unacceptable	to	its	abstraction’s

users.	This	requirement	is	the	basis	of	almost	all	uses	of

specifications.

Sidebar	9.2	Attributes	of	Good	Specifications

A	specification	is	sufficiently	restrictive	if	it	rules	out	all	implementations	that	are	unacceptable
to	an	abstraction’s	users.

A	specification	is	sufficiently	general	if	it	does	not	preclude	acceptable	implementations.

A	specification	should	be	clear	so	that	it	is	easy	for	users	to	understand.

In	general,	discussing	whether	or	not	a	specification	is

sufficiently	restrictive	involves	discussing	the	uses	to

which	members	of	the	specificand	set	might	be	put.

Certain	common	mistakes,	however,	almost	always	lead

to	inadequately	restrictive	specifications.	One	such

mistake	is	failing	to	state	needed	requirements	in	the

•	

•	

•	



requires	clause.	For	example,	Figure	9.1	gives	three

specifications	for	an	elems	iterator	for	a	bag	of	integers.
(An	IntBag	is	like	an	IntSet	except	that	elements	can
occur	in	it	more	than	once.	For	example,	a	bag	could

contain	3	twice.	Bags	are	sometimes	called	multisets	.)

The	first	specification	fails	to	address	the	question	of

what	happens	if	the	bag	is	changed	while	the	generator

returned	by	elems	is	in	use.	It	therefore	allows
implementations	exhibiting	radically	different	behavior.

For	example,	does	changing	the	bag	affect	the	values

returned	by	the	generator?

One	way	to	deal	with	this	particular	problem	is	to	require

that	the	bag	not	be	changed	while	the	generator	is	in	use,

as	is	done	in	the	second	specification.	This	specification

may	or	may	not	be	sufficiently	restrictive	since	it	does	not

constrain	the	order	in	which	the	elements	are	returned.	It

would	be	better	if	it	either	defined	an	order	or	included

the	phrase	“in	arbitrary	order.”	In	addition,	the

specification	fails	to	make	clear	what	is	done	when	an

element	is	contained	in	a	bag	more	than	once.	For	that

matter,	it	does	not	even	say	explicitly	that	the	generator

returns	only	elements	that	are	in	the	bag.	The	third

specification	corrects	these	deficiencies.

Other	mistakes	are	failing	to	identify	when	exceptions

should	be	signaled	and	failing	to	specify	behavior	at

boundary	cases.	For	example,	consider	a	procedure

indexString	that	takes	strings	s1	and	s2	and,	if	s1	is	a
substring	of	s2,	returns	the	index	at	which	s1’s	first
character	occurs	in	s2;	for	example,	indexString(″ab
″,	″babc″)	returns	1.	A	specification	that	contained
only	this	information	would	not	be	restrictive	enough

because	it	does	not	explain	what	would	happen	if	s1	were
not	a	substring	of	s2,	or	if	it	occurred	multiple	times	in
s2,	or	if	s1	or	s2	were	empty.	The	specification	in	Figure
9.2	is	restrictive	enough.

Figure	9.1	Three	specifications	of	elems

				public	Iterator	elems	(	)
							//	EFFECTS:	Returns	a	generator	that	produces	every	element	of	this
							//		(as	Integers).
				
				public	Iterator	elems	(	)



							//	EFFECTS:	Returns	a	generator	that	produces	every	element	of	this
							//		(as	Integers).
							//	REQUIRES:	this	not	be	modified	while	the	generator	is	in	use.
				
				public	Iterator	elems	(	)
							//	EFFECTS:	Returns	a	generator	that	produces	every	element	of	th
is
							//			(asIntegers),	in	arbitrary	order.	Each	element	is
							//		produced	exactly	the	number	of	times	it	occurs	in	this.
							//	REQUIRES:	this	not	be	modified	while	the	generator	is	in	use.

Figure	9.2	Specification	of	indexString	procedure

				public	static	int	indexString(String	s1,	String	s2)
										throws	NullPointerException,	EmptyException
										//	EFFECTS:	If	s1	or	s2	is	null,	throws	NullPointerException;	
else
										//		if	s1	is	the	empty	string,	throws	EmptyException;	else
										//		if	s1	occurs	as	a	substring	in	s2,	returns	the	least	index
	at	which
										//		s1	occurs;	else	returns	-1.	E.g.,
										//						indexString(″bc″,	″abcbc″)	=	1
										//						indexString(″b″,	″a″)	=	-1

The	moral	is	that	it	takes	considerable	care	to	write

sufficiently	restrictive	specifications.

9.2.2	Generality

A	good	specification	should	be	general	enough	to	ensure

that	few,	if	any,	acceptable	programs	are	precluded.	The

importance	of	the	generality	criterion	may	be	less

obvious	than	that	of	restrictiveness.	It	is	not	essential	to

ensure	that	no	acceptable	implementation	is	precluded,

but	the	more	desirable	(that	is,	efficient	or	elegant)

implementations	should	not	be	ruled	out.	For	example,

the	specification

				public	static	float	sqrt	(float	sq,	float	e)
							//	REQUIRES:	sq	>=	0	&&	e	>	.001
							//	EFFECTS:	Returns	rt	such	that	0	<=	(rt*rt	-	sq)	<=	e.

constrains	the	implementor	to	algorithms	that	find

approximations	that	are	greater	than	or	equal	to	the

actual	square	root.	The	constraint	may	well	result	in	a

needless	loss	of	efficiency.

It	is	our	desire	to	make	specifications	as	general	as

possible	that	has	led	us	to	the	definitional	style	of

specification	used	in	this	book.	A	definitional

specification	explicitly	lists	properties	that	the	members

of	the	specificand	set	are	to	exhibit.	The	alternative	to	a

definitional	specification	is	an	operational	one.	An

operational	specification,	instead	of	describing	the



properties	of	the	specificands,	gives	a	recipe	for

constructing	them.	For	example,

				public	static	int	search	(int[	]	a,	int	x)
													throws	NotFoundException,	NullPointerException
							//	EFFECTS:	If	a	is	null	throws	NullPointerException	else	examine
s
							//			a[0],	a[1],	…,	in	turn	and	returns	the	index	of	the	first	on
e
							//		that	is	equal	to	x.	Signals	NotFoundException	if	none	equals	x.

is	an	operational	specification	of	search,	while

				public	static	int	search	(int[	]	a,	int	x)
													throws	NotFoundException,	NullPointerException
							//	EFFECTS:	If	a	is	null	throws	NullPointerException	else	returns
							//			i	such	that	a[i]	=	x;	signals	NotFoundException	if	there	is	
no	such	i.

is	definitional.	The	first	specification	explains	how	to

implement	search,	while	the	second	merely	describes	a
property	that	its	inputs	and	outputs	must	satisfy.	Not

only	is	the	definitional	specification	shorter,	but	it	also

allows	greater	freedom	to	the	implementor,	who	may

choose	to	examine	the	array	elements	in	some	order

other	than	first	to	last.

Operational	specifications	have	some	advantages.	Most

significantly,	they	seem	to	be	relatively	easily	constructed

by	trained	programmers—chiefly	because	their

construction	so	closely	resembles	programming.	They	are

generally	longer	than	definitional	specifications,

however,	and	they	often	lead	to	over-specification.	The

operational	specification	of	search,	for	example,
specifies	which	index	is	to	be	returned	if	x	occurs	more
than	once	in	a;	this	may	be	more	restrictive	than	is
desired.	As	another	example,	consider	trying	to	write	an

operational	specification	for	a	square	root	procedure.

A	good	check	for	generality	is	to	examine	every	property

required	by	a	specification,	in	both	the	requires	and

effects	clauses,	and	ask	whether	it	is	really	needed.	If	it	is

not,	then	it	should	be	eliminated	or	weakened.	Also,	any

portion	of	a	specification	that	is	operational	rather	than

definitional	should	be	viewed	with	suspicion.

9.2.3	Clarity

When	we	talk	about	what	makes	a	program	“good,”	we



consider	not	only	the	computations	it	describes	but	also

properties	of	the	program	text	itself—for	example,

whether	it	is	well	modularized	and	nicely	commented.

Similarly,	when	we	evaluate	a	specification,	we	must

consider	not	only	properties	of	the	specificand	set	but

also	properties	of	the	specification	itself—for	example,

whether	it	is	easy	to	read.

A	good	specification	should	facilitate	communication

among	people.	A	specification	may	be	sufficiently

restrictive	and	sufficiently	general—that	is,	it	may	have

exactly	the	right	meaning—but	this	is	not	enough.	If	this

meaning	is	hard	for	readers	to	discover,	the

specification’s	utility	is	severely	limited.

People	may	fail	to	understand	a	specification	in	two

distinct	ways.	They	may	study	it	and	come	away	knowing

that	they	do	not	understand	it.	For	example,	a	reader	of

the	second	specification	of	elems	in	Figure	9.1	may	be
confused	about	what	to	do	if	an	element	occurs	in	the	bag

more	than	once.	This	is	troublesome	but	not	as

dangerous	as	when	people	come	away	thinking	that	they

understand	a	specification	when,	in	fact,	they	do	not.	In

such	a	case,	the	user	and	the	implementor	of	an

abstraction	may	each	interpret	its	specification

differently,	leading	to	modules	that	cannot	work	together.

For	example,	the	implementor	of	elems	may	decide	to
produce	each	element	the	number	of	times	it	occurs	in

the	bag,	while	the	user	expects	each	element	to	be

produced	only	once.

Clarity	is	an	important	but	amorphous	criterion.	It	is	easy

enough	to	say	that	a	good	specification	should	be	easy	to

understand	but	much	harder	to	say	how	to	achieve	this.

Many	factors,	of	which	conciseness,	redundancy,	and

structure	are	perhaps	the	most	important,	contribute	to

clarity.

The	most	concise	presentation	may	not	always	be	the	best

specification,	but	it	is	frequently	the	best	starting	point.

There	are	valid	reasons	to	increase	the	size	of	a

specification	by	adding	redundant	information	or	levels

of	structure,	as	we	shall	discuss,	but	it	is	important	to



avoid	pointless	verbosity.	As	a	specification	grows	longer,

it	is	more	likely	to	contain	errors,	less	likely	to	be

completely	and	carefully	read,	and	more	likely	to	be

misunderstood.

It	is	important	not	to	confuse	length	with	completeness.

A	stream-of-consciousness	technique	will	easily	lead	to

specifications	that	are	both	long	and	incomplete.	Like

programs,	specifications	that	grow	by	accretion	are	often

longer	than	they	need	to	be.	Instead	of	just	adding	to	a

specification,	it	is	important	to	step	back	from	that	local

change	and	see	whether	there	is	a	way	to	consolidate	the

information.	It	takes	more	time	to	write	a	complete	short

description	than	to	write	a	complete	long	one,	but	the

author	of	a	specification	owes	it	to	the	readers	to	make

this	investment.

Any	specification	containing	redundant	text	is	less

concise	than	it	could	be.	Redundancy	should	not	be

introduced	without	a	good	reason,	but	it	can	be	justified

in	two	ways:	to	reduce	the	likelihood	that	a	specification

will	be	misunderstood	by	its	readers	and	to	catch	errors.

In	many	respects,	the	role	of	a	specification	is	like	that	of

a	textbook.	It	should	be	designed	not	merely	to	contain

information	but	to	communicate	that	information

effectively.	Redundancy	can	be	used	to	reduce	the

likelihood	that	an	important	point	will	be	missed.	The	old

dictum	″Tell	′em	what	you′re	gonna	tell	′em,	tell	′em,

then	tell	′em	what	you	told	′em″	has	some	pedagogical

validity.	The	key	is	to	present	the	same	information	in

more	than	one	way,	to	be	redundant	without	being

repetitious.	Consider,	for	example,

				static	boolean	subset	(IntSet	s1,	IntSet	s2)
													throws	NullPointerException
								//EFFECTS:	If	s1	or	s2	is	null	throws	NullPointerException	else
								//	returns	true	if	s1	is	a	subset	of	s2	else	returns	false.
				
				static	boolean	subset	(IntSet	s1,	IntSet	s2)
													throws	NullPointerException
							//	EFFECTS:	If	s1	or	s2	is	null	throws	NullPointerException	else
							//		returns	true	if	every	element	of	s1	is	an	element	of	s2	else	
returns	false.

				static	boolean	subset	(IntSet	s1,	IntSet	s2)
													throws	NullPointerException
							//	EFFECTS:	If	s1	or	s2	is	null	throws	NullPointerException	else



							//				returns	true	if	s1	is	a	subset	of	s2	else	returns	false,	i.
e.,
							//				returns	true	if	every	element	of	s1	is	an	element	of	s2	els
e	returns	false.

The	first	specification	is	concise	and,	for	most	readers,

quite	clear.	However,	some	readers	might	be	left	with	a

nagging	doubt:	Was	the	word	″subset″	carefully	chosen,

or	might	the	author	have	meant	proper	subset?	The

second	specification,	while	a	bit	harder	to	read	than	the

first,	leaves	no	doubt	on	this	point.	The	question	it	raises

is	why,	if	the	specifier	intended	that	p	be	a	subset	test,
was	this	not	stated	explicitly?	The	third	specification,	of

course,	answers	both	of	these	questions.

By	stating	the	same	thing	in	more	than	one	way,	a

specification	provides	readers	with	a	benchmark	against

which	they	can	check	their	understanding.	This	helps	to

prevent	misunderstandings	and	thus	allows	readers	to

spend	less	time	studying	a	specification.	A	particularly

useful	kind	of	redundancy	in	this	regard	is	one	or	more

well-chosen	examples,	such	as	those	given	in	the

specification	of	indexString	in	Figure	9.2.

A	specification	that	states	the	same	thing	in	more	than

one	way	also	allows	for	the	fact	that	different	readers	will

find	different	presentations	of	the	same	information

easier	to	understand.	Frequently,	some	critical	part	of	a

specification	is	a	concept	with	a	name	that	will	be

meaningful	to	some	readers	but	not	to	others.	For

example,	consider

				static	float	pv	(float	inc,	float	r,	int	n)
										//	REQUIRES:	inc	>	0	&&	r	>	0	&&	n	>	0
										//	EFFECTS:	Returns	the	present	value	of	an	annual	income	of	inc	
for
										//					n	years	at	a	risk-free	interest	rate	of	r.
										//				I.e.,	pv(inc,	r,	n)	=	inc	+	(inc/(1+r))	+	…	+	(inc/(1+r)n-
1).
										//					E.g.,	pv(100,	.10,	3)	=	100	+	100/1.1	+	100/1.21

For	readers	well	versed	in	financial	matters,	a

specification	that	did	not	use	the	phrase	″present	value″

would	not	be	as	easy	to	understand	as	one	that	did.	For

readers	lacking	that	background,	the	part	of	the

specification	following	″I.e.″	is	invaluable.	The	part

following	″E.g.″	can	be	used	by	either	group	of	readers	to

confirm	their	understanding.



If	readers	are	to	benefit	from	redundancy,	it	is	critical

that	all	redundant	information	be	clearly	marked	as	such.

Otherwise,	a	reader	can	waste	a	lot	of	time	trying	to

understand	what	new	information	is	being	presented

when,	in	fact,	none	is.	A	good	way	to	indicate	that

information	is	redundant	is	to	preface	it	with	″i.e.″	or

″e.g.″.

Redundancy	does	not	reduce	the	number	of	mistakes	in	a

specification.	Instead,	it	makes	them	more	evident	and

provides	the	reader	with	the	opportunity	to	notice	them.

For	example,	consider

				static	boolean	tooCold	(int	temp)
							//	EFFECTS:	Returns	true	if	temp	is	<=	0	degrees
							//		Fahrenheit;	otherwise	returns	false.
				
				static	boolean	tooCold	(int	temp)
							//	EFFECTS:	Returns	true	if	temp	is	<=	0	degrees
							//				Fahrenheit;	otherwise	returns	false.	i.e.,	returns	true
							//				exactly	when	temp	is	not	greater	than	the	freezing	point	of
							//				water	at	standard	temperature	and	pressure.

The	first	specification	offers	a	reader	no	reason	for

suspicion,	but	the	second	should	ring	a	useful	warning

bell	for	most	readers.	This	warning	should	eventually

lead	to	a	revised	specification.

One	of	the	primary	problems	with	informal	specifications

is	that	each	reader	brings	a	somewhat	different

knowledge	and	perspective	to	the	task	of	reading	a

specification.	Introducing	redundancy	can	go	a	long	way

toward	coping	with	this	problem.	For	example,	consider

				static	int	billion	(	)
							//	EFFECTS:	Returns	the	integer	one	billion.
				
				static	int	billion	(	)

							//	EFFECTS:	Returns	the	integer	one	billion,	i.e.,	109.

Both	American	and	British	readers	are	likely	to	find	the

first	specification	perfectly	unambiguous.	Unfortunately,

they	are	also	likely	to	interpret	it	in	completely	different

ways,	for	in	the	United	States,	a	billion	is	10 ,	whereas	in

Britain	it	is	10 .	The	insertion	of	what	an	American

author	might	consider	redundant	information	in	the

second	specification	precludes	any	confusion.

9.3	WHY	SPECIFICATIONS?

9
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Specifications	are	essential	for	achieving	program

modularity.	Abstraction	is	used	to	decompose	a	program

into	modules.	An	abstraction	is	intangible,	though.

Without	some	description,	we	have	no	way	to	know	what

it	is	or	how	to	distinguish	it	from	one	of	its

implementations.	The	specification	provides	this

description.

A	specification	describes	an	agreement	between

providers	and	users	of	a	service.	The	provider	agrees	to

write	a	module	that	belongs	to	the	specificand	set.	The

user	agrees	not	to	rely	on	knowing	which	member	of	this

set	is	provided—that	is,	not	to	assume	anything	except

what	is	stated	by	the	specification.	This	agreement	makes

it	possible	to	separate	consideration	of	the

implementation	from	the	use	of	a	program	unit.

Specifications	provide	the	logical	firewalls	that	permit

divide-and-conquer	to	succeed.

Specifications	are	obviously	useful	for	program

documentation.	The	very	act	of	writing	a	specification	is

also	beneficial	because	it	sheds	light	on	the	abstraction

being	specified.	Our	experience	is	that	we	often	profit	as

much	from	this	activity	as	from	our	use	of	the	result.

Writing	a	specification	almost	always	teaches	us

something	important	about	the	specificand	set	being

described.	It	does	this	by	encouraging	prompt	attention

to	inconsistencies,	incompleteness,	and	ambiguities.	In

some	cases,	such	improved	understanding	is	the	most

important	result	of	a	specification	effort.

The	goal	is	to	write	specifications	that	are	both	restrictive

enough	and	general	enough.	Thus,	we	pay	special

attention	to	requirements,	exceptions,	and	boundary

conditions.	Doing	this	involves	posing	questions	about

the	behavior	of	the	abstractions,	questions	like	those

posed	about	indexString—for	example,	what	to	do	if
either	string	is	empty.	The	point	is	that	posing	and

answering	such	questions	forces	us	to	think	carefully

about	an	abstraction	and	its	intended	use.

The	construction	of	a	specification	focuses	attention	on

what	is	required	of	a	program.	It	serves	as	a	mechanism



for	generating	questions	that	should	be	answered	in

consultation	with	users	of	a	program	or	a	module,	rather

than	by	implementors.	By	encouraging	the	asking	of

these	questions	in	the	early	stages	of	system

development,	specification	helps	us	debug	our

understanding	of	a	system’s	requirements	and	design

before	we	start	implementation.

As	we	shall	discuss	in	later	chapters,	specifications

should	be	written	as	soon	as	the	decisions	they	record

have	been	made.	Since	specifications	become	irrelevant

only	when	their	abstraction	is	obsolete,	they	should

continue	to	evolve	as	long	as	the	program	evolves.	It	is	a

serious	mistake	to	treat	the	process	of	writing

specifications	as	a	separate	phase	of	a	software	project.

Once	written,	specifications	can	serve	many	different

purposes.	They	are	helpful	to	designers,	implementors,

and	maintainers	alike.	During	the	implementation	phase

of	the	software	life	cycle,	the	presence	of	a	good

specification	helps	both	those	implementing	the	specified

module	and	those	implementing	modules	that	use	it.	As

discussed	previously,	a	good	specification	strikes	a

careful	balance	between	restrictiveness	and	generality.	It

tells	the	implementor	what	service	to	provide	but	does

not	place	any	unnecessary	constraints	on	how	that

service	is	provided.	In	this	way,	it	allows	the	implementor

as	much	flexibility	as	is	consistent	with	the	needs	of

users.	Of	course,	specifications	are	crucial	for	users,	who

otherwise	would	have	no	way	to	know	what	they	can	rely

on	in	implementing	their	modules.	Without

specifications,	all	that	exists	is	the	code,	and	it	is	unclear

how	much	of	that	code	will	remain	unchanged	over	time.

During	testing,	specifications	provide	information	that

can	be	used	in	generating	test	data	and	in	building	stubs

that	simulate	the	specified	module.	(We	will	discuss	this

use	in	Chapter	10.)	During	the	system-integration	phase,

the	existence	of	good	specifications	can	reduce	the

number	and	severity	of	interfacing	problems	by	reducing

the	number	of	implicit	assumptions	about	module

interfaces.	When	an	error	does	appear,	specifications	can

be	used	to	pinpoint	where	the	fault	lies.	Moreover,	they



define	the	constraints	that	must	be	observed	in	correcting

the	error,	which	helps	us	avoid	introducing	new	errors

while	correcting	old	ones.

Finally,	a	specification	can	be	a	helpful	maintenance	tool.

The	existence	of	clear	and	accurate	documentation	is	a

prerequisite	for	efficient	and	effective	maintenance.	We

need	to	know	what	each	module	does	and,	if	it	is	at	all

complex,	how	it	does	it.	All	too	often,	these	two	aspects	of

documentation	are	intimately	intertwined.	The	use	of

specifications	as	documentation	helps	to	keep	them

separate	and	makes	it	easier	to	see	the	ramifications	of

proposed	modifications.	For	example,	a	proposed

modification	that	requires	us	only	to	reimplement	a

single	abstraction	without	changing	its	specification	has	a

much	smaller	impact	than	one	that	changes	the

specification	as	well.

Sidebar	9.3	summarizes	the	value	of	specifications.

9.4	SUMMARY

This	chapter	has	discussed	specifications	and	offered

criteria	to	follow	in	writing	them.	We	defined	the

meaning	of	a	specification	to	be	the	set	of	all	program

modules	that	satisfy	it.	This	definition	captures	the

intuitive	purpose	of	a	specification—namely,	to	state	what

all	legal	implementations	of	an	abstraction	have	in

common.	Such	a	specification	tells	users	what	they	can

rely	on	and	tells	implementors	what	they	must	provide.

Sidebar	9.3	Benefits	of	Specifications

An	abstraction	is	intangible;	without	a	description,	it	has	no	meaning.	The	specification
provides	this	description.

Writing	a	specification	sheds	light	on	the	abstraction	being	defined,	encouraging	prompt
attention	to	inconsistencies,	incompleteness,	and	ambiguities.	It	forces	us	to	pay	careful
attention	to	the	abstraction	and	its	intended	use.

A	specification	defines	a	contract	between	users	and	implementors:	implementors	agree	to
provide	an	implementation	that	satisfies	the	specification,	and	users	agree	to	rely	on	not
knowing	which	member	of	the	specificand	set	is	provided.

Good	specifications	should	be	restrictive,	general,	and

clear.	Restrictiveness	and	generality	involve	the	set	of

modules	that	satisfy	the	specification:	no

implementations	that	would	be	unacceptable	to	users	of

•	

•	

•	



an	abstraction	should	be	permitted,	and	desirable

implementations	(ones	that	are	efficient	or	elegant,	for

example)	should	not	be	ruled	out.	Generality	is	made

easier	when	specifications	are	written	using	a	definitional

approach,	which	just	states	properties	of	the	specificand

set.	An	operational	approach,	which	explains	a	way	to

implement	the	abstraction,	tends	to	yield	specifications

that	are	too	restrictive.

Clarity	refers	to	the	ease	with	which	users	understand	the

specification.	The	main	way	to	enhance	clarity	is	to	start

with	a	concise	statement	and	then	add	some	redundancy,

often	in	the	form	of	an	example.	Redundancy	allows

readers	to	check	their	understanding	of	the	specification.

It	also	makes	errors	more	evident,	since	these	often	show

up	as	inconsistencies	in	the	redundant	descriptions.	To

make	the	reader’s	job	as	simple	as	possible,	all	redundant

information	should	be	clearly	marked	as	such.

Specifications	have	two	main	uses.	First,	the	act	of

writing	a	specification	sheds	light	on	the	abstraction

being	specified	by	focusing	attention	on	the	properties	of

that	abstraction.	This	use	can	be	enhanced	by	careful

attention	to	properties	that	might	be	overlooked,

including	what	should	be	stated	in	the	requires	clause,

exactly	when	exceptions	should	be	signaled,	and	the

treatment	of	boundary	cases.	This	use	is	sometimes	the

main	benefit	of	a	specification	because	it	points	out	a

problem	with	the	abstraction	that	requires	further	study.

The	second	use	is	as	documentation.	Specifications	are

valuable	during	every	phase	of	software	development,

from	design	to	maintenance.	Of	course,	they	are	not	the

only	program	documentation	required.	A	specification

describes	what	a	module	does,	but	any	module	whose

implementation	is	clever	should	also	have	documentation

that	explains	how	it	works.	Program	modification	and

maintenance	are	eased	if	these	two	forms	of

documentation	are	clearly	distinguished.

A	specification	is	the	only	tangible	record	of	an

abstraction.	Specifications	are	a	crucial	part	of	our

methodology,	since	without	them	abstractions	would	be



too	imprecise	to	be	useful.	We	shall	continue	to

emphasize	them	in	the	chapters	that	follow.

EXERCISES

9.1	Provide	a	concise	but	readable	specification	of	an

IntBag	abstraction,	with	operations	to	create	an
empty	bag,	insert	and	remove	an	element,	test	an

element	for	membership,	give	the	size	of	the	bag,	give

the	number	of	times	an	element	occurs	in	a	bag,	and

produce	the	elements	of	the	bag.

9.2	Take	a	specification	you	have	given	for	a	problem	in

an	earlier	chapter	and	discuss	its	restrictiveness,

generality,	and	clarity.

9.3	Is	it	meaningful	to	ask	whether	a	specification	is

correct?	Explain.

9.4	Discuss	how	specifications	can	be	used	during	system

integration.

9.5	Discuss	the	relationship	between	an	abstraction,	its

specification,	and	its	implementation.



10	Testing	and	Debugging

So	far	we	have	talked	a	bit	about	program	design	and

quite	a	lot	about	program	specification	and

implementation.	We	now	turn	to	the	related	issues	of

ascertaining	whether	or	not	a	program	works	as	we	hope

it	will	and	discovering	why	not	when	it	does	not.

We	use	the	word	validation	to	refer	to	a	process	designed

to	increase	our	confidence	that	a	program	will	function	as

we	intend	it	to.	We	do	validation	most	commonly	through

a	combination	of	testing	and	some	form	of	reasoning

about	why	we	believe	the	program	to	be	correct.	We	shall

use	the	term	debugging	to	refer	to	the	process	of

ascertaining	why	a	program	is	not	functioning	properly

and	defensive	programming	to	refer	to	the	practice	of

writing	programs	in	a	way	designed	specifically	to	ease

the	process	of	validation	and	debugging.

Before	we	can	say	much	about	how	to	validate	a	program,

we	need	to	discuss	what	we	hope	to	accomplish	by	that

process.	The	most	desirable	outcome	would	be	an

ironclad	guarantee	that	all	users	of	the	program	will	be

happy	at	all	times	with	all	aspects	of	its	behavior.	This	is

not	an	attainable	goal.	Such	a	guarantee	presumes	an

ability	to	know	exactly	what	it	would	mean	to	make	all

users	happy.	The	best	result	we	can	hope	for	is	a

guarantee	that	a	program	satisfies	its	specification.

Experience	indicates	that	even	this	modest	goal	can	be

difficult	to	attain.	Most	of	the	time,	we	settle	for	doing

things	to	increase	our	confidence	that	a	program	meets

its	specification.

Sidebar	10.1	Validation

Validation	is	a	process	designed	to	increase	our	confidence	that	a	program	works	as	intended.
It	can	be	done	through	verification	or	testing.

Verification	is	a	formal	or	informal	argument	that	a	program	works	on	all	possible	inputs.

Testing	is	the	process	of	running	a	program	on	a	set	of	test	cases	and	comparing	the	actual
results	with	expected	results.

There	are	two	ways	to	go	about	validation.	We	can	argue

•	

•	

•	



that	the	program	will	work	on	all	possible	inputs.	This

activity	must	involve	careful	reasoning	about	the	text	of

the	program	and	is	generally	referred	to	as	verification.

Formal	program	verification	is	generally	too	tedious	to	do

successfully	without	machine	aids,	and	only	relatively

primitive	aids	exist	today.	Therefore,	most	program

verification	is	still	rather	informal.	Even	informal

verification,	however,	can	be	a	difficult	process.

The	alternative	to	verification	is	testing.	We	can	easily	be

convinced	that	a	program	works	on	some	set	of	inputs

merely	by	running	it	on	each	member	of	the	set	and

checking	the	results.	If	the	set	of	possible	inputs	is	small,

exhaustive	testing	(checking	every	input)	is	possible.	For

most	programs,	however,	the	set	of	possible	inputs	is	so

large	(indeed,	it	is	often	infinite)	that	exhaustive	testing	is

impossible.	Nevertheless,	a	carefully	chosen	set	of	test

cases	can	greatly	increase	our	confidence	that	the

program	works	as	specified.	If	well	done,	testing	can

detect	most	of	the	errors	in	programs.

In	this	chapter,	we	focus	on	testing	as	a	method	of

validating	programs.	We	discuss	how	to	select	test	cases

and	how	to	organize	the	testing	process.	We	also	discuss

debugging	and	defensive	programming.	Sidebar	10.1

summarizes	the	remarks	on	validation.

10.1	TESTING

Testing	is	the	process	of	executing	a	program	on	a	set	of

test	cases	and	comparing	the	actual	results	with	the

expected	results.	Its	purpose	is	to	reveal	the	existence	of

errors.	Testing	does	not	pinpoint	the	location	of	errors,

however;	this	is	done	through	debugging.	When	we	test	a

program,	we	examine	the	relationship	between	its	inputs

and	outputs.	When	we	debug	a	program,	we	worry	about

this	relationship	but	also	pay	close	attention	to	the

intermediate	states	of	the	computation.

The	key	to	successful	testing	is	choosing	the	proper	test

data.	As	mentioned	earlier,	exhaustive	testing	is

impossible	for	almost	all	programs.	For	example,	if	a

program	has	three	integer	inputs,	each	of	which	ranges



over	the	values	1	to	1,000,	exhaustive	testing	would

require	running	the	program	one	billion	times.	If	each

run	took	one	second,	this	would	take	slightly	more	than

31	years.

Faced	with	the	impossibility	of	exhausting	the	input

space,	what	do	we	do?	Our	goal	must	be	to	find	a

reasonably	small	set	of	tests	that	will	allow	us	to

approximate	the	information	we	would	have	obtained

through	exhaustive	testing.	For	example,	suppose	a

program	accepts	a	single	integer	as	its	argument	and

happens	to	work	in	one	way	on	all	odd	integers	and	in	a

second	way	on	all	even	ones;	in	this	case,	testing	it	on	any

even	integer,	any	odd	integer,	and	zero	is	a	pretty	good

approximation	to	exhaustive	testing.

10.1.1	Black-Box	Testing

Test	cases	are	generated	by	considering	both	the

specification	and	the	implementation.	In	black-box

testing,	we	generate	test	data	from	the	specification

alone,	without	regard	for	the	internal	structure	of	the

module	being	tested.	This	approach,	which	is	common

across	many	engineering	disciplines,	has	several

significant	advantages.	The	most	important	advantage	is

that	the	testing	procedure	is	not	adversely	influenced	by

the	component	being	tested.	For	example,	suppose	the

author	of	a	program	made	the	implicit	invalid

assumption	that	the	program	would	never	be	called	with

a	certain	class	of	inputs.	Acting	upon	this	assumption,	the

author	might	fail	to	include	any	code	dealing	with	that

class.	If	test	data	were	generated	by	examining	the

program,	one	might	easily	be	misled	into	generating	data

based	upon	the	invalid	assumption.	A	second	advantage

of	black-box	testing	is	that	it	is	robust	with	respect	to

changes	in	the	implementation.	Black-box	test	data	need

not	be	changed	even	when	major	changes	are	made	to	the

program	being	tested.	A	final	advantage	is	that	the	results

of	a	test	can	be	interpreted	by	people	unfamiliar	with	the

internals	of	the	program	being	tested.

Testing	Paths	through	the	Specification

A	good	way	to	generate	black-box	test	data	is	to	explore



alternate	paths	through	the	specification.	These	paths	can

be	through	both	the	requires	and	effects	clauses.	As	an

example	of	a	path	through	the	requires	clause,	consider

the	specification

				static	float	sqrt	(float	x,	float	epsilon)
							//	REQUIRES:	x	>=	0	&&	.00001	<	epsilon	<	.001
							//	EFFECTS:	Returns	sq	such	that	x	-	epsilon	<=	sq*sq	<=	x	+	epsilon.

The	requires	clause	of	this	specification	is	the

conjunction	of	two	terms:

1.			x	≥	0
2.			.00001	<	epsilon	<	.001

To	explore	the	distinct	ways	in	which	the	requires	clause

might	be	satisfied,	we	must	explore	the	pairwise

combinations	of	the	ways	each	conjunct	might	be

satisfied.	Since	the	first	conjunct	is	a	disjunct	of	two

primitive	terms	(x	≥	0	is	just	a	shorthand	for	x	=	0	|	x	>
0),	it	can	be	satisfied	in	one	of	two	ways.	This	leaves	us

with	two	interesting	ways	to	satisfy	the	requires	clause:

1.			x	=	0	and	.00001	<	epsilon	<	.001
2.			x	>	0	and	.00001	<	epsilon	>	.001

Any	set	of	test	data	for	sqrt	should	certainly	test	each	of
these	cases.

It	can	be	difficult	to	formulate	test	data	that	explore

many	different	paths	through	the	effects	clause	of	the

specification.	It	may	be	difficult	even	to	know	which

paths	can	be	explored.	For	example,	given	the	preceding

specification	of	sqrt,	we	might	expect	the	program
sometimes	to	return	an	exact	result,	sometimes	a	result	a

little	less	than	the	square	root,	and	sometimes	a	result	a

little	greater.	However,	a	program	that	always	returned	a

result	greater	than	or	equal	to	the	actual	square	root

would	be	a	perfectly	acceptable	implementation.	We

would	not	be	able	to	find	test	data	that	forced	this

program	to	return	a	result	less	than	the	square	root,	but

we	could	not	know	this	without	examining	the	code.	In

fact,	without	examining	the	code,	we	would	have	no	idea

which	classes	of	inputs	would	lead	to	results	in	the	three

categories.



Nevertheless,	we	should	always	examine	the	effects

clause	carefully	and	try	to	find	test	data	that	exercise

different	ways	to	satisfy	it.	For	example,	consider	the

following	procedure

				static	boolean	isPrime	(int	x)
							//	EFFECTS:	If	x	is	a	prime	returns	true	else	returns	false.

The	effects	clause	of	this	specification	is	a	disjunction:

either	x	is	in	a	prime,	or	it	is	not.	Both	conjuncts	should
be	tested	by	the	test	cases.

Often	paths	through	the	effects	clause	pertain	to	error

handling.	Failing	to	signal	an	exception	when	called	with

exceptional	input	is	just	as	serious	as	failing	to	do	the

proper	thing	with	normal	input.	Therefore,	the	test	data

should	cause	every	possible	signal	to	be	raised.	For

example,	consider	the	specification

				static	int	search	(int[	]	a,	int	x)
													throws	NotFoundException,	NullPointerException
							//	EFFECTS:	If	a	is	null	throws	NullPointerException	else	if	x	is
	in	a,
							//		returns	i	such	that	a[i]	=	x,	else	throws	NotFoundException.

Here	we	must	include	tests	for	both	the	case	in	which	x	is
in	a	and	the	case	in	which	it	is	not,	as	well	as	for	the	case
when	a	is	null.	Similarly,	if	sqrt	signaled	exceptions
rather	than	having	a	requires	clause,	we	would	want	to

include	test	data	that	should	cause	the	exceptions.

Testing	Boundary	Conditions

A	program	should	always	be	tested	on	“typical”	input

values—for	example,	an	array	or	a	set	containing	several

elements,	or	an	integer	between	the	smallest	and	largest

values	expected	by	a	program.	It	is	also	important	to	test

atypical	inputs,	though;	these	tend	to	show	up	as

boundary	conditions.

Considering	all	paths	through	the	requires	clause	tests

certain	kinds	of	boundary	conditions—for	example,	the

case	in	which	sqrt	is	asked	to	find	the	square	root	of
zero.	A	lot	of	boundary	conditions,	however,	do	not

emerge	from	such	analysis.	It	is	important	to	check	as

many	boundary	conditions	as	possible.	Such	checks	catch



two	common	kind	of	errors:

1.	Logical	errors,	in	which	a	path	to	handle	a	special	case

presented	by	a	boundary	condition	is	omitted

2.	Failure	to	check	for	conditions	that	may	cause	the

underlying	language	or	hardware	system	to	raise	an

exception	(for	example,	arithmetic	overflow)

To	generate	tests	designed	to	detect	the	latter	kind	of

error,	it	is	a	good	idea	to	use	test	data	that	cover	all

combinations	of	the	largest	and	smallest	allowable	values

for	all	bounded	numerical	arguments.	For	example,	tests

for	sqrt	should	include	cases	for	epsilon	very	close	to
.001	and	.00001.	For	strings,	tests	should	include	the

empty	string	and	a	one-character	string;	for	arrays,	we

should	test	the	empty	array	and	a	one-element	array.

Aliasing	Errors

Another	kind	of	boundary	condition	occurs	when	two

different	formals	both	refer	to	the	same	mutable	object.

For	example,	suppose	procedure

	static	void	appendVector	(Vector	v1,	Vector	v2)
										throws	NullPointerException
						//	MODIFIES:	v1	and	v2
						//	EFFECTS:	If	v1	or	v2	is	null	throws	NullPointerException	else
						//					removes	all	elements	of	v2	and	appends	them	in	reverse	orde
r
						//					to	the	end	of	v1.

were	implemented	by

	static	void	appendVector	(Vector	v1,	Vector	v2)	{
				if	(v1	==	null)	throws	new	NullPointerException
							("Vectors.appendVector");
				while	(v2.size(	)	>	0)	{
						v1.addElement(v2.lastElement(	));
						v2.removeElementAt(v2.size(	)	-	1);	}
}

Any	test	data	that	did	not	include	an	input	in	which	v1
and	v2	refer	to	the	same	nonempty	array	would	fail	to
turn	up	a	very	serious	error	in	appendVector.

Sidebar	10.2	summarizes	black-box	testing.

Sidebar	10.2	Black-Box	Testing

Black-box	tests	are	based	on	a	program’s	specification,	not	its	implementation.	Therefore,	they
continue	to	be	useful	even	if	the	program	is	reimplemented.

•	



Black-box	tests	should	test	all	paths	through	the	specification,	if	possible.	In	addition,	they
should	test	boundary	conditions	and	check	for	aliasing	errors.

10.1.2	Glass-Box	Testing

While	black-box	testing	is	generally	the	best	place	to	start

when	attempting	to	test	a	program	thoroughly,	it	is	rarely

sufficient.	Without	looking	at	the	internal	structure	of	a

program,	it	is	impossible	to	know	which	test	cases	are

likely	to	give	new	information.	It	is	therefore	impossible

to	tell	how	much	coverage	we	get	from	a	set	of	black-box

test	data.	For	example,	suppose	a	program	relies	on	table

lookup	for	some	inputs	and	computation	for	others.	If	the

black-box	test	data	happened	to	include	only	those	values

for	which	table	lookup	is	used,	the	tests	would	give	no

information	about	the	part	of	the	program	that	computed

values.

Therefore,	it	is	necessary	to	also	do	glass-box	testing	in

which	the	code	of	the	program	being	tested	is	taken	into

account.	The	glass-box	test	should	supplement	black-box

testing	with	inputs	that	exercise	the	different	paths

through	the	program.	The	goal	here	is	to	have	a	test	set

such	that	each	path	is	exercised	by	at	least	one	member	of

the	set.	We	say	that	such	a	test	set	is	path-complete.

Consider	the	program

			static	int	maxOfThree	(int	x,	int	y,	int	z)	{
					if	(x	>	y)
								if	(x	>	z)	return	x;	else	return	z;
					if	(y	>	z)	return	y;	else	return	z;	}

Despite	the	fact	that	there	are	n	 	inputs,	where	n	is	the

range	of	integers	allowed	by	the	programming	language,

there	are	only	four	paths	through	the	program.	Therefore

the	path-complete	property	leads	us	to	partition	the	test

data	into	four	classes.	In	one	class,	x	is	greater	than	y	and
z.	In	another,	x	is	greater	than	y	but	smaller	than	z,	and
so	forth.	Representatives	of	the	four	classes	are

		3,	2,	1				3,	2,	4				1,	2,	1				1,	2,	3

It	is	easy	to	show	that	path-completeness	is	not	sufficient

to	catch	all	errors.	Consider	the	program

		static	int	maxOfThree	(int	x,	int	y,	int	z)	{

•	
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				return	x;	}

The	test	set	containing	just	the	input

		2,	1,	1

Figure	10.1	A	program	with	many	paths

			j	=	k;
			for	(int	i	=	1;	i	<=	100;	i++)
							if	(Tests.pred(i*j))	j++;

is	path-complete	for	this	program.	Using	this	test	might

mislead	us	into	believing	that	our	program	was	correct,

since	the	test	would	certainly	fail	to	uncover	any	error.

The	problem	is	that	a	testing	strategy	based	on	exercising

all	paths	through	a	program	is	not	likely	to	reveal	the

existence	of	missing	paths,	and	omitting	a	path	is	a	fairly

common	programming	error.	This	problem	is	a	specific

instance	of	the	general	fact	mentioned	earlier:	no	set	of

test	data	based	solely	upon	analysis	of	the	program	text	is

going	to	be	sufficient.	One	must	always	take	the

specification	into	account.

Another	potential	problem	with	a	testing	strategy	based

upon	selecting	path-complete	test	data	is	that	there	are

often	too	many	different	paths	through	a	program	to

make	that	practical.	Consider	the	program	fragment	in

Figure	10.1.	There	are	2 	different	paths	through	this

program,	as	can	be	seen	from	the	following	analysis.	The

if	statement	causes	either	the	true	or	the	false	branch	to
be	taken,	and	both	of	these	paths	go	on	to	the	next

iteration	of	the	loop.	Thus,	for	each	path	entering	the	i	

iteration,	there	are	two	paths	entering	the	(i	+	1)st

iteration.	Since	there	is	one	path	entering	the	first

iteration,	the	number	of	paths	leaving	the	i	 	iteration	is

2 .	Therefore	there	are	2 	paths	leaving	the	100

iteration.

Testing	each	of	2 	paths	is	not	likely	to	be	practical.	In

such	cases,	we	generally	settle	for	an	approximation	to

path-complete	test	data.	The	most	common

approximation	is	based	upon	considering	two	or	more

iterations	through	a	loop	as	equivalent	and	two	or	more

recursive	calls	to	a	procedure	as	equivalent.	To	derive	a
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set	of	test	data	for	the	program	in	Figure	10.1,	for

example,	we	find	a	path-complete	set	of	test	data	for	the

program

			j	=	k;
			for	(int	i	=	1;	i	<=	2;	i++)
						if	(Tests.pred(i*j))	j++;

There	are	only	four	paths	through	this	program.	A	path-

complete	set	of	test	data	would	have	representatives	in

the	following	categories:

1.	pred(k)	and	pred(2k+2)

2.	pred(k)	and	¬pred(2k+2)

3.	¬pred(k)	and	pred(2k)

4.	¬pred(k)	and	¬pred(2k)

To	sum	up,	we	always	include	test	cases	for	each	branch

of	a	conditional.	However,	we	approximate	path-

complete	testing	for	loops	and	recursion	as	follows:

For	loops	with	a	fixed	amount	of	iteration,	as	in	the

example	just	shown,	we	use	two	iterations.	We	choose

to	go	through	the	loop	twice	rather	than	once	because

failing	to	reinitialize	after	the	first	time	through	a	loop

is	a	common	programming	error.	We	also	make

certain	to	include	among	our	tests	all	possible	ways	to

terminate	the	loop.

For	loops	with	a	variable	amount	of	iteration,	we

include	zero,	one,	and	two	iterations,	and	in	addition,

we	include	test	cases	for	all	possible	ways	to	terminate

the	loop.	For	example,	consider

						while	(x	>	0)	{
									//	do	something
									}

With	a	loop	like	this,	it	is	possible	that	no	iterations	will

be	performed.	This	situation	should	always	be	handled	by

the	test	cases	because	not	executing	the	loop	is	another

situation	that	is	likely	to	be	a	source	of	program	error.

For	recursive	procedures,	we	include	test	cases	that

cause	the	procedure	to	return	without	any	recursive

calls	and	test	cases	that	cause	exactly	one	recursive

•	
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call.

This	approximation	to	path-complete	testing	is,	of

course,	far	from	fail-safe.	Like	engineers’	induction	“One,

two,	three—that’s	good	enough	for	me,”	it	frequently

uncovers	errors	but	offers	no	guarantees.

Path-complete	tests	also	need	to	take	exceptions	into

account:	for	each	statement	where	an	exception	could	be

raised,	there	must	be	a	test	for	that	case.	For	example,

consider	the	statement:

			int	x	=	a[0];

where	a	is	an	array	of	ints.	If	this	statement	occurs	in	a
scope	where	a	might	be	empty,	there	should	be	a	test	to
cover	this	case.

Sidebar	10.3	Glass-Box	Testing

Glass-box	tests	take	the	program	text	into	account.

Glass-box	tests	should	supplement	the	black-box	tests	so	that	the	tests	are	path-complete:
every	path	in	the	code	is	exercised	by	at	least	one	test.

For	loops	with	a	fixed	amount	of	iteration,	the	tests	should	include	one	and	two	iterations	of	the
loop.	For	loops	with	a	variable	amount	of	iteration,	the	tests	should	include	zero,	one,	and	two
iterations	of	the	loop.

For	recursion,	the	tests	should	include	no	recursion	and	one	recursive	call.

Sidebar	10.3	summarizes	glass-box	testing.

10.2	Testing	Procedures

To	illustrate	the	testing	of	procedures,	we	consider	a

simple	procedure	for	determining	whether	a	string	is	a

palindrome.	A	palindrome	is	a	string	that	reads	the	same

backward	and	forward	(an	example	is	“deed”).	Figure
10.2	gives	a	specification	and	implementation	of	this

procedure.	By	looking	at	the	specification,	we	can	see	that

we	need	a	test	for	the	null	argument,	plus	tests	that
cause	both	true	and	false	to	be	returned.	In	addition,	we

must	include	the	empty	string	and	the	one-character

string	as	boundary	conditions.	This	might	lead	to	the

strings	“”,	“d”,	“deed”,	and	“ceed”.	Examination	of
the	code	indicates	that	we	should	test	the	following	cases:

1.	NullPointerException	raised	by	call	on	length

2.	Not	executing	the	loop

•	

•	
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3.	Returning	false	in	the	first	iteration

4.	Returning	true	after	the	first	iteration

5.	Returning	false	in	the	second	iteration

6.	Returning	true	after	the	second	iteration.

Cases	1,	2,	3,	4,	and	6	are	covered	already.	For	case	5,	we

might	add	“aaba”.	At	this	point,	we	should	ask	ourselves
whether	we	have	missed	any	case,	and	we	might	notice

that	the	only	test	string	with	an	odd	number	of

Figure	10.2	The	palindrome	procedure

				static	boolean	palindrome	(String	s)	throws	NullPointerException	{
						//	EFFECTS:	If	s	is	null	throws	NullPointerException,	else	returns
						//				true	if	s	reads	the	same	forward	and	backward;	else	returns	
false.
						//					E.g.,	"deed"	and	"	"	are	both	palindromes.
						int	low	=	0;
						int	high	=	s.length(	)	-1;
						while	(high	>	low)	{
								if	(s.charAt(low)	!=	s.charAt(high))	return	false;
								low	++;
								high	--;	}
						return	true;	}

characters	has	just	one	character.	Therefore,	we	should

add	a	number	of	odd-length	test	strings.	Finally,	we

should	arrange	the	test	cases	in	a	sensible	order,	with	the

shortest	first.	Such	an	arrangement	helps	in	finding

errors	(see	Section	10.9).

10.3	Testing	Iterators

Generating	test	cases	for	iterators	is	similar	to	generating

them	for	procedures.	The	only	point	of	interest	is	that

iterators	have	paths	in	their	specifications	that	are	similar

to	those	for	loops.	In	other	words,	we	must	be	sure	to

include	cases	in	which	the	generator	returned	by	the

iterator	produces	exactly	one	result	and	produces	two

results;	and	if	it	is	possible	for	the	generator	to	not

produce	any	results,	we	should	include	a	case	for	that.

For	example,	consider	the	following	iterator:

			Iterator	getPrimes	(int	n)
						//	EFFECTS:	Returns	a	generator	that	produces	all	primes	less	than
					//				or	equal	to	n	(as	Integers);	if	there	are	no	such	primes	(i.e
.,	n	<	2)
				//				the	generator	produces	nothing.

Test	cases	here	could	include	calls	with	n	equal	to	1,	2,
and	3.	Whether	more	tests	are	needed	can	be	determined



by	looking	at	the	iterator’s	implementation.	Here	we	need

to	consider	all	paths	through	the	iterator	itself,	and	also

through	the	generator’s	constructor	and	its	two	methods.

10.4	Testing	Data	Abstractions

In	testing	data	types,	we	generate	test	cases	as	usual	by

considering	the	specifications	and	implementations	of

each	of	the	operations.	We	must	now	test	the	operations

as	a	group	rather	than	individually,	however,	because

some	operations	(the	constructors	and	mutators)

produce	the	objects	that	are	used	in	testing	others.	In	the

IntSet	operations,	for	example,	the	constructor	and	the
insert	and	remove	methods	must	be	used	to	generate
the	arguments	for	the	other	operations	and	for	each

other.	(Part	of	the	specification	for	IntSet	is	repeated	in
Figure	10.3.)	In	addition,	the	observers	are	used	to	test

the	constructors	and	mutators;	for	example,	isIn	and
size	are	used	to	examine	the	sets	produced	by	insert
and	remove.

RepOk	has	a	special	role	in	this	testing:	we	should	call	it
after	each	call	of	an	operation	of	the	data	type	(both

methods	and	constructors).	Of	course,	it	must	return	true

(or	we	have	found	a	bug):	it	isn’t	possible	to	develop	tests

that	will	cause	it	to	return	false	if	the	implementation	is

correct.

We	begin	by	looking	at	paths	in	specifications.	The

specifications	of	isIn	and	elements	have	obvious	paths
to	explore.	For	isIn,	we	must	generate	cases	that
produce	both	true	and	false	as	results.	Because

elements	is	an	iterator,	we	must	look	at	least	at	paths	of
lengths	zero,	one,	and	two.	Therefore,	we	will	need

IntSets	containing	zero,	one,	and	two	elements.	The
empty	IntSet	and	the	one-element	IntSet	also	test
boundary	conditions.	Thus,	to	test	the	observers,	we

might	start	with	the	following	IntSets:

The	empty	IntSet	produced	by	calling	the	IntSet
constructor

The	one-element	IntSet	produced	by	inserting	3	into
the	empty	set

•	

•	



The	two-element	IntSet	produced	by	inserting	3	and
4	into	the	empty	set

For	each,	we	would	do	calls	on	isIn,	size,	and
elements	and	check	the	results.	In	the	case	of	isIn,	we
would	do	calls	in	which	the	element	is	in	the	set	and

others	in	which	it	is	not.

We	obviously	do	not	yet	have	enough	cases.	For	example,

remove	is	not	tested	at	all,	and	paths	in	other
specifications	also	have	not	yet	been	discussed.	These

paths	are	somewhat	hidden	in	our	specifications.	For

example,	the	size	of	an	IntSet	remains	the	same	when
we	insert	an	element	that	is	already	in	the	set,	and	we

must	therefore	look	at	a	case	in	which	we	insert	the	same

element	twice.	Similarly,	the	size	decreases	when	we

remove	an	element	only	if	it	is	in

Figure	10.3	Partial	specification	of	the	IntSet	data
abstraction

			public	class	IntSet	{
						//	OVERVIEW:	IntSets	are	mutable,	unbounded	sets	of	integers.
						//				A	typical	IntSet	is	{x1,..	.,	xn}.

						//	constructors
							public	IntSet	(	)
										//	EFFECTS:	Initializes	this	to	be	empty.

						//	methods
						public	void	insert	(int	x)
								//	MODIFIES:	this
								//	EFFECTS:	Adds	x	to	the	elements	of	this,	i.e.,	this_post	=	this	+	{	x	}.

				public	void	remove	(int	x)
							//	MODIFIES:	this
							//	EFFECTS:	Removes	x	from	this,	i.e.,	this_post	=	this	-	x					.

				public	boolean	isIn	(int	x)
								//	EFFECTS:	If	x	is	in	this	returns	true	else	returns	false.

				public	int	size	(	)
							//	EFFECTS:	Returns	the	cardinality	of	this.

				public	Iterator	elements	(	)
							//	EFFECTS:	Returns	a	generator	that	produces	all	the	elements	of
							//					this	(as	Integers),	each	exactly	once,	in	arbitrary	order.
							//	REQUIRES:	this	must	not	be	modified	while	the	generator	is	in	
use.
}

the	set,	so	that	we	must	look	at	one	case	in	which	we

remove	an	element	after	inserting	it	and	another	in	which

we	remove	an	element	that	is	not	in	the	set.	We	might	use

these	additional	IntSets:

The	set	obtained	by	inserting	3	twice	into	the	empty

•	
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set

The	set	obtained	by	inserting	and	then	removing	3

The	set	obtained	by	inserting	3	and	removing	4

To	find	these	hidden	paths,	we	must	look	explicitly	for

paths	in	the	mutators.	Thus,	insert	must	work	properly
whether	or	not	the	element	being	inserted	is	already	in

the	set,	and	similarly	for	remove.	This	simple	approach
will	produce	the	three	cases	just	given.

In	addition,	of	course,	we	must	look	for	paths	in	the

implementations	of	the	operations.	The	cases	identified

so	far	provide	quite	good	coverage	for	the

implementation	using	the	vector	with	no	duplicates	(see

Figure	10.4).	One	possible	problem	is	in	isIn,	which
contains	a	loop	(implicitly	via	its	call	to	getIndex).	To
cover	all	paths	in	this	loop,	we	must	test	the	case	of	a	two

Figure	10.4	Partial	implementation	of	IntSet

			public	class	IntSet	{
						private	Vector	els;	//	the	rep

						public	IntSet	(	)	{	els	=	new	Vector(	);	}

						public	void	insert	(int	x)	{
									Integer	y	=	new	Integer(x);
									if	(getIndex(y)	<	0)	els.add(y);	}

						public	void	remove	(int	x)	{
							int	i	<	getIndex(new	Integer(x));
							if	(i	<	0)	return;
							els.set(i,	els.lastElement(	));
							els.remove(els.size(	)	-1);	}

					public	boolean	isIn	(int	x)	{
							return	getIndex(new	Integer(x))	>=	0;	}

					private	int	getIndex	(Integer	x)	{
							//	EFFECTS:	If	x	is	in	this	returns	index	where	x	appears	else	re
turns	-1.
						for	(int	i	=	0;	i	=	els.size(	);	i++)
										if	(x.equals(els.get(i)))	return	i;
						return	-1;	}

					public	int	size	(	)	{	return	els.size(	);	}
}

element	vector	with	either	no	match	or	a	match	with	the

first	or	the	second	element.	(It	is	not	possible	to	find	such

tests	cases	by	considering	only	the	specification.	At	the

level	of	the	specification,	we	are	concerned	only	with

•	
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whether	or	not	the	element	is	in	the	set;	its	position	in	the

vector	is	not	of	interest.)	Similarly,	in	remove,	we	must
be	sure	to	delete	both	the	first	and	second	elements	of	the

vector.

10.5	Testing	Polymorphic	Abstractions

Testing	polymorphic	abstractions	is	similar	to	testing

their	nongeneric	counterparts.	The	only	new	issue	is	how

many	different	types	of	parameters	need	to	be	included	in

the	test.	Just	one	type	per	parameter	is	sufficient	because

the	polymorphic	abstraction	is	independent	of	the

particular	parameter	type	in	use.

When	the	parameterized	abstraction	uses	an	interface	to

express	its	requirements	about	methods	of	parameters,

extra	black-box	tests	will	be	required	to	handle

incompatible	objects.	For	example,	tests	of

OrderedList	(see	Figure	8.5)	would	include	the	case	of
adding	an	element	of	some	type,	say	String,	and	then
later	adding	an	element	of	some	incomparable	type,	say

Integer.

When	the	parameterized	abstraction	uses	the	related

subtype	approach,	it	is	sufficient	to	test	with	one	subtype

of	the	interface	that	expresses	the	requirements,	together

with	the	related	element	type.	Thus	for	SumSet	(see
Figure	8.8),	we	could	test	with	PolyAdder	(see	Figure
8.7)	and	Poly.	In	addition,	we	must	test	calls	whose
arguments	are	not	objects	of	the	related	type;	for

example,	the	case	of	attempting	to	insert	a	String	in	a
SumSet	that	uses	a	PolyAdder.

10.6	Testing	a	Type	Hierarchy

When	there	is	a	type	hierarchy,	the	black-box	tests	for	a

subtype	must	include	those	for	the	supertype.	The

general	approach	is	to	test	the	subtype	using	the

following:

Black-box	tests	of	its	supertype	augmented	by	calls	to

subtype	constructors

Additional	black-box	tests	for	the	subtype

Glass-box	tests	for	the	subtype

The	black-box	supertype	tests	must	be	based	on	calls	to

•	
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subtype	constructors	so	that	the	tests	run	for	subtype

objects.	In	fact,	some	supertypes	(those	defined	by

interfaces	and	abstract	classes)	have	no	constructors,	and

their	tests	are	simply	templates,	where	the	calls	to

constructors	must	be	filled	in.

For	example,	there	would	be	three	tests	for	Iterator:
for	the	cases	where	hasNext	returns	false	immediately,
or	returns	false	after	the	first	iteration,	or	returns	false

after	the	second	iteration.	Each	test	would	check	that

hasNext	returns	the	expected	result,	and	that	next
behaves	consistently	with	hasNext.	To	test	a	particular
subtype,	we	would	create	a	subtype	object	as	the	first	part

of	each	test	case.	Thus,	to	test	a	specific	iterator,	there

would	be	a	call	that	creates	an	empty	generator	for	the

first	case,	a	call	that	returns	a	generator	that	produces

just	one	item	for	the	second	case,	and	a	call	that	returns	a

generator	that	produces	two	items	for	the	third	case.	Of

course,	it	may	not	be	possible	to	run	all	tests	for	some

subtypes.	For	example,	for	allPrimes	it	isn’t	possible	to
get	hasNext	to	return	false!	Therefore,	the	supertype
tests	may	need	to	be	pruned	to	remove	cases	that	cannot

occur.

In	addition,	there	will	be	extra	black-box	tests	for	the

subtype.	These	will,	of	course,	be	based	on	all	the	subtype

constructors.

There	are	two	sources	for	these	tests.	First,	there	must	be

tests	for	any	inherited	methods	whose	specifications	have

changed.	If	the	subtype	method	has	a	weaker

precondition,	its	black-box	tests	will	include	the	cases

that	are	allowed	by	its	precondition	but	not	by	the

supertype’s	method’s	precondition.	Similarly,	if	the

subtype	method	has	a	stronger	postcondition,	its	tests

will	need	to	check	the	extra	cases.	For	example,	the	tests

for	the	elements	iterator	for	SortedIntSet	(see
Figures	7.7	and	7.9)	must	check	that	the	elements	are

produced	in	sorted	order.	Or,	for	the	generator	returned

by	allPrimes,	we	would	want	to	check	that	it	really
produces	primes	and	does	not	skip	any	primes.

Second,	there	must	be	tests	for	the	extra	methods.	Here



we	are	interested	in	two	things:	how	the	extra	methods

interact	with	the	supertype	methods,	and	the	effect	of	the

extra	methods.	For	example,	for	MaxIntSet	(see	Figures
7.4	and	7.5)	there	would	be	tests	to	ensure	that	max	does
not	modify	the	set	and	also	to	check	that	max	returns	the
proper	result.

The	subtype	will	also	have	its	own	glass-box	tests.	But

note	that	it	is	not	necessary	to	test	a	subtype	using	the

glass-box	tests	for	its	superclass.

When	the	supertype	is	defined	by	a	concrete	class,	it	will

be	tested	in	the	normal	way,	and	when	it	is	defined	by	an

interface,	it	won’t	be	tested	at	all	(since	it	has	no	code).	A

supertype	defined	by	an	abstract	class	has	some	code,

and	therefore	it	has	glass-box	tests.	We	would	like	to	test

the	abstract	class	so	that	we	can	ignore	its	glass-box	tests

later	when	we	test	its	subclasses.	However,	the	test	can

only	be	done	by	providing	a	concrete	subclass!	This

subclass	might	be	one	that	you	actually	intend	to

implement,	or	it	might	be	a	“stub”—that	is,	a	very	simple

implementation	of	a	subclass.	The	implementation	must

be	complete	enough	that	all	tests	of	the	superclass,	both

black-box	and	glass-box,	can	run.	For	example,	to	test	the

abstract	IntSet	class	(see	Figure	7.8),	we	need	to	store
the	elements.	Therefore,	it	may	be	best	to	use	a	real

subclass	to	drive	the	testing	of	the	superclass.

Extra	checking	may	be	needed	when	hierarchy	is	used	to

provide	multiple	implementations	of	a	type.	If	the

subtypes	are	independent	of	one	another,	testing	is

particularly	simple	since	there	are	no	extra	methods	and

the	behavior	of	the	inherited	methods	does	not	change.

But	when	the	subtypes	are	not	independent,	we	need	to

either	test	them	jointly	or	simulate	one	while	testing	the

other.	For	example,	consider	the	dense	and	sparse

implementations	of	Poly	(see	Figures	7.14	and	7.15),	and
suppose	we	want	to	test	DensePoly.	The	problem	is	that
various	DensePoly	methods	make	calls	on	SparsePoly
methods.	We	need	to	handle	those	calls	somehow.

Furthermore,	extra	black-box	tests	come	up,	concerning

whether	the	right	choice	of	representation	(sparse	or



dense)	is	occurring	each	time	a	new	Poly	is	created	(e.g.,
in	the	add	method).	These	are	black-box	rather	than
glass-box	tests	because	the	criteria	for	the	choice	is	part

of	the	specification	of	the	subtypes.

Sidebar	10.4	summarizes	testing	for	a	type	hierarchy.

10.7	Unit	and	Integration	Testing

Testing	typically	occurs	in	two	phases.	During	unit

testing,	we	attempt	to	convince	ourselves	that	each

individual	module	functions	properly	in	isolation.	During

integration	testing,	we	attempt	to	convince	ourselves

that	when	all	the	modules	are	put	together,	the	entire

program	functions	properly.

Integration	testing	is	generally	more	difficult	than	unit

testing.	First,	the	intended	behavior	of	an	entire	program

is	often	much	harder	to	characterize	than	the	intended

behavior	of	its	parts.	Second,	problems	of	scale	tend	to

arise	in	integration	testing	that	do	not	arise	in	unit

testing;	for	example,	it	may	take	much	longer	to	run	a

test.	Finally,	specifications	play	rather	different	roles	in

the	two	kinds	of	validation.

Sidebar	10.4	Testing	a	Hierarchy

Subtypes	must	be	tested	using	both	the	black-box	tests	of	their	supertypes	and	their	own
black-box	tests.	Their	supertype	tests	must	make	use	of	subtype	constructors.

The	additional	subtype	black-box	tests	cover	the	extra	methods	and	any	changed	behavior	for
the	inherited	methods.

Glass-box	tests	for	superclasses	need	not	be	used	when	testing	subclasses.

Testing	an	abstract	class	requires	a	concrete	subclass.	The	pair	is	tested	using	black-box	tests
for	both	sub-	and	supertype,	and	also	glass-box	tests	for	both	sub-	and	superclass.

Testing	a	hierarchy	that	provides	multiple	implementations	for	a	supertype	may	require	testing
the	subtypes	jointly	and	adding	black-box	tests	to	establish	that	the	proper	subtype	is	chosen
for	various	objects.

The	acceptance	of	the	specification	as	a	given	is	a	key

factor	that	distinguishes	unit	testing	from	integration

testing.	During	unit	testing,	when	a	module	fails	to	meet

its	specification,	we	generally	conclude	that	it	is	incorrect.

When	validating	a	whole	program,	we	must	accept	the

fact	that	the	most	serious	errors	are	often	errors	of

specification.	In	these	cases,	each	unit	does	what	it	is

supposed	to,	but	the	program	as	a	whole	does	not.	A

prime	cause	of	this	kind	of	problem	is	ambiguous
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specifications.	When	this	occurs,	a	module	may	perform

as	expected	by	those	doing	its	unit	testing	while	failing	to

meet	the	expectations	of	those	writing	some	of	the

modules	that	call	it.	This	makes	errors	detected	during

integration	testing	particularly	difficult	to	isolate.

Consider	a	program	implemented	by	module	P,	which

calls	module	Q.	During	unit	testing,	P	and	Q	are	tested

individually.	(To	test	either	individually,	it	is	necessary	to

simulate	the	behavior	of	the	other,	as	will	be	discussed	in

Section	10.8.)	When	each	of	them	has	run	correctly	on	its

own	test	cases,	we	test	them	together	to	see	whether	they

jointly	conform	to	P’s	specification.	In	doing	this	joint

test,	we	use	P’s	test	cases.	Now	suppose	that	an	error	is

discovered.	The	following	are	the	possibilities:

Q	is	being	tested	on	an	input	that	was	not	covered	in

its	test	cases.

Q	does	not	behave	as	was	assumed	in	testing	P.

It	is	tempting	when	dealing	with	multiple	modules	like	P

and	Q	to	test	them	jointly	rather	than	to	do	unit	tests	for

each	first.	Such	joint	tests	are	sometimes	a	reasonable

approach,	but	unit	testing	is	usually	better.	For	example,

to	test	the	program	shown	in	Figure	10.1,	we	care	only

that	each	of	the	four	paths	be	covered;	the	various	ways

in	which	pred	produces	its	results	are	not	of	concern.
However,	testing	pred	thoroughly	probably	involves
many	test	cases.	Combining	all	these	test	cases	has	many

disadvantages:	more	tests	must	be	run,	tests	may	take

longer	to	run,	and	if	either	of	these	modules	is

reimplemented,	we	shall	have	to	rethink	the	whole	set	of

test	cases.	Testing	each	module	individually	is	more

efficient.

10.8	Tools	for	Testing

It	is	useful	to	automate	as	much	of	the	testing	process	as

possible.	We	usually	cannot	automate	the	generation	of

test	data;	generating	appropriate	inputs	for	testing	a

program	is	a	nonalgorithmic	process	requiring	serious

thought.	Furthermore,	to	automate	the	process	of

deciding	what	outputs	are	appropriate	for	any	set	of

inputs	is	often	as	difficult	and	error	prone	as	writing	the
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program	being	tested.

What	we	can	automate	are	the	processes	of	invoking	a

program	with	a	predefined	sequence	of	inputs	and

checking	the	results	with	a	predefined	sequence	of	tests

for	the	acceptability	of	outputs.	A	mechanism	that	does

this	is	called	a	test	driver.	A	driver	should	call	the	unit

being	tested	and	keep	track	of	how	it	performs.	More

specifically,	it	should

1.	Set	up	the	environment	needed	to	call	the	unit	being

tested.	In	some	languages,	this	may	involve	creating

and	initializing	certain	global	variables.	In	most

languages,	it	may	involve	setting	up	and	perhaps

opening	some	files.

2.	Make	a	series	of	calls.	The	arguments	for	these	calls

could	be	read	from	a	file	or	embedded	in	the	code	of

the	driver.	If	arguments	are	read	from	a	file,	they

should	be	checked	for	appropriateness,	if	possible.

3.	Save	the	results	and	check	their	appropriateness.

Figure	10.5	Driver	for	sqrt

			//	accept	as	inputs	the	files:
		//					file_of_tests,	bad_tests,	correct_results,	and	incorrect_results

	for	{	//	each	test	in	file_of_tests
				if	(test.square	<	0	||	test.epsilon	<	.00001	||	test.epsilon	>	.001)	{
						//	add	test	to	bad_tests
				}
				else	{
						result	=	Num.sqrt(test.square,	test.epsilon);
						if	(Num.fabsf(square	-	result*result)	<=	epsilon	)	{
									//	add	<test,	result>	to	correct_results
						}
						else	{
									//	add	<test,	result>	to	incorrect_results
						}
				}
}

The	most	common	way	to	check	the	appropriateness	of

results	is	to	compare	them	to	a	sequence	of	expected

results	that	has	been	stored	in	a	file.	Sometimes,

however,	it	is	better	to	write	a	program	that	compares	the

results	directly	to	the	input.	For	example,	if	a	program	is

supposed	to	find	the	roots	of	a	polynomial,	it	is	easy

enough	to	write	a	driver	that	checks	whether	or	not	the

values	returned	are	indeed	roots.	Similarly,	it	is	easy	to

check	the	results	of	sqrt	by	a	computation.	A	driver	for



testing	an	implementation	of	the	sqrt	specification
given	previously	is	shown	in	Figure	10.5.

In	addition	to	drivers,	testing	often	involves	the	use	of

stubs.	A	driver	simulates	the	parts	of	the	program	that

call	the	unit	being	tested.	Stubs	simulate	the	parts	of	the

program	called	by	the	unit	being	tested.	A	stub	must

1.	Check	the	reasonableness	of	the	environment

provided	by	the	caller.

2.	Check	the	reasonableness	of	the	arguments	passed	by

the	caller.

3.	Modify	arguments	and	the	environment	and	return

values	in	such	a	way	that	the	caller	can	proceed.	It	is

best	if	these	effects	match	the	specification	of	the	unit

the	stub	is	simulating.	Unfortunately,	this	is	not

always	possible.

Sometimes	the	“right”	value	can	be	found	only	by	writing

the	program	the	stub	is	supposed	to	replace.	In	such

cases	we	must	settle	for	a	“reasonable”	value.

(If	all	communication	is	only	via	arguments	and	results,

then	it	is	not	necessary	to	check	or	modify	the

environment.)

Drivers	are	clearly	necessary	when	testing	modules

before	the	modules	that	invoke	them	have	been	written.

Stubs	are	necessary	when	testing	modules	before	the

modules	that	they	invoke	have	been	written.	Both	are

needed	for	unit	testing,	in	which	we	want	to	isolate	the

unit	being	tested	as	much	as	possible	from	the	other	parts

of	the	program.

In	practice,	it	is	common	to	implement	drivers	and	stubs

that	rely	on	interaction	with	a	person.	A	very	simple

implementation	of	a	stub	might	merely	print	out	the

arguments	it	was	called	with	and	ask	the	person	doing

the	testing	to	supply	the	values	that	should	be	returned.

Similarly,	a	simple	driver	might	rely	on	the	person	doing

the	testing	to	verify	the	correctness	of	the	results

returned	by	the	unit	being	tested.	Although	drivers	and

stubs	of	this	nature	are	easy	to	implement,	they	should	be

avoided	whenever	possible.	They	are	far	more	prone	to



error	than	automated	drivers	and	stubs,	and	they	make	it

hard	to	build	up	a	good	database	of	test	data	and	to

reproduce	tests.

The	reproducibility	of	tests	is	particularly	important.	The

following	testing	scenario	is	all	too	typical:

1.	The	program	is	tested	on	inputs	1	through	n	without
uncovering	an	error.

2.	Testing	the	program	on	input	n	+	1	reveals	the
existence	of	an	error.

3.	Debugging	leads	to	a	fix	that	makes	the	program	work

on	input	n	+	1.

4.	Testing	continues	at	input	n	+	2.

This	is	an	unwise	practice,	for	there	is	a	non-negligible

probability	that	the	change	that	made	the	program	work

on	input	n	+	1	will	cause	it	to	fail	on	some	input	between
1	and	n.	Whenever	any	change	is	made,	no	matter	how

small,	it	is	important	to	make	sure	that	the	program	still

passes	all	the	tests	it	used	to	pass.	This	is	called

regression	testing.	Regression	testing	is	practical	only

when	tools	are	available	that	make	it	relatively	easy	to

rerun	old	tests.

It	is	important	to	implement	drivers	and	stubs	with	care.

When	an	error	is	detected,	we	want	it	to	be	in	the	code

being	tested.	If	drivers	and	stubs	are	implemented

carelessly,	however,	they	are	at	least	as	likely	to	contain

errors	as	the	program	being	tested.	In	this	case,	the

programmer	wastes	lots	of	time	testing	and	debugging

the	testing	environment.

Sidebar	10.5	summarizes	the	different	kinds	of	tests.

Sidebar	10.5	Unit,	Integration,	and	Regression	Testing

Unit	testing	tests	a	single	module	in	isolation	of	the	others.	It	requires:

•	A	driver	that	automatically	tests	the	module.
•	Stubs	that	simulate	the	behavior	of	any	modules	used	by	the	module.

Integration	testing	tests	a	group	of	modules	together.

Regression	testing	is	the	rerunning	of	all	tests	after	each	error	is	corrected.

10.9	Debugging

Testing	tells	us	that	something	is	wrong	with	a	program,
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but	knowing	the	symptom	is	a	far	cry	from	knowing	its

cause.	Once	we	know	that	a	problem	exists,	the	tactics	to

be	used	in	locating	and	fixing	the	problem—in	debugging

—are	extremely	important.	The	variance	in	the	efficiency

with	which	people	debug	is	quite	high,	and	we	can	offer

no	magic	nostrums	to	make	debugging	easy.	Most	of

what	we	have	to	say	on	the	subject	is	simple	common

sense.

Debugging	is	the	process	of	understanding	and	correcting

errors.	When	debugging,	we	try	to	narrow	the	scope	of

the	problem	by	looking	for	simple	test	cases	that	manifest

the	bug	and	by	looking	at	intermediate	values	to	locate

the	responsible	region	in	the	code.	As	we	collect	evidence

about	the	bug,	we	formulate	hypotheses	and	attempt	to

refute	them	by	running	further	tests.	When	we	think	we

understand	the	cause	of	the	bug,	we	study	the

appropriate	region	of	code	to	find	and	correct	the	error.

The	word	bug	is	in	many	ways	misleading.	Bugs	do	not

crawl	unbidden	into	programs.	We	put	them	there.	Do

not	think	of	your	program	as	“having	bugs”;	think	of

yourself	as	having	made	a	mistake.	Bugs	do	not	breed	in

programs.	If	a	program	contains	many	bugs,	it	is	because

the	programmer	has	made	many	mistakes.

Always	keep	in	mind	that	debugging	consumes	more	time

than	programming.	It	is	worth	trying	very	hard	to	get

your	program	right	the	first	time.	Read	your	code	very

carefully	and	understand	exactly	why	you	expect	it	to

work	before	you	begin	to	test	it.	No	matter	how	hard	you

try	and	no	matter	how	clever	you	are,	though,	the	odds

against	your	program	working	properly	the	first	time	are

very	long.	Consequently,	you	should	design,	write,	and

document	your	programs	in	ways	that	will	make	them

easier	to	test	and	debug.	The	key	is	making	sure	that	you

have	relatively	small	modules	that	can	be	tested

independently	of	the	rest	of	your	program.	To	a	large

extent,	this	can	be	achieved	by	following	the	design

paradigms	outlined	earlier	in	this	book.	Introduce	data

abstractions	and	associate	with	each	the	most	restrictive

possible	rep	invariant.	Write	careful	specifications	for



each	procedure,	so	that	when	it	comes	time	to	test	it,	you

know	both	what	input	values	it	should	be	prepared	to

deal	with	and	what	it	should	do	in	response	to	each	of	the

possible	inputs.

Just	as	you	need	an	overall	testing	strategy,	you	also	need

a	careful	plan	for	every	debugging	session.	Before

beginning,	decide	exactly	what	you	want	to	accomplish

and	how	you	plan	to	accomplish	it.	Know	what	input	you

are	going	to	give	your	program,	and	exactly	what	you

expect	it	to	do	with	that	input.	If	you	have	not	thought

carefully	about	your	inputs,	you	will	probably	waste	a	lot

of	time	doing	things	that	are	not	likely	to	help	isolate	the

problem.

The	so-called	scientific	method	provides	a	good	paradigm

for	systematic	debugging.	The	following	is	the	crux	of	the

scientific	method:

1.	Begin	by	studying	already	available	data.

2.	Form	a	hypothesis	that	is	consistent	with	those	data.

3.	Design	and	run	a	repeatable	experiment	that	has	the

potential	to	refute	the	hypothesis.

Consider	a	program	that	accepts	a	positive	integer	as

input	and	is	supposed	to	return	true	if	the	number	is

prime	and	false	otherwise.	As	our	first	test	case,	we	try	2;

and	our	program	returns	the	correct	answer,	true.	We

next	try	3,	and	the	program	returns	the	incorrect	result,

false.	We	now	have	two	pieces	of	data	on	which	to	form	a

hypothesis.	One	plausible	hypothesis	is	that	somehow	we

have	failed	to	reinitialize	something	after	the	first	input

and	that	the	program	will	always	work	on	the	first	input

and	fail	on	the	second.	To	check	this	hypothesis,	we	can

test	the	program	on	the	same	two	arguments	but	reverse

the	order	of	the	tests;	that	is,	we	can	try	3	and	then	2.

Before	running	the	tests,	we	decide	which	results	would

support	our	hypothesis	and	which	would	refute	it:

Results	supporting	hypothesis:	(true,	false)

Results	refuting	hypothesis:	(false,	true),	(false,	false),

(true,	true)

•	

•	



When	we	try	the	experiment,	the	program	returns	false

and	then	true.	We	immediately	reject	our	first	hypothesis

and	look	for	another—for	example,	that	the	program	will

fail	on	all	odd	primes.

When	debugging,	a	good	starting	goal	is	to	find	a	simple

input	that	causes	the	problem	to	occur.	This	input	may

not	be	the	test	data	that	first	revealed	the	existence	of	the

bug.	It	is	often	possible	to	find	simpler	input	that	is

sufficient	to	provoke	a	manifestation	of	the	bug.	Thus,	a

good	way	to	start	is	to	pare	down	the	test	data	and	then

run	the	program	on	variants	of	that	subset.

For	example,	suppose	we	are	testing	the	palindrome
procedure	of	Figure	10.2;	and	when	we	run	it	on	the

famous	(allegedly	Napoleonic)	palindrome	“able	was	I	ere

I	saw	elba”,	it	returns	false.	This	is	a	rather	long

palindrome,	so	we	should	try	to	find	a	shorter	one	on

which	the	program	fails.	We	might	begin	by	taking	the

middle	character	of	this	palindrome	and	seeing	whether

the	program	succeeds	in	recognizing	that	the	single

character	“r”	is	itself	a	palindrome.	If	it	fails	on	that,	we

might	hypothesize	that	the	program	does	not	work	on

palindromes	containing	an	odd	number	of	characters,

and	we	should	examine	our	other	tests	to	see	whether

they	support	this	hypothesis.	If	it	succeeds	in	recognizing

that	“r”	is	a	palindrome,	we	might	try	“ere”	on	the

hypothesis	that	it	will	fail	on	odd	palindromes	containing

more	than	one	character.	If	“ere”	fails	to	provoke	the

error,	we	should	probably	try	“I	ere	I”.	Suppose	the

program	fails	on	this	input.	Two	hypotheses	come	to

mind:	perhaps	the	blanks	are	the	root	problem,	or

perhaps	it	is	the	uppercase	letters.	We	should	now	test

our	program	on	the	shortest	inputs	that	might	confirm	or

refute	each	hypothesis,	for	example,	“”	and	“I”.

Once	we	have	found	a	small	input	that	causes	the	error	to

occur,	we	use	this	information	to	locate	where	in	the

program	the	bug	is	likely	to	be.	Finding	the	kind	of	input

necessary	to	provoke	a	symptom	is	often	tantamount	to

locating	a	bug.	If	not,	however,	the	next	step	is	to	narrow

the	scope	of	the	problem	by	examining	intermediate



results.

The	goal	is	to	rule	out	parts	of	the	program	that	cannot	be

causing	the	problem	and	then	look	in	more	detail	at	what

is	left.	We	do	this	by	tracing	the	program—that	is,

running	it	and	looking	at	the	values	of	variables	at

specific	points	in	its	control	flow.	If	the	program	consists

of	several	modules,	our	first	goal	is	to	discover	which

module	is	the	source	of	the	bug.	We	do	this	by	tracing	all

calls	and	returns	of	procedures.	For	each	call,	we	ask

whether	the	arguments	are	what	they	should	be;	the

arguments	should	satisfy	the	requires	clause	of	the	called

procedure	and	should	also	follow	from	what	we	have

learned	in	the	trace	so	far.	If	the	arguments	are	not	right,

then	the	error	is	in	the	calling	module.	Otherwise,	we	ask

whether	the	results	of	the	call	follow	from	the	arguments.

If	not,	the	error	is	in	the	called	procedure.

Localizing	the	problem	to	a	single	procedure	is	often

enough,	since	we	can	then	discover	the	error	by

examining	the	code	of	the	faulty	module.	Sometimes,

however,	it	is	useful	to	narrow	the	bug	to	a	subpart	of	the

faulty	module.	To	do	this,	we	continue	the	trace	and

examine	the	values	of	local	variables	of	the	module.	The

goal	is	to	detect	the	first	manifestation	of	incorrect

behavior.	It	is	particularly	important	to	check	the

appropriateness	of	intermediate	results	against	values

computed	prior	to	beginning	the	trace.	If	you	wait	until

you	see	the	intermediate	results	before	thinking	about

what	they	should	be,	you	run	the	risk	of	being	unduly

influenced	by	your	(erroneous)	program.

Consider	the	following	incorrect	implementation	of

palindrome:

			static	boolean	palindrome	(String	s)	throws	NullPointerException	{
					int	low	=	0;
					int	high	=	s.length(	)	-1;
					while	(high	>	low)	{
								if	(s.charAt(low)	!=	s.charAt(high))	return	false;
								low	++;
								if	(high	$>$	low	+	1)	high	--;	}
					return	true;	}

This	implementation	does	not	work	properly	on	odd-

length	palindromes	that	have	more	than	one	character.



Therefore,	we	might	trace	it	on	the	string	“ere”.	Suppose

we	expect	that	low	and	high	equal	the	low	and	high
bounds	of	the	string	at	the	end	of	initialization	and	that

low	increases	and	high	decreases	in	each	iteration.	At
the	end	of	initialization,	low	=	0	and	high	=	2,	as
expected.	However,	at	the	end	of	the	first	iteration,	we

notice	that	low	=	1	and	high	=	2,	which	is	not	expected.
We	should	be	able	recognize	the	error	at	this	point.

If	you	have	access	to	an	excellent	debugger,	it	may	be

possible	to	examine	intermediate	results	relatively

conveniently—for	example,	merely	by	telling	the

debugger	which	variables	you	wish	to	trace.	If	you	don’t

have	access	to	a	debugger,	it	is	worth	your	while	to	write

a	considerable	amount	of	code	whose	only	purpose	is	to

help	you	examine	intermediate	results.	One	piece	of	code

that	should	be	written	in	either	case	for	each	type	is	a

method	that	displays	the	objects	in	abstract	form.	In

other	words,	having	a	toString	method	is	always
desirable.	When	debugging	polynomials,	for	example,	it

is	much	easier	to	understand	what	is	happening	if	a	Poly
is	displayed	as	the	string

			"3	+	x**5"

instead	of	the	array

			[3,	0,	0,	0,	0,	1]

Such	a	method	can	be	called	either	by	a	user	of	an

interactive	debugger	or	by	a	print	statement.	Also,	it	is

sometimes	useful	to	have	the	reverse	routine	that	accepts

a	string	corresponding	to	an	abstract	form	for	an	object

and	produces	an	appropriate	object	of	the	type.

In	planning	debugging	sessions,	keep	in	mind	that	the

bug	is	probably	not	where	you	think	it	is.	If	it	were,	you

would	have	found	it	by	now.	It	is	all	too	easy	to	develop

and	cling	to	a	fixed	idea	about	the	location	of	a	bug.	The

first	obvious	manifestation	of	a	bug	can	occur	far	from

the	code	where	the	error	lies.	If	you	think	that	you	know

which	procedure	contains	the	error,	and	you	have	spent	a

significant	amount	of	time	examining	that	procedure,	you



are	probably	wrong.	Keep	an	open	mind.	Examine	the

reasoning	that	led	you	to	that	procedure,	and	ask	yourself

whether	there	is	any	possibility	that	it	is	flawed.

One	way	to	get	a	slightly	different	perspective	on	the

problem	is	to	ask	yourself	where	the	bug	is	not.	It	can	be

much	easier	to	understand	where	a	bug	could	not

possibly	be	than	where	it	is.	Trying	to	demonstrate	that	a

bug	could	not	possibly	be	in	a	particular	place	will	often

lead	to	the	discovery	that	that	is	exactly	where	it	is.	In	any

event,	the	systematic	elimination	of	possibilities	is

frequently	the	best	way	to	hone	in	on	a	bug.

While	trying	to	eliminate	possible	locations	for	a	bug,

take	a	careful	look	at	your	input	as	well	as	at	your	code.

Every	programmer	has	spent	time	hunting	for	a	bug	in	a

program	when	in	fact	the	problem	is	in	the	input.	As

mentioned,	you	should	write	your	drivers	and	stubs

carefully	so	as	to	avoid	as	many	such	errors	as	possible.

Looking	carefully	at	the	input	is	a	good	example	of	the

more	general	principle:	Try	the	simple	things	first.	Most

errors	are	not	particularly	subtle.	Simple	errors	that

occur	frequently	include	the	following:

Reversing	the	order	of	input	arguments

Looping	through	an	array,	String,	or	Vector	one
index	too	far

Failing	to	reinitialize	a	variable	the	second	time

through	a	program	segment

Copying	only	the	top	level	of	a	data	structure	when	you

intended	to	copy	all	levels

Failing	to	parenthesize	an	expression	correctly

Remember	that	in	designing	your	program	you	went

through	a	reasoning	process	not	unlike	that	involved	in

debugging	it.	The	existence	of	a	bug	is	evidence	that	your

initial	reasoning	was	flawed.	It	is	easy	to	convince

yourself	that	a	procedure	does	not	contain	a	bug	by	using

the	same	reasoning	that	led	you	to	introduce	the	bug	in

the	first	place.	It	can	therefore	be	invaluable	to	get

somebody	else	to	help	you.	Asking	for	help	is	not	an

admission	of	failure;	it	is	merely	good	practice.	Try	to

•	

•	

•	

•	

•	



explain	your	problem	to	somebody	else.	The	mere

attempt	to	articulate	your	reasoning	will	often	lead	you	to

discover	the	source	of	the	problem.	Failing	that,	a	fresh

viewpoint	is	almost	certain	to	prevent	you	from	getting

stuck	in	too	deep	a	rut.	In	fact,	explaining	why	your

program	works	is	such	a	good	way	to	eliminate	errors

that	it	is	often	worthwhile	to	do	this	before	you	run	any

tests	at	all!

One	of	the	hardest	problems	in	debugging	is	deciding

what	to	take	for	granted.	The	naive	thing	to	say	is	that

one	should	take	nothing	for	granted,	but	this	is	generally

counterproductive.	When	a	test	yields	a	faulty	result,	the

problem	might	lie	in	one	of	the	modules	the	program

calls,	the	compiler	used	to	compile	the	program,	the

operating	system,	the	hardware,	the	electrical	system	of

the	building	housing	the	hardware,	and	so	on.	The	most

likely	location,	however,	is	your	program.	Begin	by	taking

everything	else	for	granted	and	looking	for	a	bug	in	the

program.	If	after	a	reasonable	amount	of	effort	you	fail	to

find	any	problem	with	your	program,	start	worrying

about	the	modules	your	program	calls.	If	after	a

reasonable	amount	of	effort	you	can	find	no	problem

there,	find	out	whether	or	not	the	compiler	or	operating

system	has	been	changed	recently.	If	not,	you	should	be

very	reluctant	to	attribute	your	problems	to	either	of

them.

When	you	encounter	a	bug	that	you	just	cannot	track

down,	make	sure	that	you	have	the	right	source	code.	In

putting	together	large	systems,	you	will	almost	always

have	to	rely	on	separate	compilation	facilities.	This	can

easily	lead	to	a	situation	in	which	the	object	code

exhibiting	the	bug	does	not	match	the	source	in	which

you	are	trying	to	find	the	bug.	A	particularly	vexing

variant	of	this	problem	can	occur	when	either	the

compiler	or	the	operating	system	is	changed.	When	your

program’s	behavior	has	changed	and	you	are	absolutely

sure	that	you	have	not	changed	anything,	make	sure	that

you	are	not	using	code	that	has	been	compiled	to	run	on	a

different	version	of	the	operating	system.



When	you	have	tried	everything	you	can	think	of	and	still

have	not	found	the	bug,	go	away.	The	goal	of	any

programming	project	is	to	complete	the	program

(including	its	documentation	and	testing)	expeditiously.

The	goal	is	not	to	find	a	particular	bug	as	soon	as

possible.	The	obsessive	pursuit	of	a	particular	bug	is

almost	always	counterproductive.	If	you	spend	too	long

looking	for	the	same	bug,	there	is	a	high	probability	that

you	will	become	stuck	in	a	rut.	If	you	try	to	debug	when

you	are	overly	tired,	you	will,	at	best,	work	inefficiently.

At	worst,	you	will	make	mistakes,	such	as	making	ill-

considered	changes	to	the	program	or	accidentally

deleting	a	crucial	file.

When	you	do	find	a	bug,	try	to	understand	why	you	put

it	there.	Was	it	a	clerical	error,	does	it	reflect	a	lack	of

understanding	of	the	programming	language,	or	is	it

indicative	of	some	logical	problem?	Knowing	why	you

inserted	a	bug	may	help	you	understand	how	to	fix	your

program.	It	may	also	help	you	to	discover	other	bugs	and

even	to	avoid	bugs	in	the	future.

Finally,	when	you	think	that	you	have	found	a	bug	and

that	you	know	how	it	got	there,	do	not	be	in	too	much	of	a

rush	to	fix	“the	bug.”	Make	sure	that	the	bug	you	found

could	indeed	have	caused	the	symptoms	that	you

observed.	If	you	have	already	spent	a	lot	of	time

observing	the	behavior	of	your	program,	it	may	be

counterproductive	to	change	that	behavior	before	you

have	completed	your	detective	work.	Not	only	is	it	often

easier	to	repair	many	bugs	at	once	than	to	repair	many

bugs	one	at	a	time,	but	it	almost	always	leads	to	a	cleaner

and	more	efficient	program.

When	you	do	decide	to	make	a	change,	think	through	all

of	its	ramifications.	Convince	yourself	that	the	change

really	will	both	cure	the	problem	and	not	introduce	new

problems.	The	hardest	bugs	to	find	are	often	those	we

insert	while	fixing	other	bugs.	This	is	because	we	are

often	not	as	systematic	in	designing	these	“patches”	as	in

our	original	designs.	We	try	to	make	local	changes,	when

a	more	global	approach	might	well	be	called	for.	It	is



often	more	efficient	to	reimplement	a	small	procedure

than	to	patch	an	old	one.

10.10	Defensive	Programming

In	preparing	to	cope	with	mistakes,	it	pays	to	program

defensively.	In	every	good	programmer	is	a	streak	of

suspicion.	Assume	that	your	program	will	be	called	with

incorrect	inputs,	that	files	that	are	supposed	to	be	open

may	be	closed,	that	files	that	are	supposed	to	be	closed

may	be	open,	and	so	forth.	Write	your	program	in	a	way

designed	to	call	these	mistakes	to	your	attention	as	soon

as	possible.	Java	provides	help	here	via	its	compile-time

type	checking	and	other	compiler	warnings,	by	the

bounds	checking	provided	for	arrays	and	strings,	and	by

its	exception	mechanism.

Two	standard	defensive	programming	methods	not	built

into	any	programming	language	are	checking

requirements	and	rep	invariants,	and	exhaustive	testing

of	all	conditionals.	The	violation	of	a	rep	invariant	or	a

procedure’s	requirements	is	often	the	first	manifestation

of	a	bug.	If	code	to	check	these	explicitly	is	not	included,

the	first	observable	symptom	of	the	bug	may	occur	quite

far	from	the	place	where	the	mistake	actually	occurred.

We	make	it	easy	to	check	the	rep	invariant	by	including

the	repOk	method	in	every	type.	This	method	can	be
used	to	test	the	rep	invariant	at	the	beginning	of	each

operation	and	before	returning	if	this	is	new	or	has
been	modified.	The	checks	can	be	put	in	your	test	driver

or	in	the	type’s	operations.	The	latter	is	particularly

robust,	but	you	may	need	to	disable	the	checks	when	in

production	to	improve	performance.	If	you	do	disable	the

checks,	don’t	remove	them	from	your	code;	instead,	leave

them	in	(e.g.,	as	a	comment)	so	that	you	can	easily

reactivate	them	later	if	necessary.

As	an	example	of	requirements	violation,	consider	a

procedure	with	the	specification

				static	boolean	inRange	(int[	]	a,	int	x,	int	y,	int	e)
												throws	NullPointerException
						//	requires:	x	<=	y
						//	effects:	If	a	is	null	throws	NullPointerException	else
						//				returns	true	if	e	is	an	element	of	a[x],…,	a[y].



Suppose	that	a	caller	of	this	procedure	reverses	the	order

of	the	second	and	third	arguments.	inRange	will
probably	return	false	whether	or	not	e	is	in	a.	The	first
observable	symptom	of	this	incorrect	call	might	appear

arbitrarily	far	from	the	call.	In	the	worst	case,	the	error

would	never	be	detected,	and	the	program	in	which

inRange	occurs	would	simply	return	an	incorrect
answer.	However,	if	inRange	checks	the	requirement
and	signals	an	exception	(in	particular,

FailureException)	if	it	isn’t	satisfied,	the	error	can
usually	be	found	immediately.

Failure	to	perform	exhaustive	testing	in	conditionals	can

have	a	similar	effect.	For	example,	suppose	the	receive
procedure	delivers	a	string	that	has	been	sent	over	a

communications	network	in	a	message	and	that,	for	this

particular	call,	only	the	values	“deliver”	and
“examine”	are	meaningful.	The	implementation

			s	=	Comm.receive(	);
			if	(s.equals("deliver"))	{	//	carry	out	the	deliver	request	}
						else	if	(s.equals("examine"))	{	//	carry	out	the	examine	request	}
						else	{	//	handle	error	case	}

is	far	superior	to	the	marginally	more	efficient

implementation

			s	=	Comm.receive(	);
			if	(s.equals("deliver"))	{	//	carry	out	the	deliver	request	}
						else	{	//	carry	out	the	examine	request	}

Defensive	programming	generally	involves	a	certain

amount	of	extra	overhead—both	for	the	programmer	and

at	runtime.	Most	of	the	time,	the	programming	overhead

is	not	an	issue,	since	defensive	programming	almost

always	reduces	the	total	amount	of	programmer	time

over	the	course	of	a	programming	project.	The	runtime

overhead	cannot	be	dismissed	so	easily.	For	programs	in

which	performance	is	an	issue,	some	defensive

programming	methods	can	be	prohibitively	expensive.	If,

for	example,	the	hardware	does	not	detect	arithmetic

overflow,	detecting	it	in	software	can	more	than	double

the	cost	of	doing	arithmetic.	On	a	more	abstract	level,	a

binary	search	procedure	can	hardly	afford	to	check	that

every	array	given	to	it	is	indeed	sorted.



When	it	seems	that	defensive	programming	will	be

prohibitively	expensive	in	a	production	version	of	a

program,	we	should	still	give	serious	thought	to	putting

the	checks	in	while	the	program	is	under	development.

Disabling	error	detection	code	just	before	a	program	is

put	into	production	use	is	much	easier	than	inserting	it

during	debugging.	Disabling	a	program’s	defenses,

however,	should	not	be	done	as	a	matter	of	course.	If	at

all	possible,	these	defenses	should	be	left	in	the

production	version.	It	is	almost	certain	that	when	the

program	first	goes	into	production	use,	it	will	still	contain

some	bugs	and	that	other	bugs	will	be	introduced	as	it	is

modified.	It	is	important	that	these	bugs	be	detected	and

repaired	as	expeditiously	as	possible.	The	actual

economic	cost	of	an	undiscovered	error	in	a	program	may

exceed	the	cost	of	keeping	the	checks	in	during

production	runs.	It	is	usually	worthwhile	to	retain	at	least

the	inexpensive	checks.

10.11	SUMMARY

This	chapter	has	discussed	the	related	issues	of	testing

and	debugging.	Testing	is	a	method	of	validating	a

program’s	correctness.	We	have	described	a	way	to

develop	test	cases	methodically	by	examining	both	a

module’s	specification	and	its	implementation.	The	test

cases	should	then	be	run	by	a	driver	that	checks	the

results	of	each	case;	the	driver	either	produces	the	inputs

or	reads	them	from	a	file,	and	either	checks	the	results	by

computations	or	compares	them	to	outputs	in	a	file.	If	the

test	being	run	is	a	unit	test,	then	lower-level	modules	are

replaced	by	stubs	that	simulate	their	effects.	Later,	during

integration	testing,	the	stubs	are	replaced	by	the

implementation.

Testing	can	exhibit	the	presence	of	a	bug.	Debugging	is

the	process	of	understanding	and	correcting	the	cause	of

the	bug.	In	debugging,	we	try	to	narrow	the	scope	of	the

problem	by	searching	for	simple	test	cases	that	manifest

the	bug	and	by	looking	at	intermediate	values	to	locate

the	responsible	region	in	the	code.	As	we	collect	evidence

about	the	bug,	we	formulate	hypotheses	and	attempt	to



refute	them	by	running	further	tests.	When	we	think	we

understand	the	cause	of	the	bug,	we	study	the	responsible

region	of	code	to	find	and	correct	the	error.

Debugging	can	be	made	easier	if	we	practice	defensive

programming,	which	consists	of	inserting	checks	in	the

program	to	detect	errors	that	are	likely	to	occur.	In

particular,	we	should	check	that	the	requires	clause	is

satisfied.	It	is	also	a	good	idea	to	check	the	rep	invariant.

These	checks	should	be	retained	in	the	production	code	if

possible.

The	outcome	of	being	methodical	about	testing,

debugging,	and	defensive	programming	is	a	reduction	of

programmer	effort.	This	work	pays	off	not	only	when	the

program	is	written,	but	also	later	when	it	is	modified.

Sidebar	10.6	summarizes	the	preceding	discussion	about

testing	and	debugging.

Sidebar	10.6	Testing,	Debugging,	and	Defensive	Programming

Testing	is	a	way	of	validating	a	program’s	correctness.

Debugging	is	the	process	of	finding	and	removing	bugs.

Defensive	programming	consists	of	inserting	checks	to	detect	errors	within	the	program.	It
makes	debugging	much	easier.

EXERCISES

10.1	Develop	a	set	of	test	cases	for	partition	using
the	specification	and	implementation	given	in

Figure	3.6.	Do	the	same	thing	for	quickSort	and
sort.	Write	a	driver	for	partition.	Run	the
tests.

10.2	Develop	a	set	of	test	cases	and	write	a	driver	for

permutations	(see	Exercise	7	in	Chapter	6).

10.3	Implement	an	iterator	that	yields	all	Fibonacci

numbers.	(A	Fibonacci	number	is	the	sum	of	the

preceding	two	Fibonacci	numbers,	and	the	first

Fibonacci	number	is	0.	For	example,	the	first

seven	Fibonacci	numbers	are	0,	1,	1,	2,	3,	5,	and	8.)

Define	test	cases	in	advance	of	debugging.	Then

debug	your	program	and	report	on	how	successful

your	tests	were.

•	

•	

•	



10.4	Develop	a	set	of	test	cases	for	Poly	(see	Figures
5.4	and	5.7).	Write	a	driver	for	Poly	and	run	the
tests.

10.5	Develop	a	set	of	test	cases	for	OrderedIntList
(see	Figures	6.10,	6.11,	and	6.12).	Write	a	driver

and	run	the	tests.

10.6	Suppose	IntSets	were	implemented	using
OrderedIntLists	(see	Figures	6.10,	6.11,	and
6.12).	Discuss	what	kind	of	stub	you	would	use	for

ordered	lists	in	testing	your	implementation	of

IntSet.

10.7	Develop	the	test	cases	needed	for	MaxIntSet	(see
Figures	7.4	and	7.5),	starting	with	the	test	cases	for

IntSet	(see	Section	10.4).	Write	the	driver	and

run	the	tests.

10.8	Consider	the	abstract	IntList	class	shown	in
Figures	7.11	and	7.12.	Develop	the	black-box	and

glass-box	tests	for	this	class.	Then	develop	a

testing	strategy	including	selection	of	the	subclass

(or	subclasses)	that	will	be	used	in	the	tests.

Develop	a	driver	for	the	pair	of	classes	and	run	the

tests.

10.9	Consider	the	abstract	Poly	class	shown	in	Figure
7.14.	Develop	a	strategy	for	testing	this	class

including	selection	of	the	subclass	that	will	be	used

in	the	tests.	Write	a	driver	for	Poly	and	this
subclass	and	run	the	tests.

10.10	Develop	test	cases	for	Adder	(see	Figure	8.6).
Then	develop	test	cases	for	PolyAdder	(see
Figure	8.7).	Write	a	driver	for	PolyAdder	and	run
the	tests.

10.11	Develop	test	cases	for	SumSet	(see	Figure	8.8).
Note	that	this	includes	deciding	what	parameter

types	to	use	in	the	test.	Write	the	driver	for

SumSet	and	run	the	tests.

10.12	Develop	an	error	profile	for	yourself.	Keep	a	log	in

which	you	record	errors	in	your	programs.	For

each	error,	record	the	reason	for	it	and	look	for

patterns.



11	Requirements	Analysis

So	far	we	have	concentrated	on	the	specification,

implementation,	and	validation	of	program	modules.

These	individual	modules	form	the	components	of

programs,	the	building	blocks	out	of	which	programs	are

constructed.	The	remainder	of	the	book	deals	with	issues

related	to	programs	as	a	whole	and	with	the	process	of

program	development.

This	chapter	begins	by	describing	the	software	life	cycle:

the	activities	that	occur	during	the	lifetime	of	a	software

project.	Then	it	discusses	the	requirements	phase	in

which	a	description	of	the	product	being	produced	is

developed.	It	gives	an	overview	of	the	issues	that	must	be

addressed	during	this	phase	and	illustrates	the	ideas	by

means	of	a	short	example.	The	topics	covered	are

complicated.	Our	discussion	of	them	is	abbreviated,

oversimplified,	and	intended	to	serve	only	as	an

introduction.

11.1	THE	SOFTWARE	LIFE	CYCLE

Program	development	is	usually	broken	up	into	a	number

of	phases:	requirements	analysis,	design,	implementation

and	testing,	acceptance	testing,	production,	and

modification	and	maintenance.	The	process	typically

begins	with	someone	we	shall	call	the	customer	who

wants	a	program	to	provide	a	particular	service.

Sometimes	the	service	is	well	understood	and	described	a

priori	in	a	complete	and	precise	manner,	but	this	is	quite

rare.	More	often	customers	do	not	fully	understand	what

they	want	the	program	to	do.	Even	if	the	desired	service

is	well	understood,	it	is	probably	not	described	precisely

enough	to	serve	as	a	basis	for	constructing	a	program.

The	purpose	of	the	requirements	analysis	phase	is	to

analyze	the	needs	of	the	customer	and	produce	a

document	describing	a	program	that	will	meet	those

needs.	This	process	will	require	communication	with	the

customer	to	make	sure	the	needs	are	understood.



The	document	that	results	from	requirements	analysis	is

the	input	to	the	design	phase.	In	this	phase,	a	modular

decomposition	of	a	program	satisfying	the	specification	is

developed.	In	the	next	phase,	the	individual	modules	are

implemented	and	then	tested	to	ensure	that	they	perform

as	intended.	As	discussed	in	Chapter	10,	we	use	two	kinds

of	tests:	unit	tests,	in	which	individual	modules	are	tested

in	isolation,	and	integration	tests,	in	which	modules	are

tested	in	combination.

At	best,	integration	testing	shows	that	the	modules

together	satisfy	the	implementor’s	interpretation	of	the

specification.	The	implementor	may	have	misinterpreted

the	specification	or	neglected	to	test	some	portion	of	the

program’s	behavior,	though,	and	the	customer	therefore

needs	some	other	basis	for	deciding	whether	or	not	the

program	does	what	it	is	supposed	to	do.	This	typically

takes	the	form	of	acceptance	tests.	Acceptance	tests

provide	an	evaluation	of	the	program	behavior	that	is

independent	of	the	design,	and	they	are	generally

performed	by	an	organization	other	than	the	one	that

worked	on	the	design	and	implementation.	They	should

include	both	trial	runs	under	conditions	approximating

those	the	customer	will	actually	encounter	and	tests

derived	directly	from	the	requirements	specification.

When	the	program	has	passed	the	acceptance	tests,	it

enters	the	production	phase	and	becomes	a	product	that

the	customer	can	use.	The	useful	life	of	the	program

occurs	during	this	phase,	but	the	program	is	unlikely	to

remain	unchanged	even	here.	First,	it	almost	certainly

harbors	undetected	errors	that	must	be	corrected	during

production.	Correcting	such	errors	is	called	program

maintenance.	Second,	the	customer’s	requirements	are

likely	to	change.	Responding	to	such	changes	requires

program	modification.

Figure	11.1a	illustrates	the	waterfall	model,	an	idealized

form	of	the	software	development	process	previously

described,	in	which	each	phase	is	completed	before	work

starts	on	the	next	phase.	The	waterfall	model	is	neither

realistic	nor	practical:	the	software	development	process



is	unlikely	to	proceed	sequentially	through	the	phases.

There	are	two	reasons	for	this.	First,	some	work	can	be

done	in	parallel.	For	example,	even	before	requirements

analysis	is	complete,	certain	features	of	the	product	may

be	well	enough	understood	that	it	makes	sense	to	begin

the	design	for	that	part.	A	similar	situation	occurs	during

design:	a	portion	of	the	design	may	be	complete	enough

that	implementation	work	can	begin	for	that	part,	even

though	the	entire	design	is	not	yet	finished.	However,	it	is

important	to	work	on	the	phases	roughly	in	order.	For

example,	it	isn’t	a	good	idea	to	expend	lots	of	effort

implementing	modules	before	the	design	is	firm	enough

to	ensure	those	modules	are	needed.

Figure	11.1	Life	cycle	models

The	second	reason	that	development	isn’t	entirely

sequential	is	errors,	which	may	make	it	necessary	to	go

back	to	an	earlier	stage	of	the	process.	During	design,	we

often	uncover	problems	with	the	requirements



specification.	When	this	happens,	it	is	necessary	to	redo

part	of	the	requirements	analysis.	Similarly,	if	a	problem

with	the	design	is	found	during	implementation,	the

relevant	parts	of	the	system	must	be	redesigned.

Therefore,	iteration	through	these	phases	is	inevitable.

Figure	11.1b	illustrates	the	more	realistic	spiral	model.	In

this	model,	phases	can	start	before	their	predecessor

phase	is	complete,	and	the	process	includes	many

feedback	loops.

Errors	are	a	problem	throughout	the	entire	development

process.	The	earlier	the	phase	in	which	an	error	occurs,

the	more	wasted	effort	results,	unless	the	error	is	caught

quickly.	For	example,	an	error	made	in	the	requirements

analysis	can	lead	to	a	totally	useless	program,	since	it	is

not	the	program	the	customer	wants.	If	this	is	not

discovered	until	the	acceptance	tests,	an	enormous

amount	of	design	and	implementation	may	have	to	be

redone.	An	error	made	during	design	can	result	in	the

implementation	of	unusable	modules	and	failure	to

create	needed	modules.	By	contrast,	an	error	made	in

implementing	a	single	module	affects	only	that	module

and	can	be	corrected	simply	by	reimplementing	it.

The	earlier	an	error	is	detected,	the	less	serious	its

consequences.	If	an	error	in	the	requirements	analysis	is

caught	during	that	phase,	it	may	be	necessary	to	rethink

parts	of	the	requirements	specification	but	not	to	discard

design	work.	Similarly,	if	an	error	in	design	is	caught

before	implementation	begins,	it	may	be	necessary	to

rethink	a	number	of	design	decisions	but	not	to	discard

work	done	in	implementing	and	testing	unneeded

modules.

Clearly,	it	is	important	to	make	use	of	error-detection

methods	and	techniques	during	requirements	analysis

and	design,	and	not	just	during	implementation.	But	how

can	this	be	done?	Program	verification	can	ensure	that	a

program	meets	its	specification,	but	it	is	not	generally

practical	today,	and	even	if	it	were,	it	would	still	find

errors	much	too	late	in	the	program	development

process.	As	was	just	noted,	the	errors	made	in	the	early



phases	matter	most,	and	it	is	important	to	find	these

errors	quickly	to	minimize	wasted	effort.

One	way	to	uncover	errors	in	requirements	is	to	build	a

prototype	of	the	system.	The	customer	can	use	the

prototype	and	then	provide	feedback	on	its	suitability

and	acceptability,	so	that	when	the	product	is	delivered,	it

is	more	likely	to	be	what	the	customer	wants.	For	this

approach	to	be	practical,	however,	the	prototype	needs	to

be	built	quickly.	Fast	prototyping	can	work	well	for

simple	systems,	since	the	prototype	can	be	produced

without	much	effort.	But	for	more	complex	systems,

building	a	prototype	is	difficult,	and	in	the	end,	its

implementation	can	be	too	valuable	to	throw	away.	This

can	be	unfortunate	since	the	prototype	may	be	a	poor

basis	for	the	real	implementation,	and	reusing	prototype

code	in	the	implementation	can	lead	to	a	system	that	isn’t

very	robust.	One	technique	that	can	sometimes	work	is	to

produce	a	very	simple	prototype	that	contains	only	a

small	subset	of	the	desired	features.	Throwing	away	a

small	prototype	might	be	acceptable,	and	if	the	subset	is

well	chosen,	the	prototype	can	provide	substantial	insight

into	the	real	product	requirements.

Another	way	to	catch	errors	in	early	phases	is	to

document	all	decisions	explicitly	and	then	carefully

review	the	decisions;	we	will	discuss	such	an	approach	in

Chapter	14.	While	better	than	nothing,	however,	these

methods	are	far	from	adequate.	Identification	and

invention	of	better	methods	is	an	important	area	for

research	in	programming	methodology.

11.2	REQUIREMENTS	ANALYSIS	OVERVIEW

Recall	that	a	program	is	developed	to	satisfy	the	needs	of

a	customer.	The	customer	might	be	someone	outside	of

the	organization	that	will	develop	the	program,	or	it

might	be	someone	on	the	inside.	Products	are	frequently

developed	in	expectation	of	customers	before	any	actual

customer	exists.	In	this	case,	some	group	in	the

development	organization	needs	to	act	as	a	kind	of

“model”	of	the	customer,	whose	needs	are	identified

through	market	analysis.



The	original	product	description	produced	by	a	customer

is	unlikely	to	be	either	complete	or	precise.	The	purpose

of	requirements	analysis	is	to	analyze	the	customer’s

needs	so	that	we	can	identify	and	carefully	describe	the

customer’s	requirements.	This	analysis	must	involve

consultation,	since	the	customer	is	the	ultimate	judge	of

what	is	wanted.

A	good	way	to	get	started	on	requirements	analysis	is	to

examine	how	the	customer	does	things	at	present.	Almost

always	a	product	is	intended	to	replace	an	existing

system,	possibly	noncomputerized,	or	consisting	of	some

combination	of	programs	and	external	processes,	or	even

a	program	in	which	the	performance	was	not	satisfactory.

The	current	system	will	contain	methods	for	normal

processing	and	for	coping	with	errors	and	a	variety	of

contingencies.	It	can	be	a	source	of	ideas	not	only	about

how	to	do	things,	but	about	what	needs	to	be	done.

Additionally,	the	product	must	be	compatible	with	other

systems	already	in	use.	Studying	the	environment	in

which	the	new	product	will	be	used	can	help	ensure	that

it	will	fit	in	smoothly.	For	example,	studying	the

customer’s	organization	will	help	insure	that	the	program

will	fit	well	into	that	organization	and	will	be	compatible

with	current	practices.

Requirements	analysis	must	consider	both	normal

situations	and	errors.	Studying	normal	case	behavior

means	defining	the	effect	of	all	nonerroneous	user

interactions	with	a	program	under	the	assumption	that

the	program	is	in	a	normal	state.	Normal	case	behavior	is

often	the	easiest	part	of	the	problem,	so	that	focusing	on

it	is	a	good	way	to	get	started.

Cases	with	no	errors	represent	only	a	small	part	of

program	behavior,	however,	and	it	is	essential	to	consider

and	describe	how	a	program	behaves	in	the	presence	of

errors.	This	part	of	the	analysis	should	never	be	neglected

or	underemphasized.	The	analyst	must	try	to	uncover	all

possible	errors	that	might	occur	and	develop	the

appropriate	responses	for	each	case.	Errors	come	from

two	sources:	users	interacting	with	the	program,	and



hardware	and	software	malfunctions.

A	good	approach	to	studying	both	normal	case	behavior

and	behavior	in	the	presence	of	user	errors	is	to	work	out

scenarios	(see	Sidebar	11.1).	A	scenario	is	step-by-step

walk-through	of	an	interaction	with	the	system,

consisting	of	use/response	pairs:	the	user	or	environment

requests	some	action,	leading	to	a	particular	response	by

the	system.	We	shall	give	an	example	of	the	use	of

scenarios	in	Section	11.3.

You	can	begin	with	scenarios	that	capture	typical

interactions	with	the	system	in	the	absence	of	errors:

both	the	user	and	the	system	are	functioning	correctly.

Next	you	can	use	scenarios	to	study	user	errors;	scenarios

are	useful	here	since	they	can	pinpoint	the	ways	in	which

these	errors	might	be	made.	Proper	interface	design	can

sometimes	prevent	user	errors—for	example,	by

presenting	an	interactive	user	with	a	menu	containing

only	legal	commands.	Another	possibility	is	for	the

system	to	recognize	erroneous	input	and	reject	it.	Of

course,	it	is	not	possible	to	avoid	all	errors.	For	example,

if	a	bank	clerk	makes	an	error	entering	an	account

holder’s	deposit,	it	might	not	be	noticed	until	the	account

holder	examines	a	monthly	statement.	The	analyst	must

identify	all	such	situations	and	decide	what	should	be

done	to	handle	them.	Often	these	decisions	require

consultation	with	the	customer	since	business	policy	is

involved,	and	the	solution	may	require	actions	outside

the	program	(for	example,	consider	the	question	of	how

to	compensate	an	account	holder	whose	check	has

bounced	because	of	a	bank	error).

Sidebar	11.1	Scenarios

A	scenario	is	a	step-by-step	walk-through	of	an	interaction	with	the	system,	assuming	the
system	itself	is	functioning	properly.

A	good	place	to	start	is	to	focus	on	what	the	user	does	during	a	session,	assuming	the	user
does	not	make	errors.

Then,	you	can	consider	additional	scenarios	that	cover	user	errors.

The	use	of	scenarios	focuses	attention	on	how	the	system

responds	to	the	user	when	the	system	itself	is	working

properly.	But	the	system	may	not	be	working	properly,

•	

•	

•	



and	the	requirements	analysis	needs	to	examine	the

possibilities	here	as	well.	In	this	situation,	scenarios	are

no	longer	so	useful;	instead,	you	need	to	enumerate

possibilities.

As	far	as	software	errors	are	concerned,	the	analyst	must

decide	how	much	effort	should	be	expended	to	detect	and

cope	with	such	errors.	For	example,	if	it	is	important	to

limit	the	scope	of	software	errors,	the	output	of	critical

modules	can	be	checked	for	reasonableness,	and	the

system	shut	down	if	the	checks	fail;	the	shutdown	might

simply	terminate	processing	until	the	problem	is	fixed,	or

it	might	be	followed	by	a	restart	in	a	clean	state,	which	is

often	sufficient	for	continued	service.	If	this	approach	is

taken,	it	is	important	to	log	information	about	failures	so

that	information	about	the	errors	that	led	to	them	is	not

lost.

The	analyst	must	also	decide	what	to	do	about	hardware

failures.	It	may	be	important	for	a	system	to	be	highly

available;	that	is,	it	should	be	highly	likely	that	the

system	is	up	and	running	all	the	time	(or	at	certain

times).	Satisfying	such	a	requirement	may	involve	the	use

of	redundant	hardware	and	software.	A	related

requirement	is	that	the	system	be	highly	reliable.	Here

we	are	concerned	with	avoiding	loss	of	information

because	of	failures.	Determining	how	ambitious	the

system	must	be	in	trying	to	recover	from	hardware	and

software	malfunctions	is	an	important	aspect	of

requirements	analysis.

In	addition	to	functional	requirements,	a	program	must

satisfy	performance	requirements.	These	requirements

should	be	considered	as	the	functional	requirements	are

developed,	and	also	on	their	own,	just	to	double-check

that	nothing	has	been	forgotten.	Time	and	space

efficiency	should	be	considered	together	since	it	is	often

necessary	to	trade	one	off	against	the	other.	The	first

thing	to	do	is	to	find	out	whether	or	not	there	is	a	hard

limit	in	either	dimension.	For	example,	the	program

might	have	to	run	on	a	microcomputer	with	limited

memory.	Alternatively,	it	might	have	to	satisfy	some	real-



time	constraint	(for	example,	computing	the	current

altitude	of	a	plane	every	tenth	of	a	second).	In

considering	time	efficiency,	it	is	important	to	distinguish

between	throughput	and	response	time.	Throughput

refers	to	the	amount	of	data	processed	by	a	system	over

an	interval	of	time.	Response	time	refers	to	the	amount	of

time	between	interactions	with	the	system.	Optimizing

one	of	these	characteristics	often	has	a	deleterious	effect

on	the	other.	A	communications	network,	for	example,

might	maximize	throughput	at	the	cost	of	response	time

by	batching	messages.

The	customer’s	space	and	time	requirements	must	be

checked	for	compatibility	with	the	functional

requirements,	the	hardware	the	customer	intends	to	use,

and	the	price	the	customer	is	willing	to	pay	for	the

system.	For	example,	the	customer	may	want	some

activity	to	satisfy	performance	requirements	that	are

either	not	possible	given	the	hardware	or	can	be	satisfied

only	with	very	sophisticated	software.	If	an

incompatibility	is	discovered,	negotiations	may	be

necessary	to	produce	new	requirements.

These	issues	affect	the	content	of	the	requirements

specification	directly.	A	number	of	other	issues	should	be

considered	during	requirements	analysis,	not	because

they	affect	the	specification,	but	because	they	provide

useful	input	for	the	designers.	Two	such	issues	are

modifiability	and	reusability.	There	will	usually	be	areas

with	fixed	requirements,	and	others	in	which	changes	are

likely.	Information	about	likely	changes	is	useful	because

a	design	can	be	shaped	in	such	a	way	as	to	make	certain

changes	easy.	This	information	can	sometimes	be

obtained	by	careful	study	of	earlier	systems	designed	to

do	a	similar	job.	Changes	are	likely	in	places	where	those

systems	differ	from	the	current	one.	The	specified	system

might	also	be	intended	to	be	the	first	of	many	systems

that	will	be	similar	but	will	differ	in	details.	Or	the

specified	system	might	contain	only	a	subset	of	features

that	are	intended	to	be	provided	in	later	systems.	The	job

of	building	the	additional	systems	can	be	simplified	if	all

or	part	of	the	software	produced	for	the	first	system	is



designed	to	be	reusable.	If	the	designers	know	what	the

similarities	are,	they	can	shape	the	design	to

accommodate	them.	An	outstanding	example	of	this	is

the	isolation	of	target-machine	dependencies	in	a

compiler,	which	allows	the	compiler	to	be	mostly

independent	of	the	machine	for	which	it	is	producing

code,	so	that	it	can	be	retargeted	to	another	machine	with

minimal	effort.

Pinning	down	constraints	on	the	delivery	schedule	is

another	important	part	of	requirements	analysis.

Knowing	that	the	customer	is	in	a	hurry,	for	example,

may	encourage	the	designer	of	the	software	to	trade

noncritical	features	for	simplicity.	Knowing	that	a

program	providing	a	proper	subset	of	the	functionality	of

the	entire	system	should	be	available	early	would	have	an

impact	on	the	implementation	schedule	as	well	as	on	the

design.

Sidebar	11.2	summarizes	the	issues	that	must	be

considered	during	requirements	analysis.

The	result	of	the	requirements	phase	is	a	requirements

document	(see	Sidebar	11.3).	This	document	contains	the

requirements	specification,	which	describes	the	program

behavior,	including	its	behavior	in	the	presence	of	errors.

In	addition,	the	document	should	explain	the

performance	requirements,	the	decisions	made	during

analysis,	and	if	it	can	be	done	with	a	reasonable	amount

of	effort,	the	alternatives	that	were	rejected	(and	why

they	were	rejected).	The	latter	information	is	useful	when

requirements	must	be	rethought	because	of	errors	or

changing	customer	needs.

The	requirements	document	can	be	the	input	to	two

activities	in	addition	to	the	design.	It	can	be	used	to

produce	acceptance	tests	and	as	a	basis	for	a	system

user’s	manual.	The	user’s	manual	is	something	that	must

be	produced	anyway,	but	its	production	can	provide	an

independent	check	on	the	suitability	of	the	specification.

If	the	system	is	hard	to	use,	this	may	be	evident	when	the

manual	is	written.	Also,	by	reading	the	manual,	the

customer	may	notice	deficiencies	in	the	specification	that



were	overlooked	earlier.

Sidebar	11.2	Goals	of	Requirements	Analysis

Identify	the	functional	requirements:

•	How	a	correctly	functioning	program	responds	to	both	correct	and	incorrect	user	interactions

•	How	the	program	responds	to	both	hardware	and	software	errors

Identify	the	performance	requirements:	how	fast	certain	actions	must	be,	and	any	constraints
on	the	amount	of	primary	and	secondary	storage	that	can	be	used.

Identify	potential	modifications:	changes	or	extensions	to	the	product	that	are	likely	in	the
future.

Pin	down	the	delivery	schedule.

Sidebar	11.3	The	Requirements	Document

The	requirements	document	contains:

The	requirements	specification,	which	describes	the	functional	requirements

A	description	of	the	performance	requirements,	potential	modifications,	and	scheduling
constraints

A	discussion	of	alternatives	that	were	considered	and	a	rationale	for	decisions

11.3	THE	STOCK	TRACKER

To	illustrate	this	discussion,	we	now	investigate	an

example,	a	program	called	StockTracker	that	keeps
track	of	a	user’s	investments.	The	program	is	required	to

store	information	about	all	stocks	owned	by	a	user,

including	the	amount	owned	and	other	information	that

the	user	may	want	to	record,	such	as	the	date	and	price

when	purchased.	In	addition,	the	program	needs	to	be

able	to	find	out	the	current	price	of	any	stock	in	the

portfolio	and	to	compute	the	current	value	of	the	user’s

investments.	To	simplify	the	example,	we	will	assume

that	only	stocks	are	tracked	but	not,	for	example,	mutual

funds.

To	gain	an	understanding	of	what	this	program	should

do,	we	begin	by	considering	the	normal	case	behavior.	A

good	way	to	do	so	is	to	sketch	a	sample	session;	this

session	will	be	one	of	our	scenarios.	Trying	to	sketch	the

scenario	points	out	the	first	major	decision:	what	style	of

interaction	will	the	program	provide?	In	general,	there

are	two	ways	of	interacting	with	a	program:	the	user

either	waits	for	the	program	to	demand	information	or

offers	it	spontaneously—for	example,	as	arguments	when

the	program	is	called.	Deciding	between	the	two	choices

•	
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•	
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is	something	that	must	be	done	in	consultation	with	the

customer.	Let’s	assume	the	customer	decides	that	the

program	will	request	responses	from	the	user.	In	other

words,	it	is	an	interactive	program	that	allows	the	user	to

examine	information	about	many	stocks	in	a	single

session.

Now	we	can	develop	the	scenario.	Clearly,	the	user	must

start	by	invoking	the	program.	How	this	is	done	depends

upon	the	computing	environment	in	which	the	stock

tracker	is	to	run.	The	details	of	the	syntax	to	be	used	are

not	of	concern	at	this	point.	What	does	matter,	however,

is	whether	the	user	must	supply	any	arguments.	In

particular,	the	stock	tracker	needs	access	to	information

about	stocks	that	has	already	been	created	on	the	user’s

behalf	in	earlier	sessions;	how	does	it	find	this

information?	It	might	receive	it	as	an	argument	(e.g.,

names	of	one	or	more	files);	it	might	ask	the	user	for	the

information	via	the	user	interface;	or	it	might	“know

where	to	look.”	Any	of	these	choices	is	a	viable	option.

The	third	choice	seems	best,	however,	since	it	avoids

errors	due	to	the	user	mistyping	a	filename.	Therefore,

we	make	the	third	choice	(after	consulting	the	customer).

Once	the	program	has	obtained	the	information	from	the

previous	session,	it	is	ready	to	accept	user	commands.

There	are	two	basic	kinds	of	commands:	ones	used	to

examine	the	stored	information,	and	ones	used	to	add

new	information.

Presumably,	when	a	user	wishes	to	examine	stored

information,	he	or	she	is	interested	in	looking	at	a	single

investment	or	perhaps	a	group	of	related	investments.	In

the	latter	case,	how	would	a	user	indicate	that	a	group	of

investments	is	related?	It	seems	unlikely	that	any

decision	the	system	might	make	here	will	match	the

needs	of	an	arbitrary	user	and,	therefore,	a	way	for	users

to	group	investments	should	be	provided.	Grouping	could

be	done	by	allowing	users	to	define	separate	portfolios,

each	containing	a	group	of	investments	that	are	related	as

far	as	the	user	is	concerned.	An	alternative	might	be	for

users	to	associate	keywords	with	investments,	which



would	allow	the	user	to	examine	all	investments	marked

with	a	particular	keyword.	Either	of	these	choices	is

plausible,	but	providing	separate	portfolios	is	simpler	(it

effectively	provides	one	keyword	per	investment)	and

easier	for	users	to	manage,	and	it	seems	adequate	for	this

application.	Therefore,	let’s	choose	the	separate	portfolio

approach.	A	portfolio	contains	positions,	each	of	which

provides	information	about	a	particular	stock.

At	this	point,	it	is	helpful	to	list	the	commands	and

consider	them	oneby-one.	Here	are	some	of	them:

Identify	a	particular	portfolio	for	further	examination.

Browse	the	information	in	the	identified	portfolio.

Create	a	portfolio	or	delete	one.

Add	or	remove	a	position	from	the	open	portfolio.

The	first	command	requires	a	way	to	name	portfolios.

These	names	can	be	alphanumeric	strings,	since	such

strings	are	easy	for	users	to	enter	(or	to	show	to	users	in	a

menu).	The	user	can	use	a	name	to	identify	a	portfolio	of

interest;	we	will	refer	to	this	portfolio	as	the	open

portfolio.

To	carry	out	the	second	command	requires	deciding	how

information	about	a	portfolio’s	contents	is	presented	to

the	user.	One	possibility	is	to	present	all	of	it;	a	second	is

to	highlight	the	contents	by	indicating	what	stocks	are	in

the	portfolio,	and	then	allow	the	user	to	indicate	where

more	information	is	desired.	The	latter	approach	seems

better	since	it	allows	the	user	to	get	a	general	sense	of

what	is	in	the	portfolio.	Let’s	assume	that	the	customer

chooses	this	approach,	which	implies	that	we	need	a	way

to	identify	the	stocks.	An	obvious	way	to	identify	them	is

to	use	the	name	of	the	stock:	we	can	use	its	“ticker”	name,

the	name	used	by	the	stock	market.	However,	this

approach	is	possible	only	if	a	portfolio	can	contain	at

most	one	entry	for	a	specific	stock;	let’s	assume	this	is

true.	Thus,	the	program	informs	the	user	of	the	stocks	in

the	open	portfolio,	and	the	user	can	indicate	a	stock	of

interest.	Let’s	refer	to	this	stock	as	the	current	position.

We	also	need	to	decide	what	other	information	(besides

•	

•	

•	

•	



the	name	of	its	stock)	is	maintained	in	each	position.	We

need	to	know	the	number	of	shares	being	held	for	that

stock.	In	addition,	the	user	might	want	to	store	notes

about	the	stock	(e.g.,	the	date	and	price	when	the	stock

was	purchased),	but	let’s	assume	that	at	present	the

customer	does	not	want	to	store	such	notes.

The	customer	does	want	the	system	to	provide	stock	price

information,	however.	This	requirement	brings	up	the

question	of	how	price	information	is	obtained	and	how

often	it	is	refreshed.	One	possibility	is	to	have	the	user

enter	the	information,	but	this	is	error	prone	and

inconvenient.	Instead,	it	would	be	better	to	obtain	price

information	automatically.	Suppose	that	in	investigating

this	requirement,	we	discover	that	such	quotes	can	be

obtained	by	getting	in	touch	with	a	particular	Web	server.

Therefore,	we	decide	to	obtain	the	information	by

communicating	with	this	server;	each	communication

will	give	us	the	price	of	a	single	stock.

However,	remote	communication	has	a	cost,	and	it	seems

reasonable	to	retain	price	information	that	isn’t	too	old.

Therefore,	we	will	allow	the	user	to	indicate	when	he	or

she	wants	information	to	be	refreshed.	This	can	be	done

for	a	single	stock	(the	“current”	stock	in	the	current

portfolio)	or	for	all	stocks	in	the	current	portfolio.	An

implication	of	this	approach	is	that	price	information	is

not	necessarily	very	current;	to	convey	this	information

to	the	user,	it	seems	appropriate	to	associate	price

information	with	the	time	at	which	that	information	was

obtained.

Now	let’s	consider	the	remaining	commands.	We	need	to

be	able	to	record	the	buying	or	selling	of	some	stock

within	a	portfolio.	This	could	cause	an	entry	to	be	added

to	the	portfolio	or	removed	from	the	portfolio.	Or	it	could

simply	change	the	number	of	shares	for	some	stock	in	the

portfolio;	this	kind	of	change	probably	should	be	limited

to	affect	just	the	current	position.	We	also	need	to	create

and	delete	portfolios.	Creating	a	portfolio	could	make	the

new	portfolio	be	the	open	one;	this	seems	reasonable

since	the	user	most	likely	will	immediately	want	to	put



some	stocks	into	the	new	portfolio.	Similarly,	deleting	the

open	portfolio	makes	sense	since	the	user	probably	has

been	working	on	that	portfolio	(e.g.,	moving	its	positions

to	other	portfolios).

Finally,	let’s	consider	what	happens	when	the	user

terminates	the	current	session.	At	that	point,	we	must

store	the	portfolios	back	into	the	file	if	they	contain	any

modified	information	that	has	not	already	been	written	to

disk.

Now	that	we	have	finished	looking	at	how	the	program

behaves	in	the	normal	case	in	which	the	user	makes

nonerroneous	requests	and	the	program	is	behaving

properly,	the	next	step	is	to	consider	user	errors.	To	do

so,	we	simply	continue	with	our	scenario,	but	now	we

include	user	commands	that	are	wrong	for	some	reason.

The	user	might	make	a	number	of	errors.	For	example,

the	user	might	type	the	wrong	ticker	name	when

inserting	or	deleting	a	stock	or	might	enter	the	wrong

number	of	shares.	As	another	example,	the	user	might

ask	to	delete	a	portfolio	that	contains	investments.

The	system	can	reduce	the	potential	for	errors	in	several

ways.	First,	it	can	check	whether	the	arguments	are

correct.	For	example,	when	the	user	adds	a	new	stock	to	a

portfolio,	the	program	could	determine	whether	a	ticker

name	is	legitimate,	consulting	with	the	Web	server	if	the

name	is	one	that	it	doesn’t	already	know.	However,	not

all	incorrect	arguments	can	be	recognized;	for	example,

as	long	as	the	number	of	shares	being	bought	is	plausible

(e.g.,	positive),	the	program	can’t	recognize	whether	the

number	is	correct.	Second,	the	system	can	refuse	to	carry

out	potentially	erroneous	requests	(such	as	deleting	a

nonempty	portfolio).	Third,	it	can	double-check	with	the

user	before	carrying	out	a	request.	Fourth,	it	might	allow

changes	to	be	undone	after	the	fact.

To	decide	how	to	respond	to	user	errors,	we	must	prepare

a	list	of	options	and	consult	with	the	customer.	For	this

version	of	the	program,	let’s	assume	the	customer	has

decided	that	the	program	should	check	for	obvious	errors

(such	as	a	nonexistent	ticker	name)	and	should	disallow



deletion	of	nonempty	portfolios.	To	help	in	emptying	a

portfolio,	the	user	needs	a	way	to	move	a	position	from

one	portfolio	to	another.

We	also	need	to	consider	problems	due	to	system

malfunctions.	It	would	be	unfortunate	if	the

modifications	in	today’s	session	were	lost	in	a	computer

crash.	This	loss	can	be	avoided	if	each	modification	is

recorded	on	disk	immediately	(assuming	that	disk

crashes	are	rare	and	that	a	computer	crash	doesn’t	cause

a	disk	crash).	Or	the	loss	can	be	limited	if	the	user	has	the

ability	to	cause	writing	to	disk	while	the	session	is	active.

Either	of	these	options	is	plausible,	but	writing

immediately	(after	the	user	has	approved	the	change)	is

safer;	and	in	an	interactive	system,	the	cost	of	writing	to

disk	at	this	point	is	not	an	issue.	We	might	want	to	be

even	more	fault-tolerant—for	example,	writing	the

information	to	a	second	disk	just	in	case	there	is	a	media

failure.	Here	is	another	question	to	ask	the	customer.

Let’s	assume	that	writing	to	one	disk	right	after	each

change	is	what	is	wanted.

One	point	to	note	about	the	preceding	analysis	is	that	we

have	been	considering	performance	as	we	go	along.	For

example,	we	explicitly	decided	that	logging	information

to	disk	immediately	is	acceptable.	And	we	decided	that

since	communication	with	the	Web	server	is	costly,	we

would	do	so	on	user	request	only.

To	finish	the	requirements	analysis,	we	need	to	think

about	ways	in	which	the	requirements	are	likely	to

change	in	the	future.	Viable	alternatives	that	were

rejected	are	potential	changes,	but	we	need	to	look	for

other	changes	as	well.	Here	are	some	potential	changes:

Providing	an	undo	facility.	For	example,	we	could

maintain	a	log	of	user	updates	and	provide	a	way	to

display	the	log	and	to	undo	the	change	recorded	in	a

particular	log	entry.

Allowing	the	use	of	additional	Web	servers	to	look	up

prices.	The	difficulty	here	is	that	different	Web	servers

may	expect	different	communication	formats.	The

advantage,	of	course,	is	that	if	one	server	is	down	(or

•	

•	



ceases	service)	another	can	be	used.

Allowing	users	to	indicate	buy	and	sell	levels	for

various	stocks;	the	system	would	alert	the	user	if	the

current	price	exceeded	the	level	indicated.

Extending	the	system	to	allow	handling	of	mutual

funds.

Allowing	the	user	to	specialize	the	system	in	various

ways	(e.g.,	to	indicate	a	preferred	Web	server).

Extending	the	system	so	that	users	can	actually

purchase	and	sell	stock	through	it.

11.4	SUMMARY

We	began	this	chapter	with	a	description	of	the	software

life	cycle.	While	conceding	that	it	is	indeed	a	cycle,	and

that	it	is	desirable	to	start	later	phases	before	earlier	ones

are	complete,	we	emphasized	the	importance	of	doing	a

careful	requirements	analysis	of	some	part	of	the

program	before	starting	design	for	that	part	and	a	careful

design	of	some	portion	of	the	implementation	before

starting	that	implementation	work.

The	bulk	of	the	chapter	was	devoted	to	a	discussion	of

requirements	analysis.	We	usually	start	requirements

analysis	with	an	incomplete	understanding	of	what	the

customer	really	wants.	The	goal	of	analysis	is	to	deepen

our	understanding	so	that	we	end	up	with	a	product	that

matches	the	customer’s	needs.	Customers	should	be

consulted	during	analysis	because	they	are	the	ultimate

judges	of	what	is	required.

A	number	of	issues	must	be	considered	during

requirements	analysis:

The	program’s	behavior	must	be	defined	for	both

correct	and	incorrect	inputs.

Issues	related	to	hardware	and	software	errors,	such	as

availability	and	reliability	constraints,	must	be

explored.

Constraints	on	time	and	space	efficiency	must	be

pinned	down.	Performance	is	not	an	add-on	feature.	It

must	be	designed	in	from	the	start.

•	
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Scheduling	constraints	must	be	addressed.	The

customer’s	desired	delivery	schedule	for	the	software

or	part	of	the	software	may	well	have	an	impact	on	the

design	and	implementation.

It	is	useful	to	try	to	identify	those	parts	of	the

requirements	that	are	most	likely	to	change.

It	is	useful	to	know	whether	the	system	being	specified

is	the	first	of	a	number	of	similar	systems,	so	that	it

can	be	designed	in	a	way	that	will	allow	components	to

be	reused.

We	suggested	the	use	of	sample	sessions	or	scenarios	to

drive	the	analysis.	Scenarios	are	useful	because	they

provide	a	way	to	methodically	walk	through	how	the

system	behaves,	considering	first	the	case	of	no	errors

and	then	the	case	of	user	errors.	Finally,	we	considered

system	errors;	here	we	don’t	use	scenarios,	but	rather

make	up	a	list	of	possibilities.	We	illustrated	our

approach	by	a	simple	example,	the	stock	tracker.	In

addition	to	determining	system	behavior,	we	also

considered	its	performance	and	identified	potential

modifications.

The	requirements	analysis	process	is	a	difficult	one.	Our

discussion	was	far	from	thorough.	Involving	customers	in

a	productive	way	is	perhaps	the	most	difficult	and	critical

aspect	of	requirements	analysis.	It	involves	many	issues

that	are	beyond	the	scope	of	this	book.

The	outcome	of	requirements	analysis	is	a	description	of

the	product	to	be	built.	However,	the	description	we

ended	up	with	in	this	chapter	was	very	vague,	much	too

vague	to	be	confident	that	designers	could	understand

what	to	do.	What	we	need	now	is	a	more	precise

description.	The	next	chapter	describes	how	to	provide

requirements	specifications.

EXERCISES

11.1	Program	xref	produces	an	index	for	a	document:
For	each	word	containing	more	than	one	letter,	it

lists	the	word	followed	by	the	lines	in	which	it

appeared,	for	example,

•	

•	

•	



compiler	3,	17,	25,	…

				Carry	out	a	requirements	analysis	for	this	program

and	describe	the	result.

11.2	Consider	a	spelling	checker	that	will	compare	the

words	in	a	document	with	a	dictionary	to	identify

spelling	errors.	Carry	out	a	requirements	analysis

for	this	program	and	describe	the	result.

11.3	Consider	a	path	finder	program	that	gives

directions	on	the	best	way	to	get	from	point	A	to

point	B.	The	program	has	access	to	a	database	that

identifies	points	of	interest,	how	to	get	from	one

adjacent	location	to	another,	and	the	distance

involved.	Carry	out	a	requirements	analysis	for

this	program	and	describe	the	result.



12	Requirements	Specifications

In	the	preceding	chapter,	we	discussed	how	to	do

requirements	analysis.	This	activity	involved	interacting

with	a	customer	to	discover	what	the	product	being

developed	is	supposed	to	do.	The	result	of	the	analysis	is

a	requirements	document	that	captures	this

understanding.	The	most	important	part	of	the

requirements	document	is	a	requirements	specification.

This	chapter	describes	how	to	write	a	requirements

specification.

As	we	shall	see,	a	program	is	a	data	object,	and	its

specification	will	be	similar	to	those	we	have	already	seen

for	abstract	types.	Specifications	for	abstract	types	rely	on

the	overview	section	to	define	a	model	for	the	states	of

their	objects.	In	those	specifications,	we	were	able	to

make	use	of	simple	models	that	were	based	on	a	small	set

of	mathematical	concepts.	For	requirements

specifications,	however,	such	simple	models	aren’t

sufficient.	Now	we	need	to	model	the	state	of	an	entire

program.	This	state	often	has	a	complex	structure,	even

when	we	limit	our	concerns	to	just	that	part	of	the

structure	that	is	visible	to	users	of	the	program.	For

example,	users	of	a	file	system	need	to	understand	about

files	and	directories	and	how	they	are	connected	to	one

another.

Thus,	we	need	a	way	to	describe	the	program	state.	This

could	be	done	informally,	in	English,	but	such	a

definition	is	likely	to	be	both	imprecise	and	verbose.

Therefore,	we	make	use	of	a	different	technique:	we

define	the	program	state	by	means	of	a	data	model.	The

model	is	then	used	in	the	requirements	specification.

The	result	is	a	reasonably	precise	definition	of	what	is

required.	Such	a	specification	is	a	good	basis	for	program

design,	since	now	the	designer	is	likely	to	understand

what	to	build.	Furthermore,	the	exercise	of	defining	the

model	and	then	using	it	to	write	the	specification	is	a



valuable	part	of	the	requirements	analysis	process	since	it

brings	problems	to	the	attention	of	the	analyst.	This	leads

to	a	specification	that	reflects	more	careful	thinking

about	the	issues	and	is	more	likely	to	meet	the	customer’s

needs	as	a	result.

12.1	DATA	MODELS

A	data	model	consists	of	a	graph	and	a	textual	description

(see	Sidebar	12.1).	The	graph	defines	the	kinds	of	data

being	manipulated	and	how	they	are	related	to	one

another.	The	graph	and	textual	description	together

define	constraints	on	what	the	program	does.	Defining

these	constraints	forces	us	to	pay	attention	to	details	that

might	otherwise	be	overlooked	during	requirements

analysis.

The	graph	contains	nodes	and	edges.	The	nodes

represent	the	kinds	of	data	being	manipulated	by	a

program.	Each	node	is	a	named	set	of	items.	For

example,	a	data	model	for	a	file	system	would	contain	a

File	node,	representing	files,	and	a	Dir	node,
representing	directories.	Each	set	contains	all	items	that

exist	at	a	particular	moment	(e.g.,	all	files	in	existence	at

this	time).

The	items	in	the	sets	are	structureless;	no	detail	is	given

for	them,	except	by	means	of	relationships	to	other	sets.

The	edges	represent	these	relationships.	The	purpose	of

the	graph	is	to	provide	a	convenient	pictorial	mechanism

for	showing	the	relationships.	The	notation	also	allows

the	relationships	to	be	constrained	in	ways	that	will	be

explained	later.	Thus,	a	graph	expresses	certain	kinds	of

invariants.

The	model	describes	the	state	of	the	system.	This	state

may	change	over	time	(e.g.,	as	a	result	of	the	program

responding	to	a	user	request).	The	model	expresses	this

mutability	in	two	ways.	First,	the	sets	themselves	can

change:

1.	The	data	model	we	are	using	is	based	on	Alloy,	a	modeling	technique	defined	in	more	detail	in	Jackson,

Daniel,	Alloy:	A	Lightweight	Object	Modeling	Language,	MIT	Laboratory	for	Computer	Science	Technical

Report	797,	Cambridge,	Mass.,	Feb.	2000.

1



Sidebar	12.1	Components	of	a	Data	Model

A	data	model	contains:

Definitions	of	domains,	subsets,	and	relations

A	graph	that	shows	how	sets	and	relations	interrelate	and	defines	constraints	on	them

Definitions	of	derived	relations	and	additional	constraints

as	the	program	state	changes,	items	may	be	added	to	or

removed	from	sets.	Second,	the	relationships	between	the

sets	can	change.

12.1.1	Subsets

Some	sets	represented	by	nodes	in	the	graph	are	subsets

of	other	sets.	We	will	call	sets	that	have	no	supersets

domains.	Each	domain	is	disjoint	from	all	other	domains.

Subset	edges	are	used	to	indicate	that	one	set	is	a	subset

of	another.	We	represent	this	information	with	an	arrow

with	a	closed	head.	The	arrow	goes	from	the	subset	to	the

superset.	The	arrowhead	indicates	whether	the	subset

contains	all	elements	of	its	superset	(a	filled	arrowhead)

or	just	some	elements	of	the	superset	(an	unfilled

arrowhead).

Subsets	can	share	an	arrow;	in	this	case,	they	are

mutually	disjoint,	and	the	arrowhead	indicates	whether

or	not	their	union	exhausts	the	superset.	Subsets	that

don’t	share	an	arrow	are	not	necessarily	disjoint.

Three	constraints	are	useful	to	define	for	subsets.	First,

subsets	can	sometimes	be	fixed.	This	means	that	the

subset’s	membership	is	fixed	for	all	time;	the	subset

never	gains	or	loses	elements.	A	fixed	subset	is	indicated

by	double	lines	on	both	sides	of	its	node.

Second,	a	subset	can	be	static.	This	means	its

membership	is	determined	statically:	an	element	never

switches	between	belonging	to	the	subset	and	not

belonging	to	the	subset.	We	will	indicate	a	static	subset

by	double	lines	on	the	left	side	of	its	node.	Note	that	a

subset	that	is	fixed	is	also	static.

Third,	it	is	sometimes	useful	to	state	explicitly	how	many

elements	a	subset	contains.	This	can	be	done	by	writing

the	size	of	the	subset	within	the	box	for	its	node;	for

•	

•	

•	



example,	a	“1”	means	that	the	subset	contains	exactly	one

element,	while	“<=1”	means	the	subset	is	either	empty	or
contains	one	element.

Figure	12.1	Partial	graph	for	a	file	system

Figure	12.1	shows	some	of	the	subset	relations	and

constraints	for	a	file	system.	An	FSObject	(file	system
object)	can	be	either	a	file	or	a	directory.	These	two

subsets	are	disjoint	and	exhaust	their	superset.

Furthermore,	they	are	both	static:	a	file	system	object

cannot	switch	from	being	a	directory	to	being	a	file	or

vice	versa.

In	addition,	there	are	two	interesting	subsets	of	Dir.
Root	represents	the	root	directory;	this	directory	is	fixed
for	all	time	(and	thus	its	node	is	marked	as	fixed),	and

there	is	exactly	one	root	directory.	Cur	represents	the
current	directory.	There	is	at	most	one	current	directory,

and	different	directories	can	be	chosen	as	current	while

the	file	system	is	in	use.	Note	that	since	Root	and	Cur	do
not	share	an	arrow,	they	need	not	be	disjoint;	and

therefore	the	root	directory	could	be	the	current

directory.

12.1.2	Relations

Relations	are	used	to	indicate	how	items	of	a	set	are

related	to	items	in	other	sets.	They	are	represented	by

arrows	with	open	heads.	Each	relation	arrow	is	labeled

with	a	name.	Each	relation	has	a	source	(the	node	it

comes	from)	and	a	target	(the	node	it	points	at).	For

example,	there	might	be	a	contents	arrow	from	the



node	DirEntry	(representing	entries	in	directories)	to
the	node	FSObject,	indicating	that	a	directory	entry
names	a	file	system	object.	Here	DirEntry	is	the	source,
and	FSObject	is	the	target.

Relation	names	needs	not	be	unique	within	a	diagram,

except	that	if	two	relations	have	the	same	source,	they

should	have	distinct	names.

Sometimes	it	is	useful	to	define	the	inverse	of	a	relation.

For	example,	we	might	have	a	parent	relation	that	maps
a	directory	to	its	parent	directory	(each	directory	except

for	the	root	directory	has	a	parent	directory).	But	it	is	also

useful	to	define	a	children	relation	that	is	the	inverse	of
parent:	if	directory	d1	is	the	parent	of	d2,	then	d2	is	a
child	of	d1.	A	single	arrow	can	represent	both	a	relation
and	its	inverse.	The	label	on	the	arrow	names	the

primary	relation	and	the	inverse	relation.	We	use	the

notation	r1(~r2)	to	mean	that	r1	is	the	primary
relation	and	r2	is	its	inverse.	Thus,	for	a	file	system,	we
would	have	parent(~children).

The	graph	also	defines	the	multiplicity	and	mutability	of

the	relations.	Multiplicity	defines	the	number	of	items	a

relation	maps	to	or	from.	A	relation	actually	maps	to	a

set:	it	maps	an	item	in	the	source	to	a	set	of	items	in	the

target.	The	relation’s	multiplicity	defines	how	many	items

are	in	the	set.	For	example,	the	parent	relation	maps	to
at	most	one	directory	(since	root	has	no	parent,	and	all

other	directories	have	a	single	parent).	Multiplicity	is

indicated	by	annotating	the	relation	arrow	with	one	of	the

following	symbols:

!:	means	exactly	one

?:	means	zero	or	one

*:	means	zero	or	more

+:	means	one	or	more

Multiplicity	annotations	must	appear	on	both	ends	of	the

arrow.	An	annotation	on	the	target	end	explains	how

many	target	items	are	in	the	set	a	particular	source	item

maps	to.	An	annotation	on	the	source	end	explains	how

many	source	items	are	in	the	set	mapped	to	a	particular



target	item.

To	decide	what	symbols	to	use,	we	consider	the	ends

separately.	First,	we	consider	the	symbol	at	the	target	end

of	the	arrow	and	determine	the	size	of	the	set	that	a	single

source	item	maps	to.	For	example,	each	directory	entry

object	is	mapped	by	contents	to	a	single	file	system
object,	and	therefore	the	target	end	of	the	contents
arrow	will	be	labeled	with	!.	Then	we	consider	the	source
end	of	the	arrow.	We	simply	invert	the	relation,

considering	it	a	map	from	the	target	node	to	the	source

node,	and	we	ask	the	question:	how	many	source	items

are	in	the	set	mapped	to	a	single	target	item?	For

example,	a	file	system	object	might	be	referred	to	by

several	directory	entries,	but	the	root	directory	is	not

referred	to	by	any	directory	entry;	therefore,	we	would

mark	the	source	end	of	the	contents	arrow	with	a	*.

Relations	can	be	mutable	or	immutable.	A	relation	is

mutable	if	the	mapping	can	change—for	example,	if	a

source	item	can	be	associated	with	a	different	target	at

some	point	in	the	future.	Mutability	is	also	applied	at

both	ends	of	the	arrow:	if	the	target	associated	with	a

source	item	can	change,	the	target	end	is	mutable,	while

if	the	source	item	associated	with	a	particular	target	can

change,	the	source	end	is	mutable.

Here	are	some	examples	to	illustrate	these	constraints,

using	a	textual	representation	that	indicates	both

multiplicity	and	mutability:

			location:	Airport?	⇒	|	Location!
			socialSecurityNumber:	Person!	|	⇒	SSN*
			parent(~children):	Dir*	⇒			Dir?

These	relations	can	be	explained	as	follows.	Each	airport

is	located	at	a	distinct	location,	but	many	locations	aren’t

associated	with	any	airport;	also	an	airport	won’t	move,

but	a	new	airport	could	be	built	at	some	location	at	some

future	point.	Each	person	can	have	many	social	security

numbers	and	can	add	some	later,	but	any	particular

number	is	associated	with	a	single	person	and	that

association	can’t	change.	Finally	a	directory	has	at	most

one	parent	but	can	be	the	parent	of	many	directories;



furthermore,	both	of	these	associations	can	change.	Note

that	in	the	case	of	an	inverse,	we	give	the	constraints	for

the	primary	relation,	but	this	immediately	defines	them

for	the	inverse	as	well.

Figure	12.2	gives	a	simple	data	model	for	a	file	system.	In

addition	to	the	sets	already	discussed	(FSObject,	File,
Dir,	Root,	and	Cur),	we	have	DirEntry,	which	models
entries	in	directories;	Name,	which	models	the	names
used	within	directories	to	name	files	or	directories;	and

PathName,	which	models	pathnames	for	files	and
directories.

There	are	also	a	number	of	relations	in	the	model	in

addition	to	the	parent	relation	and	its	inverse
children,	which	were	discussed	earlier.	entries	maps
a	directory	to	its	entries.	An	entry	is	an	association

between	a	name	and	a	file	system	object;	name	maps	an
entry	to	the	name	it	contains,	while	contents	maps	the
entry	to	the	file	system	object	it	refers	to.	Furthermore,

first	selects	the	first	name	in	a	pathname,	and	rest
produces	the	rest	of	the	pathname	after	the	first	name

has	been	removed.

The	diagram	also	shows	the	decisions	we	made	about

constraints	on	the	relations.	For	example,	a	directory

contains	zero	or	more	entries,	and	entries	cannot	be

shared	among	directories.	Each	entry	contains	exactly

one	name	and	one	file	system	object,	but	the	same	name

or	file	system	object	can	appear	in	many	entries.

Furthermore,	an	entry	is	immutable:	its	mappings	to

Name	and	FSObject	cannot	be	changed.	This	last	point
reflects	a	decision:	users	can’t	change	the	binding	of	a

name	within	a	directory	entry.	However,	they	can	replace

an	entry	with	a	new	one	that	contains	a	different	binding

(since	entries	is	mutable).

Figure	12.2	Graph	for	the	file	system



Annotating	the	relations	forces	us	to	think	about	issues

that	might	otherwise	be	overlooked,	but	that	are

important	for	the	requirements.	For	example,	in	deciding

what	the	associated	symbols	are	for	the	parent	relation,
we	needed	to	decide	whether	the	parent	of	a	directory	can

change.	We	have	decided	that	it	can	change	(since	we	did

not	mark	the	relation	as	immutable).

Relations	map	source	elements	to	target	elements

without	any	additional	arguments.	When	arguments	are

needed,	there	are	two	ways	to	handle	them.	First,	we	can

introduce	an	extra	node	that	effectively	associates	the

argument	with	the	result.	This	is	what	we	did	when	we

introduced	DirEntry;	we	are	using	it	to	model	a	map
from	a	name	in	a	particular	directory	to	a	file	system

object.	The	other	approach	is	to	use	recursion.	For

example,	we	might	like	to	think	of	a	pathname	as	a

sequence	of	names,	but	modeling	this	would	require	a

relation	that	takes	an	integer	as	an	argument.	In	this

case,	we	instead	use	recursion,	effectively	treating	the

pathname	as	a	linked	list	rather	than	a	sequence.

Expressing	constraints	as	part	of	defining	the	diagram	is

particularly	useful	because	the	process	is	so	methodical:

we	simply	consider	every	subset	node	and	every	relation.

For	each	relation,	we	decide	for	each	end	what	its



multiplicity	is	and	whether	it	is	mutable.	Similarly	for

each	subset,	we	decide	about	its	mutability	(whether	it	is

fixed,	static,	or	unconstrained)	and	its	size.	However,	the

graph	does	not	usually	capture	all	constraints	that	a

model	must	satisfy.	These	extra	constraints	will	be

defined	textually,	as	explained	in	the	next	section.

12.1.3	Textual	Information

The	textual	information	consists	of	two	parts.	The	first

part	simply	explains	in	English	the	intended	meaning	of

each	set	and	relation.	Figure	12.3	shows	this	information

for	the	file	system.	Note	that	the	explanations	omit

information	in	the	graph,	such	as	the	subset	relationships

among	the	sets.	information	for	the	file	system.	Note	that

the	explanations	omit	information	in	the	graph,	such	as

the	subset	relationships	among	the	sets.

Figure	12.3	Descriptions	of	sets	and	relations	for	the	file	system

			Domains
			FSObject:	all	the	files	and	directories	in	a	file	system
			File:	all	files	in	a	file	system
			Dir:	all	directories	in	a	file	system
			Root:	the	root	directory
			Cur:	the	current	directory
			DirEntry:	entries	in	directories
			Name:	string	names	within	directory	entries
			PathName:	pathnames	for	directories	and	files

			Relations
			parent(~children):	gives	the	parent	directory	of	a	directory
			entries:	gives	the	entries	(name/file	system	object	pairs)	of	a	direc
tory
			name:	gives	the	name	of	a	directory	or	file	within	a	directory	entry
			contents:	gives	the	file	system	object	associated	with	a	name	in	a	di
rectory
			first:	gives	the	name	at	the	start	of	a	pathname
			rest:	gives	the	rest	of	the	pathname	(all	but	the	first	name)
			pn:	gives	the	pathnames	for	all	paths	starting	from	a	directory

The	second	part	defines	additional	constraints.	There	are

two	forms	of	constraints.	First,	some	relations	are

derived.	A	derived	relation	is	one	that	can	be	defined	in

terms	of	other	relations.	It’s	important	to	identify	derived

relations	because	this	reduces	the	size	of	the	model,

making	it	easier	for	people	to	understand.	Also,

identifying	derived	relations	reduces	the	number	of

additional	constraints.	Derived	relations	will

automatically	be	constrained	by	constraints	on	the

relations	that	define	them	and	vice	versa.

The	way	to	recognize	derived	relations	is	to	consider	each



relation	in	turn	and	ask	whether	it	can	be	defined	in

terms	of	the	other	relations.	For	the	file	system	model,

such	an	analysis	leads	to	identifying	two	derived

relations.	The	first	is	parent(~children):	a
directory’s	parent	is	the	directory	that	contains	an	entry

for	it:

			A	directory’s	parent	is	the	directory	that	contains	an	entry	for	it
						for	all	d:	Dir	[	d.parent	=	{	d2	|	d2	in	Dir	&&
										there	exists	e:	DirEntry	(e	in	d2.entries	&&
														d	=	e.contents	)	}	]

This	definition	makes	use	of	a	notational	shorthand:

when	a	set	has	just	one	member,	we	use	the	set	name	to

also	name	that	member.	Thus,	e.contents	is	used	to
stand	for	the	directory	that	is	the	single	element	of	that

set.

Note	that	d.parent	is	defined	to	be	a	set;	this,	of	course,
is	necessary	since	every	relation	maps	to	a	set.

Furthermore,	this	set	must	have	at	most	one	element,

since	the	graph	constrains	the	parent	relation	to	map	to
a	set	containing	at	most	one	element.	Once	we	have

defined	how	parent	is	derived	from	the	other	relations,
this	constraint	applies	to	them	as	well,	so	that	now	we

know	that	a	directory	can	be	contained	in	at	most	one

other	directory.

The	second	derived	relation	is	pn:

			d.pn	contains	all	pathnames	that	name	a	path	from	directory	d
						for	all	d:	Dir	[	d.pn	=	{	p	|	p	in	PathName	&&
										there	exists	e:	DirEntry	(	e	in	d.entries	&&
														p.first	=	e.name	&&
																(	p.rest	=	{	}	||	(	e.contents	in	Dir	&&
																				p.rest	in			e.contents.pn	)))	}	]

Now	we	are	ready	to	define	the	constraints.	Let’s	begin	by

constraining	the	structure	of	the	directory	hierarchy.	We

want	to	express	the	fact	that	the	root	directory	is	an

ancestor	of	every	directory	(except	itself),	and	there	are

no	cycles	in	an	ancestor	chain.	To	capture	this	constraint

precisely,	it	is	useful	to	define	a	helping	function:

			A	directory’s	ancestors	are	its	parent	and	its	parent’s	ancestors
						ancestors(d)	=	if			d	=	Root	then		{	}
																		else	d.parent	+	ancestors(d.parent)



(Recall	that	“+”	denotes	set	union.)	Here	again	we	use	the

notational	shorthand:	Root	is	used	to	denote	its	single
element,	the	root	directory.

Given	this	definition,	we	can	state	the	following:

			A	directory	is	not	its	own	ancestor	and	every	directory	but
			the	root	has	the	root	as	an	ancestor
						for	all	d:	Dir	[	!(d	in	ancestors(d))	&&
										(	d	=	Root	||	Root	in		ancestors(d)	)	]

This	constraint	is	interesting	because	it	tells	us	that	the

file	system	contains	only	the	root	directory	and	other

directories	accessible	from	the	root.	A	similar	constraint

limits	the	files	contained	by	the	system:

			Every	file	has	an	entry	in	some	directory
						for	all	f:	File	[	there	exists	d:	Dir,	e:	DirEntry
										(	e	in	d.entries	&&	f	=	e.contents	)	]

Together	these	constraints	say	that	the	only	file	system

objects	that	exist	are	those	accessible	by	a	path	from	the

root	directory.	For	a	user,	this	means	that	files	and

directories	that	become	unreachable	from	the	root	cannot

be	used;	for	an	implementor,	this	means	that	it	is	not

necessary	to	provide	storage	for	unreachable	objects.

We	also	want	to	constrain	the	contents	of	directories.

			A	directory	contains	at	most	one	entry	with	a	given	name
						for	all	d:	Dir,	e1,	e2:	DirEntry	[
										e1,	e2	in	d.entries	&&	e1.name	=	e2.name	=>	e1	=	e2	]

		A	directory	can	contain	at	most	one	entry	for	a	subdirectory
					for	all	d:	Dir,	e1,	e2:	DirEntry	[	e1,	e2	in	d.entries	&&
									e1.contents	in	Dir	&&	e1.contents	=	e2.contents
											=>	e1	=	e2	]

Note	that	we	have	written	the	constraints	both

informally,	in	English,	and	by	using	mathematical

notation.	As	was	the	case	with	rep	invariants,	it	is

acceptable	to	give	only	the	informal	definition,	providing

your	definitions	are	precise	and	understandable.

Figure	12.4	Constraints	for	the	file	system

			Derived	relations	and	helping	functions
			A	directory’s	parent	is	the	directory	that	contains	an	entry	for	it
						for	all	d:	Dir	[	d.parent	=	{	d2	|	d2	in	Dir	&&
										there	exists	e:	DirEntry	(e	in	d2.entries	&&	d	=	e.contents	)	}	]
			d.pn	contains	all	pathnames	that	name	a	path	from	directory	d
						for	all	d:	Dir	[	d.pn	=	{	p	|	p	in	PathName	&&
										there	exists	e:	DirEntry	(	e	in	d.entries	&&	p.first	=	e.name	&&
														(	p.rest	=	{	}	||	(	e.contents					in	Dir	&&	p.rest	in		e.contents.pn	)))	}	]
		A	directory’s	ancestors	are	its	parent	and	its	parent’s	ancestors



					ancestors(d)	=	if			d	in	Root	then	{	}	else	d.parent	+	ancestors(d.parent)

		Constraints
		A	directory	is	not	its	own	ancestor	and	every	directory	but
		the	root	has	the	root	as	an	ancestor
						for	all	d:	Dir	[	!
(d	in		ancestors(d))	&&	(	d	=	Root	||	Root	in					ancestors(d)	)	]
		Every	file	has	an	entry	]in	some	directory
						for	all	f:	File	[	there	exists	d:	Dir,	e:	DirEntry
										(	e	in						d.entries	&&	f	=	e.contents	)	]
		A	directory	contains	at	most	one	entry	with	a	given	name
						for	all	d:	Dir,	e1,	e2:	DirEntry	[	e1,	e2		in	d.entries	&&	e1.name	=	e2.name
										=>	e1	=	e2	]
		A	directory	can	contain	at	most	one	entry	for	a	subdirectory
						for	all	d:	Dir,	e1,	e2:	DirEntry	[	e1,	e2		in	d.entries	&&	e1.contents	
in						Dir	&&
											e1.contents	=	e2.contents	=>	e1	=	e2	]

Figure	12.4	gives	the	constraints	for	the	file	system.	The

constraints	do	not	include	everything	that	is	true	about

the	file	system.	For	example,	it	is	true	that	the	root

directory	does	not	have	a	parent,	and	that	every	other

directory	has	exactly	one	parent.	However,	this	fact	can

be	proved	from	the	constraints	already	stated,	namely,

the	constraint	on	ancestors	and	the	multiplicity

constraint	on	parents.

It’s	easier	to	forget	about	a	textual	constraint	than	those

expressed	directly	in	the	graph	because	there	is	no	way	to

be	as	methodical	about	them.	Instead,	you	need	to	think

about	all	groups	of	relations	and	whether	any	other

constraints	are	needed	for	them.

12.2	REQUIREMENTS	SPECIFICATIONS

A	requirements	specification	is	concerned	with

describing	how	the	program	interacts	with	its	state	to

carry	out	operations,	where	each	operation	corresponds

to	a	user	request.	For	example,	a	specification	of	a	file

system	must	explain	what	happens	to	files	and	directories

as	users	read	and	write	files,	and	access	and	modify

directories.	Sidebar	12.2	summarizes	the	contents	of	a

requirements	specification.

There	are	two	kinds	of	operations.	Static	operations	start

“from	scratch”—that	is,	when	the	application	is	not

already	running.	Dynamic	operations	are	used	only	after

the	application	is	already	running.	The	former

correspond	roughly	to	static	methods	and	constructors,

while	the	latter	correspond	roughly	to	instance	methods.

For	example,	in	a	file	system	there	will	be	static



operations	to	create	a	new	file	system,	or	to	recover	a	file

system	after	a	system	failure,	and	there	will	be	dynamic

operations	to	interact	with	the	file	system	once	it	is

running—for	example,	to	create	or	remove	a	directory	or

to	make	a	directory	the	current	directory.

Thus,	an	application	corresponds	to	a	data	abstraction,

although	in	addition	there	might	be	some	static

operations	that	do	not	correspond	to	constructors,	and

sometimes	all	operations	will	correspond	to	static

methods	(and	in	this	case,	there	might	be	just	one

method).	In	any	case,	the	data	model	is	used	to	explain

the	behavior	of	the	operations.

Before	we	can	write	the	specification,	we	need	to	consider

two	issues.	The	first	concerns	how	the	application	is

intended	to	be	used.	If	the	operations	are	intended	to	be

called	by	programs,	each	operation	will	be	defined	as	a

static	method,	constructor,	or	instance	method.	In	this

case,	the	specification	will	be	like	what	we	have	seen

before,	except	that	it	will	refer	to	the	model,	since	this

defines	the	state	of	the	abstraction’s	objects.

Sidebar	12.2	Contents	of	a	Requirements	Specification

A	requirements	specification	contains	specifications	for	static	and	dynamic	operations.

If	the	specification	is	for	an	interactive	program,	the	operations	are	limited	to	string	arguments
and	no	results,	and	their	specifications	can	include	a	checks	clause	to	identify	conditions	that
must	hold	for	the	operation	to	run.

The	operation	specifications	are	based	on	the	data	model,	and	they	must	satisfy	its	constraints.

However,	if	the	program	is	only	intended	to	be	used

interactively,	we	do	not	specify	it	in	the	usual	way.	In	this

case,	the	operations	are	limited.	They	are	allowed	to	have

string	arguments,	but	they	have	no	other	types	of

arguments	and	no	results;	instead,	their	result	is	made

visible	to	the	user	by	some	change	in	the	user	interface.

Furthermore,	the	specifications	do	not	give	details	about

how	the	operations	are	used	via	the	user	interface;	we

avoid	giving	these	details	because	they	are	likely	to

change	(e.g.,	if	the	application	is	provided	for	more	than

one	platform).

A	program	is	sometimes	intended	to	be	used	interactively

and	also	to	be	called	by	programs.	In	this	case,	we	must

•	

•	

•	



provide	specifications	of	both	the	interactive	operations

and	the	normal	methods.

The	second	issue	concerns	the	selection	of	external	data

formats	for	use	in	communicating	with	users;	all	such

formats	are	constraints	on	strings.	For	example,	we	want

formats	for	names	and	pathnames	in	a	file	system.	For

some	applications,	the	choice	of	format	might	be	left	up

to	the	provider	of	the	user	interface,	but	generally	it	is	a

good	idea	to	define	the	formats	in	the	requirements

specification	to	provide	uniformity	from	one	user

interface	to	another.

Figure	12.5	defines	some	simple	formats	for	a	file	system

and	then	presents	specifications	of	a	few	simplified	file

system	operations	that	are	intended	to	be	used	from	the

user	interface.	We	use	different	notation	and	conventions

in	these	specifications	because	these	operations	are

somewhat	different	from	normal	methods.	First,

operations	almost	always	modify	the	state,	and	therefore

we	omit	the	modifies	clause	since	it	conveys	little

information.	Second,	operations	must	be	total;	if	a

problem	exists,	they	must	find	out	about	it	and	notify	the

user.	Since	operations	are	total,	their	specifications	will

not	include	requires	clauses.	However,	they	make	use	of	a

new	kind	of	clause,	a	checks	clause.	This	clause	identifies

the	conditions	that	the	operation	must	check	for;	if	the

conditions	do	not	hold,	the	operation	must	bring	the

problem	to	the	attention	of	the	user	via	the	user	interface.

We	do	not	specify	the	form	of	the	interaction	with	the

user	since	this	will	differ	with	the	form	of	the	user

interface.

In	the	specifications,	the	operations	are	divided	into	the

two	categories	of	static	and	dynamic	operations.	Their

specifications	refer	to	the	model	(e.g.,	the	specification	of

makeDirInCur	refers	to	Cur)	and	make	use	of	the
format	constraints	for	Name	and	PathName,	using	the
notation	NAME(n)	or	PATHNAME(p);	these	predicates
return	true	if	their	argument	has	the	proper	format.

Figure	12.5	Specifications	of	some	file	system	operations

			//	Format	restrictions:



			//	NAME:	A	nonempty	string	of	printable	characters	not	containing	the
	character	/
			//	PATHNAME:	A	nonempty	sequence	of	NAMEs	separated	by	/	and	beginnin
g
			//				either	with	/	(meaning	the	name	starts	from	the	root)	or	with
			//				a	NAME,	meaning	the	pathname	starts	from	the	current	directory.

			//	Static	Operations
			start(	)
						//	EFFECTS:	Creates	a	new	file	system	consisting	of	just	the	root
						//				directory,	and	this	directory	is	empty.

			//	Dynamic	Operation
			makeDirInCur(String	n)
						//	CHECKS:	NAME(n)	and	there	is	a	directory	c	in	Cur	and	n	is	not	
defined	in	c
						//	EFFECTS:	Creates	a	new	directory	and	enters	it	with	name	n	in	c	.

		makeCurFromRoot(String	p)
					//	CHECKS:	p	is	a	pathname	leading	from	the	root	to	a	directory	d
					//	EFFECTS:	makes	d	be	the	current	directory.

		deleteDir(	)
					//	CHECKS:	There	is	a	directory	c	in	Cur	and	c	is	empty	and	is	not	
the	root
					//	EFFECTS:	Removes	entry	for	c	from	its	parent	and	sets	Cur	=	{	}.

All	operations	must	preserve	the	constraints	of	the	data

model,	including	both	constraints	defined	in	the	graph

and	ones	defined	textually.	Each	operation	definition

should	be	examined	and	its	impact	on	the	state	validated

against	the	constraints	to	ensure	that	all	of	them	are

preserved;	as	usual	in	doing	such	an	analysis,	the

constraints	can	be	assumed	to	hold	on	the	state	when	the

operation	starts	running.	In	doing	the	analysis,	start	with

the	checks	clause;	it	must	contain	enough	checks	to	rule

out	conditions	that	if	not	checked	would	cause	the

operation	to	violate	some	constraint	or	otherwise	not

make	sense.	Then	consider	whether	the	modifications

described	in	the	effects	clause	will	lead	to	a	state	that

satisfies	the	constraints.	The	effects	clause	must	describe

all	modifications	made	by	the	operation	except	for

modifications	to	derived	relations;	modifications	to

derived	relations	follow	from	modifications	to	relations

they	depend	on.

For	example,	makeDirInCur	enters	the	new	directory
under	name	n	in	the	current	directory.	Its	checks	clause
rules	out	erroneous	situations,	such	as	no	current

directory	or	name	already	in	use;	the	operation	will	check

for	these	conditions	and	notify	the	user	if	they	occur.

Since	the	effects	clause	does	not	state	that	Cur	changes,
we	can	assume	that	it	stays	the	same	(i.e.,	the	same



directory	c	that	was	the	current	directory	before	the
operation	ran	is	still	the	current	directory	when	it

finishes).	However,	we	also	know	that	c.pn	changes	and
that	c	is	the	parent	of	the	new	directory,	since	these
relations	are	derived	from	relations	that	do	change.	As

another	example,	consider	the	deleteDir	operation,
and	note	how	it	explicitly	answers	the	question	of	what

happens	to	Cur.

If	an	operation	does	not	preserve	a	constraint	or	does	not

explain	the	effect	on	the	state	completely,	its	specification

needs	to	change,	or	perhaps	some	constraints	in	the

model	need	to	be	redefined.	In	either	case,	interaction

with	the	customer	may	be	required	to	figure	out	what	to

do.	The	result	will	be	a	specification	that	is	more	likely	to

describe	what	the	customer	wants.

The	specification	in	Figure	12.5	is	incomplete;	many

other	operations	are	needed;	and	in	addition,	since	a	file

system	is	also	used	from	programs,	there	must	be

specifications	of	the	methods	used	by	programs.	These

methods	will	have	specifications	that	follow	our	normal

conventions:	they	must	have	a	modifies	clause	if	they

modify	anything,	and	they	do	not	have	a	checks	clause.

However,	their	specifications	are	similar	to	those	of	their

counterparts	that	are	used	from	a	user	interface,	with

changes	to	reflect	obvious	differences	(e.g.,	they	may	take

different	types	of	arguments,	and	they	may	return	results

or	throw	exceptions).

In	addition	to	the	specification	of	the	data	abstraction

that	corresponds	to	the	application	as	a	whole,	we	must

give	specifications	of	any	new	object	types	that	are

externally	visible	in	the	sense	that	their	objects	will	be

used	by	other	programs.	For	example,	the	requirements

specification	for	a	file	system	would	define	file	and

directory	types,	with	a	full	set	of	methods	that	allow	them

to	be	used	conveniently.	These	types	will	correspond	to

certain	sets	in	the	model,	and	the	model	can	be	used	as	a

guide	to	defining	methods.	But	one	needs	to	go	beyond

the	model	since	it	is	necessary	to	think	about	user	needs

in	interacting	with	the	type	being	defined,	just	as	was



discussed	earlier	in	the	book.	The	specifications	for	these

types	will	be	like	specifications	of	normal	abstract	types

except	that	they	can	be	written	in	terms	of	the	data

model.	For	example,	the	specification	of	the	method	that

creates	a	subdirectory	of	directory	d	might	state	that	d	is
the	parent	of	the	new	directory.

12.3	REQUIREMENTS	SPECIFICATION	FOR	STOCK
TRACKER

This	section	gives	the	data	model	and	requirements

specification	for	the	stock	tracker.

12.3.1	The	Data	Model

The	requirements	analysis	for	the	stock	tracker	(see

Section	11.3)	determined	that	there	could	be	many

portfolios,	each	with	a	distinct	name.	One	of	the

portfolios	could	be	open.	The	user	could	inspect	or

modify	the	open	portfolio,	make	a	position	in	the	open

portfolio	be	the	current	one,	and	could	then	inspect	or

modify	the	current	position.	The	user	could	also	create	or

delete	a	portfolio.

Figure	12.6	explains	the	domains	and	relations	for	the

stock	tracker,	and	Figure	12.7	gives	its	graph.	The	graph

indicates	that	there	is	at	most	one	open	portfolio	and	at

most	one	current	position.	The	multiplicity	constraints

are	mostly	obvious	and	uninteresting,	but	some	reflect

decisions	that	weren’t	discussed	previously	but	that	must

be	made	during	requirements	analysis;	defining	the

model	brings	these	decisions	to	the	attention	of	the

analyst.	For	example,	should	we	allow	more	than	one

name	for	a	portfolio?	The	graph	indicates	that	this	is	not

allowed	and	also	that	the	name	of	a	portfolio	cannot

change.	Another	decision	reflected	in	the	graph	is	that

every	position	has	an	associated	quote;	this	constraint	is

interesting	because	it	implies	that	when	a	position	is

added	to	a	portfolio,	the	system	will	need	to	obtain	a

quote	for	it.

The	constraints	for	the	stock	tracker	are	given	in	Figure

12.8.	The	figure	indicates	that	value	and	folioValue
are	derived	(the	notation	fToD	denotes	a	function	that



converts	the	price	given	as	a	fraction	into	a	decimal	dollar

amount).	As	was	the	case	in	the	graph,	some	of	the

textual	constraints	reflect	previously	made	decisions,

while	others	require	the	analyst	to	make	additional

decisions.	For	example,	we	had	already	decided	that	a

portfolio	contains	at	most	one	position	for	a	given	ticker

name	and	that	the	open	portfolio	must	belong	to	the

current	position.	The	other	constraints	represent	new

decisions.	They	indicate	that	different	positions	for	the

same	stock	have	the	same	price	and	that	all	positions

have	non-negative	amounts	of	stock	and	non-negative

price.	Both	of	these	constraints	are	interesting.	The	first

one	implies	that	when	the	tracker	obtains	a	price	for	a

stock,	this	information	must	be	reflected	in	positions	in

other	portfolios	that	are	for	the	same	stock.	The	second

constraint	allows	a	position	that	contains	zero	shares;

this	makes	it	possible	for	a	user	to	track	the	quote	for	a

stock	without	owning	any	of	that	stock.	The	second

constraint	also	implies	that	the	tracker	must	cope

somehow	with	a	negative	price	(should	it	ever	receive	one

from	the	Web	server);	it	could	either	set	the	price	to	zero

or	leave	the	old	price	in	place.	Let’s	assume	the	former

since	it	will	work	even	for	a	newly	purchased	stock.

Figure	12.6	Domains	and	relations	for	the	stock	tracker

			Domains
			Folios:	the	set	of	named	portfolios
			Name:	names	of	portfolios
			Folio:	a	portfolio
			Open:	the	open	portfolio
			Position:	a	position	within	a	portfolio
			Cur:	the	current	position	within	a	portfolio
			Ticker:			stock	ticker	names
			Quote:	a	price	for	a	stock	at	a	particular	time
			DateTime:				a	date	and	time
			Price:	prices	of	stocks
			Num:			numbers	of	shares
			Dollar:	dollar	values

			Relations
			name:	the	name	of	a	portfolio
			folio:	the	portfolio	associated	with	a	name	in	Folios
			contents:	the	positions	in	a	portfolio
			ticker:		the	ticker	name	of	a	position
			quote:	the	quote	for	a	position
			price:	the	price	of	a	position
			time:	the	date	and	time	of	a	quote	for	a	position
			amount:	the	number	of	shares	of	a	position
			value:	the	dollar	value	of	a	position
			folioValue:	the	dollar	value	of	a	portfolio

Figure	12.7	Graph	for	the	stock	tracker



The	constraints	record	decisions	that	must	be	made	as

part	of	requirements	analysis.	For	example,	we	might

have	decided	that	different	portfolios	could	not	contain

positions	for	the	same	stock,	or	alternatively	that	the

same	portfolio	could	contain	more	than	one	position	for

the	same	stock.	The	constraints	document	the	decisions

that	were	actually	made,	and	the	need	to	consider

constraints	helps	the	analyst	to	focus	on	issues	that	must

be	resolved	during	the	requirements	phase.

Figure	12.8	Constraints	for	the	stock	tracker

			Derived	Relations
			The	value	of	a	position	reflects	its	amount	and	price
							for	all	p:	Position	[	p.value	=	p.amount	*	fToD(p.quote.price)	]
			The	value	of	a	portfolio	reflects	the	values	of	its	positions
							for	all	f:	Folio	[	f.folioValue	=	sum(p.value	for	all	p	in	f.contents)	]

		Constraints
		A	portfolio	contains	at	most	one	position	for	a	particular	stock
						for	all	f:	Folio,	p1,	p2:	Position	[	p1,	p2	in		f	&&	p1.ticker	=	p2.ticker
					=>	p1	=	p2	]
		The	current	position	must	belong	to	the	open	portfolio
						Cur	!=	{	}	=>	(	Open	!=	{	}	&&	Cur	in		Open.contents	)
		All	positions	for	the	same	stock	have	the	same	quote



						for	all	p1,	p2:	Position	[	p1.ticker	=	p2.ticker	=>	p1.quote	=	p2.quote	]
		All	positions	have	a	non-negative	amount	and	a	non-negative	price
					for	all	p:	Position	[	p.amount	>=	0	&&	p.quote.price	>=	0	]

12.3.2	Stock	Tracker	Specification

Since	the	stock	tracker	is	a	purely	interactive	program,

there	is	no	need	to	define	any	types	for	things	like

portfolios	and	positions,	since	they	will	not	be	used	by

other	programs.	We	do	need	to	define	the	formats	for

data	items	that	users	must	enter.	There	are	only	three

such	formats.	NUM	must	be	a	nonnegative	integer,	and

NAME	must	be	an	alphanumeric	string.	We	don’t	need	to

define	a	format	for	TICKER	since	that	is	defined

elsewhere	(by	the	stock	market).	Note	that	no	format	is

provided	for	the	file	that	stores	the	state	of	the	stock

tracker	when	it	isn’t	running,	since	no	program	except

the	stock	tracker	ever	needs	to	examine	that	file.

The	requirements	specification	for	the	stock	tracker	is

shown	in	Figures	12.9	and	12.10.	Note	how	the

specification	ensures	that	the	operations	satisfy	the

constraints.	For	example,	the	specification	of	addStock
preserves	the	constraint	that	there	is	at	most	one	entry	in

a	portfolio	for	a	particular	stock.	Also,	the	specifications

for	getPrice	and	getPrices	ensure	that	all	positions
for	a	particular	stock	have	the	same	quote.

Figure	12.9	First	part	of	specification	of	tracker	operations

			//	Modifications	are	written	to	disk	as	they	occur.	When	the	stock	tr
acker
			//	runs,	it	starts	in	the	end	state	from	the	last	time	it	ran.

			//	Static	Operations
			startTracker(	)
								//	EFFECTS:	Starts	the	tracker	running	with	the	end	state	from	i
ts	last	run.
			//	Dynamic	Operations
			createFolio(String	f)
								//	CHECKS:	NAME(f)	and	f	not	in	use	in	Folios
								//	EFFECTS:	Creates	an	empty	portfolio	named	f	and	makes	it	be	t
he
								//				open	portfolio.

			deleteFolio
								//	CHECKS:	There	exists	a	portfolio	f	in	Open	and	f			is	empty
								//	EFFECTS:	Deletes	f,	removes	its	entry	from	Folios,	and	sets				Open	=	{	}.

			openFolio(String	f)
								//	CHECKS:	f	names	a	portfolio
								//	EFFECTS:	Makes	f	be	the	open	portfolio	and	sets	Cur	=	{	}.

			selectStock(String	t)
								//	CHECKS:	There	exists	a	portfolio	f	in	Open	and	t	names	a	stoc
k	in	f
								//	EFFECTS:	Makes	t’s	position	in	f	be	the	current	position.



			buyStock(String	n)
								//	CHECKS:	NUM(n)	and	there	exists	a	position	p	in	Cur
								//	EFFECTS:	Increases	shares	for	p	by	n.

			sellStock(String	n)
								//	CHECKS:	NUM(n)	and	there	exists	position	p	in	Cur	and	n	<=	p.amount
								//	EFFECTS:	Decreases	shares	of	p	by	n.

		addStock(String	t,	String	n)
								//	CHECKS:	NUM(n)	and	there	exits	a	portfolio	f	in	Open	and	t	na
mes
								//				a	stock	that	is	not	in	f
								//	EFFECTS:	Adds	a	position	for	t	with	n	shares	to	f		and	gets	a
	quote	for
								//					t	from	the	web	server	if	no	quote	for	that	stock	is	curre
ntly	known.

	deleteStock
								//	CHECKS:	There	exists	position	p	in	Cur
								//	EFFECTS:	Removes	p	from	Open	and	sets	Cur	=	{	}.

Figure	12.10	Rest	of	specification	of	tracker	operations

			moveStock(String	f,	String	t)
								//	CHECKS:	f	names	a	portfolio	and	there	exists	portfolio	f1	in	Open	
and	f	!=	f1
								//				and	t	names	a	position	in	f
								//	EFFECTS:	Removes	t’s	position	from	f.	If	t	has	a	position	in	f1,	
adds
								//					n	shares	to	that	position,	where	n	is	the	number	of	share
s	in	the
								//				deleted	position,	else	adds	a	position	for	t	to	f1	with	n	
shares.

		getPrice
								//	CHECKS:	There	exists	a	position	p	in	Cur
								//	EFFECTS:	Uses	the	Web	server	to	update	the	price	of	p	and
								//				all	other	positions	for	that	stock.

		getPrices
								//	CHECKS:	There	exists	portfolio	f	in	Open
								//	EFFECTS:	Uses	the	Web	server	to	update	the	prices	of	all	posi
tions	in	f.
								//				Also	updates	prices	of	all	other	positions	for	those	stock
s.

12.4	REQUIREMENTS	SPECIFICATION	FOR	A
SEARCH	ENGINE

This	section	explores	a	second	example,	a	search	engine

that	allows	the	user	to	run	queries	against	a	collection	of

documents.	It	describes	both	an	abbreviated

requirements	analysis	and	the	resulting	requirements

specification.

As	usual,	we	begin	our	analysis	by	a	scenario

representing	normal	case	behavior.	Suppose	the	user

starts	a	session	with	the	search	engine.	The	first	question

that	comes	up	concerns	whether	the	engine	already	has	a

collection	of	documents	that	it	remembers	from	the	last

time	it	ran.	Let’s	assume	that	the	customer	is	interested



only	in	new	searches.	Therefore,	the	first	thing	the	user

must	do	is	identify	some	documents	of	interest.	Let’s

assume	that	this	is	done	by	presenting	a	URL	of	a	site

containing	documents;	the	engine	will	run	searches

against	all	of	those	documents.	Furthermore,	the

customer	is	interested	in	multisite	searches;	therefore,

the	user	can	present	additional	URLs	of	document-

containing	sites,	and	the	engine	will	increase	its

collection	as	a	result.	The	customer	indicates	that	the

collection	can	be	enlarged	at	any	time,	not	just	at	the

start	of	a	session,	and	that	there	is	no	interest	in

removing	documents	from	the	collection.

The	customer	indicates	that	a	user	should	be	able	to

search	the	collection	for	a	document	with	a	particular

title.	However,	the	main	purpose	of	the	engine	is	to	run

queries	against	the	collection,	which	means	we	have	to

decide	what	a	query	is.	In	consultation	with	the	customer,

we	determine	that	a	query	begins	by	the	user	presenting	a

single	word,	which	we	will	refer	to	as	a	keyword.	The

customer	indicates	that	many	words	are	uninteresting

(e.g.,	“and”	and	“the”)	and	will	not	be	used	as	keywords.

The	customer	expects	the	search	engine	to	know	what	the

uninteresting	words	are	without	any	user	intervention;

thus,	it	must	have	access	to	some	storage,	such	as	a	file,

that	lists	the	uninteresting	words.

The	system	responds	to	a	query	by	presenting

information	about	what	documents	contain	the	keyword.

This	information	is	ordered	by	how	many	times	the

keyword	occurs	in	the	documents.	The	system	does	not

present	the	actual	documents,	but	rather	provides

information	so	that	the	user	can	examine	the	matching

documents	further	if	desired.

However,	the	ability	to	query	using	a	single	keyword	is

quite	limited,	and	the	customer	also	requests	the	ability

to	“refine”	a	query	by	providing	another	keyword;	the

matching	documents	must	contain	all	the	keywords.	The

customer	rules	out	more	sophisticated	queries,	such	as

queries	that	match	documents	containing	any	one	of

their	keywords	or	queries	that	require	the	keywords	to	be



adjacent	in	the	document	in	order	for	there	to	be	a

match.	However,	such	queries	are	likely	in	a	later	release

of	the	product.

Now	we	need	to	consider	user	and	system	errors,	and

also	performance.	The	main	performance	issue	is	how	to

carry	out	the	queries;	the	customer	wants	it	to	be	done

expeditiously.	This	requirement	has	two	implications.

First,	the	program	must	contain	data	structures	that

speed	up	the	process	of	running	a	query.	Second	(and

more	important)	is	the	question	of	whether	querying

requires	visiting	the	Web	sites	containing	the	documents.

The	customer	indicates	that	this	should	not	happen;

instead,	the	query	should	be	based	on	information

already	known	to	the	search	engine.	One	implication	of

this	decision	is	that	the	collection	might	not	be	up	to

date.	A	site	might	have	been	modified	since	the	search

engine	was	told	about	it,	and	queries	will	not	reflect	the

modifications:	they	will	miss	newly	added	documents	or

find	documents	that	no	longer	exist.	The	customer

indicates	that	this	is	acceptable	but	that	tracking

modifications	might	be	desired	in	a	future	release.	The

customer	also	indicates	that	all	information	about

documents	should	be	stored	at	the	search	engine,	so	that

if	a	query	matches	a	document,	the	user	will	be	able	to

view	the	document	even	if	it	no	longer	exists	at	the	site

from	which	it	was	fetched.	One	point	to	note	about	these

decisions	is	that	a	trade-off	is	being	made	between	speed

of	processing	queries	versus	the	space	taken	for	storing

documents	at	the	search	engine.

Now	let’s	consider	errors.	There	aren’t	any	interesting

system	errors:	the	system	has	some	persistent	storage

containing	information	about	uninteresting	words,	but

this	storage	is	not	modified	and	the	customer	is	not

concerned	about	media	failures.	Furthermore,	the

customer	indicates	that	it	is	acceptable	for	the	search

engine	to	simply	fail	if	something	goes	wrong.

There	are	interesting	user	errors,	however.	The	user

could	enter	an	uninteresting	word	as	a	keyword	or	could

enter	a	word	not	in	any	document;	the	customer	indicates



that	the	user	should	be	told	about	the	error	in	the	first

case,	but	that	in	the	second	case,	the	response	will	simply

be	an	empty	set	of	matches.	The	user	might	also	present	a

URL	for	a	site	that	doesn’t	exist,	that	doesn’t	contain

documents,	or	that	has	already	been	added	to	the

collection;	all	of	these	actions	should	result	in	the	user

being	notified	of	the	error.	The	customer	indicates	that	it

is	acceptable	if	a	document	is	found	at	multiple	sites	and

that,	in	this	case,	the	document	will	end	up	in	the

collection	just	once.	Two	documents	are	considered	to	be

the	same	if	they	have	the	same	title;	again,	a	later	release

might	handle	things	differently.

Now	that	we	have	a	rough	idea	of	what	the	search	engine

is	supposed	to	do,	we	are	ready	to	write	the	requirements

specification.	As	we	do	so,	we	will	uncover	a	number	of

issues	that	were	overlooked	in	the	analysis	but	must	be

resolved	to	arrive	at	a	precise	specification.	Thus,	the

process	of	writing	the	requirements	specification,

including	the	definition	of	the	data	model,	is	an	intrinsic

and	important	part	of	the	requirements	analysis	process.

The	sets	and	relations	for	the	search	engine	are	defined	in

Figure	12.11	and	the	graph	is	given	in	Figure	12.12.	A

document	has	a	title,	some	URLs	(of	the	sites	from	which

it	was	obtained),	and	a	body;	a	body	is	a	sequence	of

words.	The	NK	node	represents	the	uninteresting	words;
this	set	is	fixed	(its	membership	never	changes).	Match
represents	the	set	of	documents	that	match	the	current

query;	Key	is	the	set	of	keywords	used	in	this	query.	Key
and	NK	are	disjoint	(a	keyword	is	never	an	uninteresting
word),	but	they	do	not	exhaust	Word	(since	at	any
moment,	many	words	in	documents	are	neither	keywords

nor	uninteresting	words).	Cur	is	a	document	that	was
identified	by	title	as	being	of	current	interest;	CurMatch
is	a	Match	that	is	currently	being	examined.

The	constraints	for	the	search	engine	are	given	in	Figure

12.13.	We	can	see	that	sum	is	a	derived	relation:	it	is	the
sum	of	the	number	of	occurrences	of	each	keyword	in	the

document.	The	constraints	indicate	that	the	indexes	in

Match	and	Entry	are	unique,	that	documents	are	in



Match	only	if	a	query	is	occurring,	that	the	documents	in
Match	are	exactly	those	that	contain	all	the	words	in
Key,	and	that	the	ordering	of	documents	in	Match
reflects	the	number	of	occurrences	of	keywords	in	the

documents.

Figure	12.11	Sets	and	relations	for	the	search	engine

			Domains
			Doc:	the	set	of	documents
			URL:	the	URLs	of	sites	where	documents	were	found
			Title:	the	title	of	a	document
			Entry:	the	entries	(word/index	pairs)	in	a	document
			Num:	positive	integers
			Word:	words	in	documents
			NK:	uninteresting	words
			Key:	keywords	used	in	current	query
			Match:	documents	matching	keywords	of	current	query
			Cur:	document	currently	being	examined
			CurMatch:	match	currently	being	examined

		Relations
		site:	the	URLs	of	sites	containing	a	document
		title:	the	title	of	a	document
		body:	the	entries	that	make	up	the	contents	of	a	document
		index:	the	index	of	an	entry	in	Entry
		wd:	the	word	of	an	entry	in	Entry
		doc:	the	document	of	an	entry	in	Match
		ind:	the	index	of	an	entry	in	Match
		sum:	the	count	of	the	occurrences	of	keywords	in	a	match.

The	requirements	specification	for	the	search	engine	is

given	in	Figure	12.14.	The	specification	does	not	give

information	about	formats;	we	are	assuming	a	standard

format	for	URLs	and	a	simple	format	for	documents.	For

example,	words	in	documents	are	whatever	appears

between	white	space	or	HTML	control	characters,	and

the	sections	of	a	document	(title,	authors,	body)	are

separated	in	a	simple	way.	The	specification	indicates

that	the	search	engine	knows	about	uninteresting	words

via	some	private	file	and	that	it	has	no	other	persistent

state.

Figure	12.12	Graph	for	the	search	engine



There	are	a	number	of	potential	extensions	to	the	search

engine.	We	list	some	of	them	here:

We	might	want	to	support	a	more	sophisticated	notion

of	words	and	documents.

We	might	allow	several	distinct	documents	to	have	the

same	title.

We	could	support	more	sophisticated	queries—for

example,	disjunctions	that	match	all	documents

containing	one	of	several	words.

We	could	provide	more	information	about	specific

documents	such	as	a	count	for	various	words.	Or	we

might	show	all	the	places	where	a	particular	word

occurs	in	a	document.

Figure	12.13	Derived	relations	and	constraints	for	the	search	engine

			Derived	relations	and	helping	functions
			The	sum	for	a	match	is	the	total	count	of	occurrences	of	all	
			keywords	in	that	document
								for	all	m:	Match	[	m.sum	=	Σκ∈Key	sumKey(m.doc,	k)	]
			sumKey	is	the	count	of	occurrences	of	k	in	d

•	

•	

•	

•	



							sumKey(d,	k)	=	|	{e:	Entry	|	e	in	d.body	&&	e.wd	=	k	}	|
			Document	d	matches	if	it	contains	all	keywords	in	Key	
									matches(d)	=	Key	!=	{	}	&&	(for	all	k:	Key	(sumKey(d,	k)	>	0))

			Constraints
			Every	entry	in	a	document	has	a	distinct	index
							for	all	d:	Doc,	e1,	e2:	Entry	[	e1,	e2	in	d.body	&&
												e1.index	=	e2.index	⇒	e1	=	e2	]
		Every	match	has	a	distinct	index
					for	all	m1,	m2:	Match	[	m1.ind	=	m2.ind	=>	m1	=	m2	]
		If	there	are	no	keywords,	there	are	no	entries	in	Match
							Key	=	{	}	=>	Match	=	{	}	
		Match	contains	exactly	the	documents	that	match
				for	all	m:	Match	[	matches(m.doc)	]	&&
						for	all	d:	Doc	[	matches(d)	=>	there	exists	m:	Match	(d	=	m.doc)	]	
		Match	is	ordered	by	keyword	count
				for	all	m1,	m2:	Match	[	m1.ind	<	m2.ind	=>	m1.sum	≥	m2.sum	]

We	might	provide	a	way	for	users	to	see	a	list	of	all	the

interesting	words	occurring	in	documents	in	the

collection.

We	might	allow	the	set	of	uninteresting	words	to	be

changed.

We	might	have	the	engine	periodically	revisit	the	sites

where	its	documents	came	from	to	obtain	any	new

documents	that	have	been	added	to	the	sites.

We	might	want	to	have	the	engine	record	the	URLs	of

sites	persistently	so	that	it	can	refetch	the	documents

when	it	starts	up	or	even	store	the	documents

persistently	as	well.

We	might	want	to	have	the	engine	not	store	the

documents	but	rather	simply	record	information	about

them	and	then	refetch	ones	that	the	user	wants	to

examine.

Figure	12.14	Requirements	specification	for	the	search	engine

			//	The	engine	has	a	private	file	that	contains	the	list	of	uninterest
ing
			//	words.

			//	Static	Operations
			startEngine(	)
					//	EFFECTS:	Starts	the	engine	running	with	NK	containing	the	words
					//		in	the	private	file.	All	other	sets	are	empty.

			//	Dynamic	Operations
			query(String	w)
						//	CHECKS:	w	not	in	NK
						//	EFFECTS:	Sets	Key	=	{	w	}	and	makes	Match	contain	the	documents
						//		that	match	w,	ordered	as	required.	Clears	CurMatch.

		queryMore(String	w)
					//	CHECKS:	Key	!=	{	}	and	w	not	in	NK	and	w	not	in	Key
				//	EFFECTS:	Adds	w	to	Key	and	makes	Match	be	the	documents	already
				//		in	Match	that	additionally	match	w.	Orders	Match	properly.
				//		Clears	CurMatch.

•	

•	

•	

•	

•	



			makeCurrent(String	t)
				//	CHECKS:	t	in	Title
				//	EFFECTS:	Makes	Cur	contain	the	document	with	title	t.

			makeCurMatch(String	i)
							//	CHECKS:	NUM(i)	and	i	is	an	index	in	Match

							//	EFFECTS:	Makes	CurMatch	contain	the	ith	entry	in	Match.

			addDocuments(String	u)
							//	CHECKS:	u	does	not	name	a	site	in	URL	and	u	names	a	site	that
						//			provides	documents
						//	EFFECTS:	Adds	u	to	URL	and	the	documents	at	site	u	with	new
						//		titles	to	Doc.	If	Key	is	non-empty	adds	any	documents
						//		that	match	the	keywords	to	Match	and	clears	CurMatch.

12.5	SUMMARY

The	main	result	of	requirements	analysis	is	a

requirements	specification.	This	specification	needs	to	be

complete	and	precise:	complete	so	that	it	captures	all

decisions	about	the	requirements,	and	precise	so	that	the

designers	can	understand	what	product	to	build.	This

chapter	has	discussed	a	way	to	write	requirements

specifications	that	makes	it	more	likely	that	we	will	meet

these	goals.

The	approach	is	to	base	the	specification	on	a	data	model.

The	model	defines	the	program	state	and	how	it	changes

over	time.	It	does	so	using	a	notation	that	allows

constraints	to	be	specified.	Constraints	are	defined	at

several	points:	when	defining	the	graph,	when	defining

the	textual	constraints,	and	when	specifying	the

operations.	Defining	constraints	is	useful	both	during

analysis,	where	they	help	the	analyst	to	think	of	details

that	might	otherwise	be	overlooked,	and	in	writing	the

requirements	specification,	where	they	provide	a	double-

check	on	whether	the	operations	are	specified	correctly.

The	need	to	define	constraints	often	points	out	a	place

where	the	requirements	need	more	thought.	This	can

lead	the	analyst	to	further	dialog	with	the	customer	to

work	out	the	details.	Thus,	the	need	to	define	constraints

leads	directly	to	a	more	complete	specification.	The

constraints	can	also	lead	to	improved	understanding	on

the	part	of	designers	because	the	use	of	the	data	model

allows	a	more	precise	specification	than	would	otherwise

be	possible.	As	a	result,	we	can	move	into	the	design

phase	with	more	confidence	that	the	product	we	will

construct	is	the	one	the	customer	wants.



EXERCISES

12.1	Define	more	operations	for	the	file	system.	In

particular,	add	operations	to	add	and	remove

entries	from	directories	and	to	read	and	write	files.

12.2	Extend	the	data	model	for	the	file	system	to	take

account	of	soft	links.	These	are	pathnames	that	are

stored	in	files;	they	can	be	used	to	access	file

system	objects	but	do	not	guarantee	that	the

objects	exist.

12.3	Look	at	the	operations	provided	by	a	file	system

you	are	familiar	with	and	compare	them	to

definitions	developed	in	the	preceding	two

exercises.	Then	modify	the	data	model	to	match

your	system	and	define	some	of	its	operations	in

terms	of	the	new	model.

12.4	Extend	the	stock	tracker	so	that	it	provides	a	log	of

user	updates	and	the	ability	to	make	use	of

information	in	the	log	to	undo	changes.	Modify	the

data	model	and	requirements	specification	to

support	this	upgrade.

12.5	Extend	the	stock	tracker	so	that	it	provides

“alerts”:	warnings	when	a	stock	price	exceeds	a

stated	upper	bound	or	falls	below	a	stated	lower

bound.	Modify	the	data	model	and	the

requirements	specification	to	support	this	change.

12.6	Extend	the	stock	tracker	so	that	it	keeps	its

information	about	stock	prices	reasonably	up	to

date	(e.g.,	its	quotes	are	all	obtained	within	the	last

hour).	Modify	the	data	model	and	the

requirements	specification	to	support	this	change.

12.7	Extend	the	search	engine	so	that	it	allows	distinct

documents	to	have	the	same	title	and	so	that	it

revisits	document	sites	periodically	to	obtain

recent	information.	Modify	the	data	model	and

requirements	specification	to	support	these

changes.

12.8	Produce	a	data	model	and	requirements

specification	for	the	xref	program	discussed	in
the	exercises	in	Chapter	11.



12.9	Produce	a	data	model	and	requirements

specification	for	the	spelling	checker	discussed	in

the	exercises	in	Chapter	11.

12.10	Produce	a	data	model	and	requirements

specification	for	the	path	finder	program	discussed

in	the	exercises	in	Chapter	11.



13	Design

In	preceding	chapters,	we	have	discussed	the

specification	and	implementation	of	individual

abstractions.	We	have	emphasized	abstractions	because

they	are	the	building	blocks	out	of	which	programs	are

constructed.	We	now	discuss	how	to	invent	abstractions

and	how	to	put	them	together	to	build	good	programs.

Our	approach	will	rely	heavily	on	material	presented

earlier,	especially	our	discussions	of	good	abstractions

and	good	specifications	(for	example,	see	Chapter	9).

13.1	AN	OVERVIEW	OF	THE	DESIGN	PROCESS

The	purpose	of	design	is	to	define	a	program	structure

consisting	of	a	number	of	modules	that	can	be

implemented	independently	and	that,	when

implemented,	will	together	satisfy	the	requirements

specification.	This	structure	must	provide	the	required

behavior	and	also	meet	the	performance	constraints.

Furthermore,	the	structure	should	be	a	good	one:	it

should	be	reasonably	simple	and	avoid	duplication	of

effort	(for	example,	it	should	not	contain	two	modules

that	do	almost	the	same	thing).	Finally,	the	structure

should	support	both	initial	program	development	and

maintenance	and	modification.	The	ease	of	modification

will	depend	on	the	sort	of	change	desired.	A	particular

decomposition	cannot	accommodate	all	changes	with

equal	ease.	This	is	why	likely	modifications	should	be

identified	prior	to	design—so	that	a	decomposition	can	be

developed	that	facilitates	them.	Sidebar	13.1	summarizes

these	design	goals.

Sidebar	13.1	Design	Goals

Meet	functional	and	performance	requirements

Define	a	modular	structure	such	that

•	The	components	are	all	good	abstractions

•	The	structure	is	reasonably	simple	and	relatively	easy	to	implement	and	modify

•	The	structure	makes	it	relatively	easy	to	incorporate	the	modifications	identified	by	the
requirements	analysis

•	

•	



We	start	a	design	with	the	requirements	specification.

Sometimes	it	describes	a	single	abstraction,	sometimes

several	that	together	make	up	the	system	(e.g.,	the	file

system	abstraction	plus	the	file	and	directory

abstractions).	We	pick	one	of	these	abstractions	to	start

work	on.	It	becomes	the	initial	target	abstraction.

In	designing	a	program,	we	carry	out	three	steps	for	each

target:

1.	Identify	helping	abstractions,	or	helpers	for	short,

that	will	be	useful	in	implementing	the	target	and	that

facilitate	decomposition	of	the	problem.

2.	Specify	the	behavior	of	each	helper.

3.	Sketch	an	implementation	of	the	target.

The	first	step	consists	of	inventing	a	number	of	helping

abstractions	that	are	useful	in	the	problem	domain	of	the

target.	The	helpers	can	be	thought	of	as	constituting	an

abstract	machine	that	provides	objects	and	operations

tailored	to	implementing	the	target.	The	idea	is	that	if	the

machine	were	available,	implementing	the	target	to	run

on	it	would	be	straightforward.

Next,	we	define	the	helpers	precisely	by	providing	a

specification	for	each	one.	When	an	abstraction	is	first

identified,	its	meaning	is	usually	a	bit	hazy.	The	second

step	involves	pinning	down	the	details	and	then

documenting	the	decisions	in	a	specification	that	is	as

complete	and	unambiguous	as	is	feasible.

Once	the	behavior	of	each	helper	is	defined	precisely,	we

can	use	them	to	write	programs.	In	principle,	the	target

can	now	be	implemented,	but	we	generally	do	not	do	it	at

design	time.	Instead,	we	merely	sketch	enough	of	an

implementation	to	convince	ourselves	that	an	acceptably

efficient	and	modular	implementation	can	be

constructed.	For	example,	for	a	data	abstraction,	we

might	list	some	items	that	need	to	be	in	the	rep.

Sidebar	13.2	The	Design	Process

1.	Select	a	target	abstraction	whose	implementation	has	not	yet	been	studied.

2.	Identify	helper	abstractions	that	would	be	useful	in	implementing	the	target	and	that	facilitate
decomposition	of	the	problem.



3.	Sketch	how	the	helpers	will	be	used	in	implementing	the	target.

4.	Iterate	until	the	implementations	of	all	abstractions	have	been	studied.

If	the	abstract	machine	existed,	we	would	now	be

finished;	but	in	reality,	the	helpers	need	to	be	considered

in	more	detail.	The	next	step	is	to	select	one	helper	and

design	its	implementation.	This	process	continues	until

all	the	helpers	have	been	studied.	(See	Sidebar	13.2	for	a

summary	of	the	design	process.)

The	design	process	is	concerned	with	efficiency	of	two

sorts.	First	is	finding	an	economical	design:	one	that	is

not	overly	complex	and	that	will	be	relatively	easy	to

implement	and	to	modify.	Equally	important,	however,	is

finding	a	design	that	will	lead	to	a	program	that	performs

well.	A	concern	for	performance	permeates	the	process:

at	each	stage	we	want	to	implement	the	target	efficiently.

This	will	lead	us	to	select	certain	helpers	and	not	others;

specifically,	we	want	to	select	helpers	that	will	do	the

work	required	by	the	target	in	a	cost-effective	way.

For	large	programs,	we	usually	do	not	know	in	advance

what	the	structure	of	the	program	ought	to	be.	Instead,

the	discovery	of	this	structure	is	a	major	goal	of	the

design.	As	the	design	progresses,	sometimes	a	choice

must	be	made	between	a	number	of	structures,	none	of

which	is	well	understood.	Later,	the	decision	may	be

found	to	be	wrong.	This	is	especially	likely	for	choices

made	early	in	design,	when	the	structure	of	the	program

is	least	understood	and	least	constrained	by	other

decisions,	and	when	the	effect	of	an	error	on	the	global

structure	is	most	significant.

When	errors	are	discovered,	we	must	correct	them	by

changing	the	design.	We	often	must	discard	all	later	work

that	depends	on	the	error.	That	is	why	we	are	reluctant	to

start	implementation	until	after	we	have	a	complete

design,	or	at	least	a	complete	design	of	the	part	of	the

program	being	implemented.	Of	course,	no	matter	how

careful	we	are	about	our	design,	we	are	likely	to	uncover

problems	with	it	during	implementation.	When	this

happens,	we	must	rethink	the	part	of	the	design	related

to	the	problem.



Our	discussion	so	far	has	outlined	how	design	occurs	but

has	neglected	a	number	of	questions,	such	as:

	How	is	decomposition	accomplished?	That	is,	how	do

we	identify	subsidiary	abstractions	that	will	help	to

decompose	the	problem?

	How	do	we	select	the	next	target?

	How	do	we	know	whether	we	are	making	progress?

For	example,	are	the	helpers	easier	to	implement	than

the	target	that	caused	them	to	be	introduced?

	How	are	performance	and	modification	requirements

factored	into	a	design?

	How	much	decomposition	should	be	done?

These	and	other,	similar	questions	will	be	addressed	as

we	carry	out	an	example.	First,	however,	we	discuss	how

to	document	a	design.

13.2	THE	DESIGN	NOTEBOOK

The	decisions	made	during	design	must	be	recorded.	This

documentation	should	be	done	in	a	systematic	manner

and	kept	in	a	design	notebook	(see	Sidebar	13.3).	The

notebook	contains	an	introductory	section	describing	the

overall	design	of	the	program	and	a	section	for	each

abstraction.

13.2.1	The	Introductory	Section

The	introductory	section	lists	all	the	abstractions

identified	so	far.	It	also	indicates	which	helpers	are	to	be

used	in	the	implementations	of	which	targets.	This

documentation	takes	the	form	of	a	module	dependency

diagram,	which	identifies	all	the	abstractions

encountered	during	design	(those	present	when	the

design	starts	or	introduced	as	helpers)	and	shows	their

relationships.	The	module	dependency	diagram	shows

the	code	modules	(e.g.,	the	classes	and	interfaces)	that

will	exist	in	the	program	when	it	is	implemented.	It	also

shows	their	dependencies,	where	module	M1	depends	on

module	M2	if	a	change	to	M2’s	specification	might	cause

a	change	in	M1.	The	module	dependency	diagram	will	be

especially	useful	for	tracking	the	impact	of	a	change	in	a



specification,	since	it	will	allow	us	to	identify	all	modules

that	must	be	reconsidered	because	of	the	change.

Sidebar	13.3	The	Design	Notebook

The	design	notebook	contains:

The	module	dependency	diagram

A	section	for	each	abstraction	containing:

•	Its	specification

•	Its	performance	requirements
•	A	sketch	of	its	implementation

•	Other	information	including	justification	of	design	decisions	and	discussion	of	alternatives,
potential	extensions	or	other	modifications,	and	information	about	expected	context	of	use

A	module	dependency	diagram	consists	of	nodes,	which

represent	abstractions,	and	arcs	(see	Sidebar	13.4).	There

are	three	kinds	of	nodes,	one	for	each	of	the	three	kinds

of	abstractions	we	use.	Each	node	names	its	abstraction.

Nodes	like	the	one	labeled	C1.P	in	Figure	13.1	represent

procedures,	ones	like	C2.I	represent	iterators,	and	the

remainder	represent	data	abstractions.	A	data	abstraction

will	be	implemented	by	either	a	class	or	interface.

Procedures	and	iterators	will	be	implemented	by	static

methods	in	some	class;	the	node	name	will	indicate	the

class	as	well	as	the	method	name	(e.g.,	C.P	indicates	that

procedure	P	will	be	implemented	in	class	C).

There	are	two	kinds	of	arcs.	The	first	kind,	an	arc	with	an

open	head,	is	a	using	arc;	it	shows	which	modules	are	to

be	used	in	implementing	which	other	modules.	The	arc

goes	from	a	source	abstraction	to	a	helper	abstraction;	it

means	that	the	implementation	of	the	source	abstraction

will	use	the	helper.	We	say	that	the	source	abstraction

uses	or	depends	on	the	helpers.	In	the	case	of	an	arc	to	a

data	abstraction,	we	do	not	indicate	what	methods	will	be

used	because	typically	the	source	abstraction	will	use

many	of	the	helper’s	methods.	Recording	more	detailed

information	would	result	in	an	overly	cluttered	diagram

that	would	be	hard	to	read.

Sidebar	13.4	Components	of	a	Module	Dependency	Diagram

The	nodes	of	the	diagram	represent	abstractions;	each	node	names	its	abstraction,	and	this
name	identifies	a	program	entity	that	will	implement	the	abstraction.

The	arcs	represent	dependency,	where	abstraction	A	depends	on	abstraction	B	if	a	change	to
B’s	specification	means	that	A’s	implementation	or	specification	must	be	reconsidered.

•	

•	

•	

•	
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•	An	arc	with	an	open	head	indicates	that	abstraction	A’s	implementation	uses	or	weakly	uses
B.

•	The	arcs	with	closed	heads	indicate	extensions:	a	subtype	extends	its	supertype.

Sometimes,	an	abstraction	uses	objects	of	a	data

abstraction	without	calling	any	of	their	methods.	In	such

a	case,	we	say	the	source	abstraction	weakly	uses	the

helper.	A	special	dashed	arc	is	used	to	indicate	this	kind

of	dependency.

A	module	dependency	diagram	is	a	directed	graph.	It	is

not	a	tree,	since	one	abstraction	can	be	used	in

implementing	several	others.	The	graph	may	contain

cycles,	which	occur	when	there	is	recursion.	We	indicate

only	mutual	recursion;	if	an	individual	abstraction	is

recursive,	the	recursion	does	not	show	up	in	the	diagram.

In	general,	it	is	acceptable	for	a	program	to	include

recursion	if	the	problem	being	solved	has	a	naturally

recursive	structure.	However,	if	the	cycles	get	very	long

and	involve	many	arcs,	it	is	wise	to	be	suspicious	of	the

program	structure.

In	Figure	13.1,	data	abstraction	D	is	to	be	implemented	by

three	helpers,	procedure	P,	and	data	abstractions	E	and

G.	Furthermore,	E	uses	G	and	iterator	I.	Also	E	and	I	are

mutually	recursive.

The	second	type	of	arc,	an	extension	arc,	indicates	a

subtype	relationship;	this	arc	has	a	closed	head.

Extension	arcs	occur	only	between	data	abstraction

nodes.	They	lead	from	the	subtype	to	the	supertype	and

indicate	that	the	subtype	extends	the	behavior	of	the

supertype,	as	discussed	in	Chapter	7.	For	example,	Figure

13.1	indicates	that	data	abstraction	G	has	two	subtypes,

G1	and	G2.	There	cannot	be	any	cycles	involving	just

extension	arcs.

Figure	13.1	A	module	dependency	diagram.



The	module	dependency	diagram	is	useful	when	errors

are	detected.	A	design	error	shows	up	as	a	flaw	in	an

abstraction—for	example,	an	efficient	implementation

becomes	impossible	or	needed	arguments	are	missing.

The	result	is	that	the	abstraction’s	interface,	and

therefore,	its	specification,	must	change.	The	potential

impact	of	the	change	can	be	determined	from	the

diagram.	All	abstractions	that	use	the	erroneous	one

must	be	reconsidered	in	light	of	the	new	interface	and	its

specification.	(That	reconsideration	may	find	some	of

those	abstractions	erroneous,	and	so	on.)	An	abstraction

that	weakly	uses	an	erroneous	data	abstraction	is	affected

if	the	abstraction	disappears	entirely	but	not	if	its

specification	changes	or	it	is	replaced	by	another	type.

For	example,	if	we	found	a	problem	with	G	in	Figure	13.1,

we	would	have	to	rethink	the	implementations	of	E	and

P,	but	D	would	not	be	affected.	Of	course,	if	rethinking	E

prompted	us	to	change	its	specification,	we	would	be

forced	to	reexamine	the	implementation	of	D.

The	extension	arrows	are	used	in	a	similar	way.	If	the

specification	of	a	data	abstraction	with	subtypes	changes,

all	its	subtypes	must	be	examined;	either	their

specifications	will	also	change,	or	they	can	no	longer	be



its	subtypes.	Thus,	a	change	to	the	specification	of	G

means	that	we	must	examine	G1	and	G2.	Also,	if	a	data

abstraction	with	supertypes	changes,	we	must	examine

the	supertypes.	It	is	possible	that	the	change	will	have	no

impact	on	a	supertype;	this	would	happen	if	the	change

affects	only	the	subtype’s	new	methods,	and	the	subtype

still	satisfies	the	substitution	principle	(as	defined	in

Chapter	7).	If,	however,	the	substitution	principle	is	no

longer	satisfied,	the	supertype	must	be	redefined,	or	the

changed	abstraction	can	no	longer	be	its	subtype,	and	the

diagram	must	be	changed	to	reflect	this.	Thus,	if	the

specification	of	G1	changes,	we	must	examine	G;	either

the	substitution	principle	still	holds,	or	we	must	redefine

G,	or	G1	can	no	longer	be	a	subtype	of	G.

Although	a	module	dependency	diagram	looks	a	bit	like	a

data	model	graph,	the	two	are	very	different.	A	module

dependency	diagram	describes	the	structure	of	a

program;	its	nodes	are	program	modules,	and	its	arcs

define	relationships	among	these	modules.	A	data	model,

on	the	other	hand,	is	abstract;	its	nodes	define	sets	and

do	not	correspond	to	program	modules.	We	will	discuss

this	issue	further	in	Section	13.11.

13.2.2	The	Abstraction	Sections

We	partition	the	notebook	entry	for	an	individual

abstraction	into	four	parts:

1.	A	specification	of	its	functional	behavior

2.	A	description	of	performance	constraints	it	must

observe

3.	Information	about	how	it	is	to	be	implemented

4.	Miscellaneous	information	that	does	not	fit	into	any

of	the	previous	four	categories

The	specification	is,	of	course,	the	most	important	item	in

this	list.	However,	we	have	already	said	a	great	deal	about

specifications	and	will	say	no	more	about	them	here.

Performance	constraints	are	generally	propagated	top-

down	through	a	program.	The	requirements	specification

may	constrain	the	time	the	program	can	take	to	perform

certain	tasks,	the	amount	of	primary	and	secondary



memory	it	can	use,	and	its	use	of	other	resources	such	as

the	network.	To	convince	ourselves	that	the

implementation	of	a	target	abstraction	will	meet	its

performance	constraints,	we	have	to	make	assumptions

about	the	efficiency	of	its	helpers.	These	assumptions

show	up	as	performance	constraints	in	the	parts	of	the

design	notebook	detailing	each	helper.

Performance	constraints	can	be	expressed	in	a	variety	of

ways.	We	frequently	express	them	as	functions	of	the	size

of	the	input.	We	might,	for	example,	require	that	a	set

abstraction	use	memory	that	is	linear	in	the	size	of	the	set

(Order(n),	where	n	is	the	number	of	elements	in	the
set);	this	means	that	the	amount	of	space	occupied	by	a

set	object	should	never	exceed	some	constant	times	the

size	of	the	set.	Furthermore,	we	might	constrain	the	time

to	perform	various	methods	on	the	set,	such	as	lookup
and	insert,	to	be	constant	(Order(1)).	Such
constraints	would	be	imposed	so	that	an	abstraction	that

uses	the	set	can	meet	its	own	performance	constraints.

The	constraints	in	turn	affect	the	way	the	set	is
implemented;	in	particular,	we	need	to	use	a	hash	table

to	meet	the	constraints	just	given.

For	many	applications,	it	suffices	to	supply	relative

performance	constraints	such	as	those	just	given.

Sometimes,	however,	it	is	useful	to	bound	the

multiplicative	constants	or	even	to	impose	an	absolute

bound.	An	absolute	upper	bound	on	time	is	needed	in

real-time	applications.	Analogously,	we	put	absolute

bounds	on	the	space	used	in	programs	that	are	to	be	run

on	small	machines	or	machines	that	do	not	support

virtual	memory.

The	section	of	the	notebook	entry	containing	information

about	how	the	abstraction	is	to	be	implemented	should

include	a	list	of	its	helpers.	It	might	also	include	a

description	of	how	the	implementation	works.	This

description	can	be	omitted	if	the	implementation	is

straightforward,	but	it	is	necessary	if	the	implementation

is	clever.	For	example,	for	the	set	abstraction	discussed

previously,	the	implementation	section	might	indicate



that	a	hash	table	should	be	used.

As	its	name	implies,	the	section	of	the	abstraction	entry

labeled	“miscellaneous”	might	contain	almost	anything.

Typical	items	are

A	justification	for	the	decisions	documented	elsewhere

in	the	entry

A	discussion	of	alternatives	that	were	considered	and

rejected

Potential	extensions	or	other	modifications	of	the

abstraction

Information	about	the	context	in	which	the	designers

expect	the	abstraction	to	be	used

In	closing	this	section,	we	should	note	that	if	the	design	is

very	large,	it	may	be	useful	to	structure	the	notebook	by

introducing	subsidiary	notebooks.	In	a	module

dependency	diagram,	any	subgraph	can	be	viewed	as	an

independent	subsystem.	However,	the	most	convenient

choice	is	a	subgraph	in	which	only	one	node	is	used	from

outside.	In	this	case,	the	entire	substructure	simply

corresponds	to	a	single	abstraction	as	far	as	the	rest	of

the	program	is	concerned.

13.3	THE	STRUCTURE	OF	INTERACTIVE	PROGRAMS

In	the	next	several	sections,	we	illustrate	the	design

process	by	developing	a	Java	program	to	implement	the

simple	search	engine	described	in	Section	12.4.	Our

presentation	idealizes	the	design	process;	for	example,

very	few	design	errors	are	made.	We	discuss	this	point

further	in	Section	13.12.

The	requirements	specification	for	an	interactive

application	like	the	search	engine	describes	operations

that	are	intended	to	be	used	through	a	user	interface.

Thus,	an	implementation	of	such	a	specification	will

include	both	code	to	implement	the	user	interface	and

code	to	carry	out	the	work	of	the	application.	Although	it

is	possible	to	build	a	monolithic	structure	in	which	the

two	parts	are	not	separated,	we	will	instead	make	a	clean

separation	between	them.	Thus,	our	designs	will	always

•	

•	

•	

•	



have	two	parts:	a	functional	part	(the	FP)	and	a	user

interface	part	(the	UI).	The	UI	will	take	care	of

interacting	with	the	user;	it	will	display	information	to

the	user	(e.g.,	the	current	list	of	keywords)	and	accept

user	input	(e.g.,	an	additional	keyword	for	a	search).	The

FP	will	carry	out	the	user	commands	when	informed	of	a

user	input	and	will	notify	the	UI	of	the	results.

There	are	several	important	reasons	for	separating	a

program	into	a	UI	and	an	FP	(see	Sidebar	13.5).	The	first

is	that	this	structure	allows	us	to	keep	the	FP	free	of	all

UI	details	and	the	UI	free	of	FP	details.	This	means	we

can	change	the	FP	implementation	(e.g.,	to	speed	it	up)

without	having	to	change	the	UI.	Also,	we	can	change	the

UI	(e.g.,	to	make	use	of	a	different	library	to	interact	with

the	display	and	keyboard)	without	affecting	the	FP.

Therefore,	if	the	library	changes	(e.g.,	is	replaced	with	a

different	library	with	more	advanced	features),	the

application	can	be	modified	to	make	use	of	the	new

library	by	changing	only	the	UI	code.

Sidebar	13.5	Benefits	of	Separating	the	UI	and	FP

Separating	the	UI	and	FP	is	beneficial	because:

We	can	change	the	FP	(e.g.,	to	correct	an	error	or	improve	performance)	without	having	to
change	the	UI.

We	can	change	the	UI	(e.g.,	to	provide	a	different	look	and	feel)	without	having	to	change	the
FP.

We	can	have	several	different	UIs	for	the	same	FP,	including	a	UI	that	acts	as	a	driver	for	the
FP.	This	allows	thorough	regression	testing	of	the	FP.

The	second	reason	for	having	the	separation	is	that	it

allows	us	to	change	the	way	the	user	interface	appears	to

the	user	(the	“look	and	feel”)	without	changing	the

functional	part.	For	example,	this	makes	it	relatively	easy

to	replace	a	simple	UI	with	a	more	sophisticated	one.	In

fact,	we	can	have	several	different	UIs;	all	of	them	can

make	use	of	the	same	FP.

The	third	reason	for	the	separation	is	that	it	allows	us	to

develop	thorough	regression	tests	(see	Chapter	10)	for

the	functional	part.	The	regression	test	code	will	be

programmed	to	interact	with	the	FP	just	like	a	UI	does,

but	rather	than	interacting	with	a	user,	it	will	act	as	a

•	

•	

•	



driver	of	the	FP.

There	are	two	ways	to	connect	the	UI	and	FP,	as

illustrated	by	the	module	dependency	diagrams	in	Figure

13.2.	In	the	first	structure,	the	FP	provides	methods	that

the	UI	calls	when	user	inputs	happen;	the	FP	methods

carry	out	the	user	request	and	return	some	information

to	the	UI	that	informs	it	of	the	result.	The	second

structure	extends	the	first:	the	UI	still	calls	the	FP	to

inform	it	of	user	inputs,	but	the	FP	can	either	return	a

result	or	call	a	UI	method,	whichever	is	more	convenient.

In	doing	a	design,	we	always	start	with	the	first	structure,

since	it	will	be	adequate	for	many	applications.	We	will

switch	to	the	second	structure	if	we	discover	the	need	for

it	as	the	design	progresses.

We	begin	our	design	by	considering	the	UI	since	it	drives

the	application	by	interacting	with	the	user.	We	do	not

concern	ourselves	with	the	form	of	the	user	interaction,

and	in	fact	UI	design	is	beyond	the	scope	of	the	text.	Our

concern	instead	is	to	come	up	with	a	design	of	the	FP	that

is	independent	of	any	particular	UI.	We	focus	on

specifying	the	FP	methods	that	are	used	by	a	UI	to	carry

out	user	requests.	These	methods	will	be	independent	of

the	particular	UI,	so	that	we	can	change	the	UI	as

desired.

Figure	13.2	Two	structures

To	determine	the	FP	interface,	we	consider	each

operation	in	the	requirements	specification.	In	most

cases,	we	will	invent	an	FP	method	that	will	be	called	by	a

UI	to	perform	the	operation.	The	FP	will	do	all	the	actual

work	of	the	application;	the	UI	is	responsible	only	for	the

interaction	between	the	user	and	the	FP.

Figure	13.3	gives	a	specification	for	our	FP,	Engine.	This
specification	is	derived	from	the	requirements



specification	for	the	search	engine	shown	in	Figure	12.14.

A	first	point	to	note	is	that	the	methods	are	similar	to	the

associated	operations	but	with	two	differences.	First,	they

do	not	have	checks	clauses	(nor	requires	clauses);

instead,	they	throw	NotPossibleException	when	a
check	would	be	violated.	The	value	of	this	exception	will

be	a	string	explaining	the	problem;	the	idea	is	that	the	UI

will	simply	present	the	string	to	the	user	to	explain	what

the	problem	is.	The	second	difference	from	the

operations	is	that	methods	return	results	that	can	be	used

by	the	UI	to	display	information	to	the	user.

A	second	point	is	that	the	specification	of	Engine	makes
use	of	the	data	model.	We	will	continue	to	use	the	data

model	as	we	develop	the	design.

A	third	point	is	that	the	methods	return	objects	of	two

data	abstractions,	Doc	and	Query,	and	we	need	to	define
these	data	types.	Doc	is	the	way	the	UI	gets	hold	of	a
document;	to	display	a	document,	it	needs	access	to	its

title	and	text.	Query	is	the	way	the	UI	gets	hold	of	a
query	result;	here	it	needs	access	to	the	keywords	of	the

query	and	the	documents	that	match	the	query,	but	it

does	not	need	to	know	the	sum	for	each	match	since	this
information	is	not	displayed	to	users.	Figure	13.4	gives

specifications	for	these	two	types.	The	specifications	are

preliminary:	they	are	missing	constructors	and	methods

that	will	be	invented	when	we	consider	the

implementation	of	Engine.

Figure	13.3	Specification	of	Engine

		class	Engine	{
					//	OVERVIEW:	An	engine	has	a	state	as	described	in	the	search	engin
e
					//			data	model.	The	methods	throw	the	NotPossibleException
					//			when	there	is	a	problem;	the	exception	contains	a	string	expla
ining
					//			the	problem.	All	instance	methods	modify	the	state	of	this.

					//	constructors
					Engine(	)	throws	NotPossibleException
								//	EFFECTS:	If	the	uninteresting	words	cannot	be	retrieved	from	
the
								//		persistent	state	throws	NotPossibleException	else	creates	NK	
and
								//		initializes	the	application	state	appropriately.

					//	methods
					Query	queryFirst	(String	w)	throws	NotPossibleException
								//	EFFECTS:	If	¬WORD(w)	or	w	in	NK	throws	NotPossibleException	e
lse



								//		sets	Key	=	{	w	},	performs	the	new	query,	and	returns	the	re
sult.

					Query	queryMore	(String	w)	throws	NotPossibleException
								//	EFFECTS:	If	¬WORD(w)	or	w	in	NK	or	Key	=	{	}	or	w	in	Key	thro
ws
								//		NotPossibleException	else	adds	w	to	Key	and	returns	the	quer
y	result.

					Doc	findDoc	(String	t)	throws	NotPossibleException
								//	EFFECTS:	If	t	not	in	Title	throws	NotPossibleException
								//			else	returns	the	document	with	title	t.
	
					Query	addDocs	(String	u)	throws	NotPossibleException
								//	EFFECTS:	If	u	is	not	a	URL	for	a	site	containing	documents	or	u	
in	URL
								//		throws	NotPossibleException	else	adds	the	new	documents	to	D
oc.
								//		If	no	query	was	in	progress	returns	the	empty	query	result	e
lse
								//		returns	the	query	result	that	includes	any	matching	new	docu
ments.
	}

A	fourth	point	is	that	some	operations	do	not	have

associated	Engine	methods.	This	occurs	when	the	UI
can	easily	do	the	work	by	itself	or	by	calling	methods	of

subsidiary	types.	In	the	search	engine,	for	example,	the

FP	does	not	need	to	have	a	method	for	the

makeCurMatch	operation	because	the	UI	can	implement
this	operation	by	using	methods	of	Query	and	Doc.
However,	as	stated	previously,	all	the	application	work	is

done	by	the	FP.	For	example,	the	UI	for	the	search	engine

obtains	a	keyword	from	the	user,	but	it	calls	an	FP

method	to	compute	the	query	result.

Figure	13.4	Preliminary	specifications	of	Doc	and	Query

			class	Doc	{
						//	OVERVIEW:	A	document	contains	a	title	and	a	text	body.
		
						//	methods
						String	title	(	)
										//	EFFECTS:	Returns	the	title	of	this.

						String	body	(	)
										//	EFFECTS:	Returns	the	body	of	this.
			}

			class	Query	{
						//	OVERVIEW:	Provides	information	about	the	keywords	of	a	query	an
d
						//			the	documents	that	match	those	keywords.	size	returns	the	num
ber
						//			of	matches.	Documents	can	be	accessed	using	indexes	between	0
	and
						//			size.	Documents	are	ordered	by	the	number	of	matches	they
						//			contain,	with	document	0	containing	the	most	matches.

						//	methods
						String[	]	keys	(	)
								//	EFFECTS:	Returns	the	keywords	of	this.



						int	size	(	)
								//	EFFECTS:	Returns	a	count	of	the	documents	that	match	the	quer
y.
			
						Doc	fetch	(int	i)	throws	IndexOutOfBoundsException
									//		EFFECTS:	If	0	<=	i	<	size	returns	the	ith	matching	document
	else
									//			throws	IndexOutOfBoundsException.
			}

A	final	point	is	that	we	do	not	include	toString	and
repOk	in	the	specifications.	However,	all	the	abstractions
will	have	these	methods.

13.4	STARTING	THE	DESIGN

The	first	step	is	to	construct	an	initial	module

dependency	diagram	and	enter	it,	and	the	specifications

of	the	FP	and	other	abstractions,	in	the	design	notebook.

The	initial	module	dependency	diagram	for	the	search

engine	is	shown	in	Figure	13.5.

The	diagram	is	laid	out	so	that	if	one	abstraction	uses

another,	the	used	abstraction	is	positioned	lower	in	the

diagram	than	the	using	abstraction.	We	deduce	the	uses

relations	for	the	helpers	from	their	specifications,	in

particular	from	the	headers	of	standalone	procedures	and

iterators	or,	in	the	case	of	data	abstractions,	from	the

headers	of	their	methods	and	constructors.	If	a	header	for

an	abstraction	indicates	that	an	object	of	some	type	is

passed	in	as	an	argument	or	returned	as	a	result,	the

abstraction	uses	that	type.	Thus,	Engine	uses	both
Query	and	Doc,	and	Query	uses	Doc.	We	assume	strong

dependencies	among	helpers	(i.e.,	that	abstractions	will

call	methods	of	types	they	use).	When	we	study	the

implementation	of	an	abstraction,	we	may	discover	that

the	dependency	is	weak	rather	than	strong.

Then	we	choose	our	first	target,	the	FP	for	the

application.	The	first	step	is	to	invent	helpers.	There	is

one	main	heuristic	to	guide	us	in	this	process:	Let	the

problem	structure	determine	the	program	structure.

This	means	that	we	should	concentrate	on	understanding

the	problem	being	solved	(namely,	how	to	implement	the

target)	and	use	the	insights	we	gain	into	the	problem	to

help	us	develop	the	structure	of	the	program.

Figure	13.5	First	module	dependency	diagram



A	good	way	to	study	the	problem	structure	is	to	make	a

list	of	the	tasks	that	must	be	accomplished.	In	the	case	of

a	data	abstraction	like	Engine,	each	method	is	a	task,	so
we	begin	by	considering	each	of	them	in	turn.	We	can

choose	to	consider	them	in	any	order,	but	some	of	them

are	more	interesting	than	others.	For	example,

considering	queryFirst	will	force	us	to	think	about
how	we	do	query	processing,	and	considering	findDoc
will	force	us	to	think	about	how	we	find	a	document	given

its	title.

When	a	method	has	lots	of	work	to	do,	we	list	the	tasks	it

must	accomplish.	Here	is	a	list	for	queryFirst:

1.	Check	the	input	string	w	to	be	sure	it’s	a	word.

2.	Make	sure	it’s	an	interesting	word.

3.	Start	a	new	query	with	w	as	the	only	keyword.

4.	For	each	document,	determine	whether	it	is	a	match

(contains	w).

5.	For	each	match,	determine	the	number	of	occurrences

of	w.

6.	Sort	the	matches	by	number	of	occurrences	of	w.

7.	Return	the	information	about	the	matches	and	query.

We	do	not	assume	that	the	final	program	will	have

subparts	that	correspond	to	the	listed	tasks.	Listing	the

tasks	is	just	a	first	step	toward	a	design.	Also,	although

we	have	listed	the	tasks	in	approximately	the	order	in

which	they	might	be	carried	out,	we	do	not	assume	that

this	order	will	exist	in	the	final	program.	As	we	continue

the	design,	we	might	reorganize	the	way	the	tasks	are



carried	out.

Instead,	the	next	step	is	to	use	the	list	as	a	guide	in

inventing	the	abstractions	that	will	determine	the

program	structure.	In	looking	for	abstractions,	we	seek	to

hide	details	of	processing	that	are	not	of	interest	at	the

current	level	of	the	design.	Although	we	can	use

procedures	and	iterators	to	hide	details,	data	types	(and

sometimes	families	of	types)	are	most	useful	for	this.

Let’s	start	by	considering	task	4	since	it	is	critical	to	the

performance	of	the	queryFirst	method.	One	way	to
proceed	is	to	examine	all	the	words	of	all	the	documents,

or	at	least	all	the	words	of	a	single	document,	until	we

find	a	match.	However,	this	is	going	to	be	very	time

consuming	if	the	collection	is	large.	Furthermore,	as	we

look	at	a	document,	we	will	look	at	many	words	that	are

not	the	current	keyword	but	that	might	be	keywords	in

later	queries.	If	we	can	record	the	information	we	learn

about	them,	we	can	avoid	work	in	future	queries.	To

record	the	information,	we	need	a	data	abstraction,

ITable,	that	keeps	track	of	what	interesting	words	are	in
documents.	Information	can	be	added	to	ITable	either
when	documents	are	fetched	(by	addDoc)orwhena	query
is	run	after	documents	have	been	fetched;	the	former

decision	is	better	because	it	avoids	a	test	in	queryFirst.
This	decision	means	that	queryFirst	doesn’t	need	to
iterate	through	the	documents	at	all!	It	just	uses	the

prestored	information	by	calling	a	lookup	method	of
ITable.

Now	consider	task	5.	Although	there	are	presumably

many	fewer	documents	that	match	a	query	than	there	are

documents	in	the	collection,	processing	the	matching

documents	to	count	occurrences	of	the	keyword	is	still

lots	of	work.	Furthermore,	it	is	redundant	work:	when

information	about	a	document	was	added	to	the	ITable,
we	had	to	look	at	every	word	of	every	document,	so	we

might	as	well	count	occurrences	at	the	same	time	and

store	this	information	in	the	ITable	too.	The	lookup
method	can	then	return	information	about	counts	as	well

as	matches.



Next	let’s	consider	task	6.	We	need	to	sort	the	matches	by

count,	but	this	can	be	accomplished	in	many	ways.

Rather	than	deciding	how	to	do	this	now,	let’s	instead

introduce	a	data	abstraction,	MatchSet,	to	take	care	of
the	details.	In	fact,	it	is	probably	a	good	idea	for

MatchSet	to	perform	the	query:	this	provides	flexibility
for	its	implementation	(e.g.,	the	chance	to	sort	as

documents	are	added	to	the	set),	and	it	allows	us	to	defer

deciding	about	the	kind	of	information	the	ITable
lookup	method	returns	until	we	consider	what	form	will
be	most	useful	for	implementing	MatchSet.	Having
MatchSet	perform	the	query	means	that	all	of	tasks	3–6
will	be	handled	by	a	MatchSet	method;	this	method	can
return	the	Query	object	that	contains	the	result	for	the
query.

Finally,	let’s	consider	the	first	two	tasks.	For	the	second

task,	we	need	to	preprocess	the	information	about

uninteresting	words	when	the	program	starts	up	so	that

we	can	quickly	look	up	whether	a	proposed	word	is

uninteresting.	This	information	could	be	stored	in	a

separate	data	abstraction,	or	we	might	merge	the

information	with	that	about	interesting	words.	The	latter

choice	gives	us	a	table	that	keeps	track	of	all	words,	both

interesting	and	uninteresting;	its	lookup	method	can

return	all	this	information.	An	advantage	of	this	choice	is

that	it	allows	each	word	in	a	new	document	to	be	added

to	the	table	with	just	one	call,	rather	than	having	to	check

first	in	another	table	to	see	whether	the	word	is

uninteresting.	Therefore,	let’s	make	this	choice	and

rename	ITable	to	be	WordTable	to	better	match	its
function.	Another	point	is	that	WordTable	methods	can
also	detect	nonwords;	a	nonword	is	just	a	special	kind	of

uninteresting	word.

Thus,	just	by	considering	the	queryFirst	method,	we
have	introduced	a	number	of	subsidiary	abstractions.

These	abstractions	allow	the	method	to	be	implemented

very	simply,	by	calling	a	method	of	WordTable	and	then
a	method	of	MatchSet.	Yet	the	implementation	can	also
be	efficient,	assuming	WordTable	and	MatchSet	are
implemented	efficiently.



To	continue	the	design,	we	need	to	consider	the	other

methods.	queryMore	is	similar	to	queryFirst;	the
only	difference	is	that	we	are	now	interested	in

documents	that	have	already	matched	(and	therefore	are

in	MatchSet).	However,	there	are	two	ways	to	handle
the	new	keyword.	We	could	build	another	MatchSet
matching	the	new	keyword	and	then	merge	the	two	sets

to	obtain	the	matches	in	common.	Or	we	could	have

another	MatchSet	method	that	adds	the	new	keyword	to
the	existing	query.	The	latter	choice	seems	better

because,	again,	it	provides	flexibility	for	the	MatchSet
implementation	that	might	lead	to	better	performance.

Next	let’s	consider	the	findDoc	method.	This	method
cannot	be	implemented	by	using	the	WordTable	to	look
up	each	word	in	the	title	because	that	could	produce

many	matches,	not	just	the	document	of	interest.

Therefore,	we	need	another	way	to	find	a	document	given

its	title.	Since	it	would	be	inefficient	to	look	at	all

documents	when	findDoc	is	called,	we	want	to
preprocess	documents	as	they	are	added	to	the	collection.

Let’s	call	the	data	abstraction	that	stores	the	information

about	titles	the	TitleTable.

Finally,	let’s	consider	the	addDocs	method.	This	method
needs	to	obtain	the	new	documents	by	getting	in	touch

with	the	site	named	by	the	URL.	The	interaction	with	the

site	can	be	handled	by	an	iterator,	getDocs,	that
provides	the	documents	(as	text)	one	after	another.

addDocs	creates	the	new	document	and	adds	it	to
TitleTable	and	WordTable;	the	document	itself	will
simply	exist	in	heap	and	be	accessible	from	both	tables.

Then	addDocs	must	add	the	document	to	the	query	if
one	is	in	progress;	this	should	be	done	by	calling	a

method	of	MatchSet.	Finally,	addDocs	must	return	the
new	query	result,	or	the	empty	query	if	no	query	was	in

progress;	this	implies	that	we	need	an	empty	Query
object.

Now	that	we	have	looked	at	all	the	methods,	we	are	ready

for	the	second	step	of	the	design,	namely,	firming	up	and

documenting	these	abstractions.	In	the	process	of



producing	the	documentation,	we	often	uncover	loose

ends.	Some	are	simply	details	that	need	to	be	worked	out,

but	some	might	be	design	errors	that	require

modifications.	That	is	to	say,	a	lot	of	design	work	is	done

during	this	step;	this	process	is	similar	to	what	happened

during	requirements	analysis	when	we	defined	the

requirements	specification.

Figure	13.6	Specification	of	getDocs	iterator

			class	Comm	{	
						static	Iterator	getDocs	(String	u)	throws	NotPossibleException
								//	EFFECTS:	If	u	isn’t	a	legitimate	URL	or	the	site	it	names	doe
s	not
								//			respond	as	expected	throws	NotPossibleException	else	return
s	a
								//			generator	that	will	produce	the	documents	from	site	u	(as	s
trings).	
			
			}

Figure	13.6	gives	the	specification	of	getDocs.	Note	that
this	procedure	doesn’t	know	anything	about	URLs	of	sites

that	have	provided	documents	earlier;	therefore,

addDocs	must	check	the	provided	URL	against	a	list	of
URLs	it	maintains.

Figure	13.7	gives	specifications	for	WordTable,	and
TitleTable.	For	WordTable,	we	could	either	process
the	file	of	uninteresting	words	in	Engine	and	add	the
words	to	the	table	one	at	a	time,	or	we	could	have	the

WordTable	constructor	handle	this	processing.	Having
the	WordTable	constructor	do	the	processing	limits
knowledge	of	the	filename	and	format	to	WordTable	so
that	we	can	change	them	easily.	Another	point	about

WordTable	is	that	its	addDoc	method	requires	that	its
argument	not	be	null;	this	is	reasonable	since	the
method	is	called	by	the	search	engine	only	after	it	creates

the	document.	A	similar	requirement	exists	for	the

addDoc	method	of	TitleTable	(and	in	many	of	the
specifications	given	later	in	this	chapter).	Note	also	that

the	TitleTable	addDoc	method	checks	whether	the
document	is	a	duplicate.

The	specification	for	WordTable	is	incomplete.	When

inventing	data	abstractions,	we	define	only	the

operations	used	by	the	implementations	studied	so	far.



Additional	operations	will	be	defined	when	we	study

other	implementations	that	use	the	type;	this	is	what

happened	for	Query	as	a	result	of	studying	the
implementation	of	Engine.

Now	let’s	consider	the	specification	for	MatchSet.	One
question	that	arises	here	is	how	MatchSet	relates	to
Query.	There	does	not	seem	to	be	any	good	reason	to
have	two	separate	abstractions	here.	Instead,	the

MatchSet	methods	we	identified	in	the	design	of
Engine	are	simply	ways	of	constructing	queries,	while
the	methods	we	mentioned	earlier	are	the	ways	of

accessing	information	about	queries	once	they	have	been

constructed.	Therefore,	we	should	merge	these

abstractions	into	a	single	abstraction	that	we	will	call

Query	to	be	consistent	with	the	specification	of	Engine.

Figure	13.7	Specifications	of	WordTable	and	TitleTable

			class	WordTable	{
						//	OVERVIEW:	Keeps	track	of	both	interesting	and	uninteresting	wor
ds.
						//			The	uninteresting	words	are	obtained	from	a	private	file.	Rec
ords
						//			the	number	of	times	each	interesting	word	occurs	in	each	docu
ment.

						//	constructors
						WordTable	(	)	throws	NotPossibleException
									//	EFFECTS:	If	the	file	cannot	be	read	throws	NotPossibleException
									//			else	initializes	the	table	to	contain	all	the	words	in	the
	file
									//			as	uninteresting	words.

						//	methods
						boolean	isInteresting	(String	w)
									//	EFFECTS:	If	w	is	null	or	a	nonword	or	an	uninteresting	word
									//				returns	false	else	returns	true.

			void	addDoc	(Doc	d)
	
						//	REQUIRES:	d	is	not	null	
						//	MODIFIES:	this
						//	EFFECTS:	Adds	all	interesting	words	of	d	to	this	with	a	count
						//	of	their	number	of	occurrences.

			}

						class	TitleTable	{
						//OVERVIEW:	Keeps	track	of	documents	with	their	titles.
					

						//	constructors
						TitleTable	(	)
									//	EFFECTS:	Initializes	this	to	be	an	empty	table.

						//	methods
						void	addDoc	(Doc	d)	throws	DuplicateException
									//	REQUIRES:	d	is	not	null	



									//	MODIFIES:		this	
									//	EFFECTS:	If	a	document	with	d	’s	title	is	already	in	this	th
rows
									//			DuplicateException	else	adds	d	with	its	title	to	this.
	
						Doc	lookup	(String	t)	throws	NotPossibleException
									//	EFFECTS:	If	t	is	null	or	there	is	no	document	with	title	t	i
n	this	
									//								throws	NotPossibleException	else	returns	the	document
	with	title	t.

			}

Finally,	we	must	consider	the	specification	for	Doc.	All
we	have	identified	is	the	need	for	a	constructor,	which

takes	the	document	as	a	string	and	returns	a	Doc
provided	the	string	can	be	interpreted	as	a	document.

Our	processing	requirements	here	are	very	slight:	the

constructor	must	determine	that	the	document	has	a	title

and	a	body,	but	it	need	not	actually	scan	the	body.	This	is

important;	we	would	not	want	the	constructor	to	process

the	entire	document,	since	we	will	have	to	do	this	work

when	we	find	the	document’s	keywords.

Figure	13.8	shows	the	specifications	for	Query	and	Doc.
Note	that	a	query	based	on	a	new	keyword	is	actually

computed	using	a	constructor,	not	a	method,	and	that

there	is	a	second	constructor	to	make	the	empty	query

(which	is	needed	by	the	addDocs	method	of	Engine).
Note	also	that	Query	operations	do	not	require	an
interesting	keyword;	if	the	keyword	is	uninteresting,	the

resulting	query	will	not	have	any	matches.

The	specifications	in	the	figures	do	not	give	any

performance	constraints.	However,	for	Engine	to
perform	well,	it	is	important	for	all	the	tables	to	provide

efficient	ways	of	looking	up	information.	In	fact,	they

should	all	provide	constant	time	lookups	(and	therefore

we	can	expect	heavy	use	of	hash	tables	as	we	proceed

with	the	design).

The	extended	module	dependency	diagram	is	shown	in

Figure	13.9.	Note	that	we	do	not	show	Engine	having	a
dependency	on	Iterator	although	it	uses	a	generator;
this	dependency	is	omitted	because	we	consider	iterators

to	be	part	of	the	base	language.	Exception	types	are	also

treated	this	way,	and	so	are	most	abstractions	defined	in

standard	libraries,	such	as	java.util;for	example,	we



take	Vector	for	granted.

As	before,	we	determine	levels	in	the	diagram	based	on

dependencies.	Also,	we	assume	strong	dependencies;	as

we	continue	the	design,	we	might	discover	that	some	of

these	dependencies	are	weak.

Just	to	firm	up	the	design	of	Engine,	here	is	a	sketch	of
its	rep:

			WordTable	wt;
			TitleTable	t;
			Query	q;
			String[	]	urls;

Thus,	its	rep	just	stores	the	state	of	the	engine	and	the

tables	that	will	be	used	to	process	future	user	requests.

The	actual	rep	may	be	different	from	what	is	shown	here

but	will	contain	the	information	shown	in	the	sketch.

Figure	13.8	Specifications	of	Query	and	Doc

			class	Query	{
						//	OVERVIEW:	as	before	plus

						//	constructors
						Query	(	)
									//	EFFECTS:	Returns	the	empty	query.

						Query	(WordTable	wt,	String	w)
								//	REQUIRES:	wt	and	w	are	not	null
								//	EFFECTS:	Makes	a	query	for	the	single	keyword	w.

						//	methods
						void	addKey	(String	w)	throws	NotPossibleException
									//	REQUIRES:	w	is	not	null
									//	MODIFIES:		this
									//	EFFECTS:	If	this	is	empty	or	w	is	already	a	keyword	in	the	q
uery
									//			throws	NotPossibleException	else	modifies	this	to	contain	
the
									//			query	for	w	and	all	keywords	already	in	this.
	
						void	addDoc	(Doc	d)
								//	REQUIRES:	d	is	not	null
								//	MODIFIES:	this	
								//	EFFECTS:	If	this	is	not	empty	and	d	contains	all	the	keywords
	of
								//this	adds	it	to	this	as	a	query	result	else	does	nothing.

			}

			class	Doc	{
						//	OVERVIEW:	As	before	plus

					//	constructors
					Doc	(String	d)	throws	NotPossibleException
								//	EFFECTS:	If	d	cannot	be	processed	as	a	document	throws
								//	NotPossibleException	else	makes	this	be	the	Doc
								//	Corresponding	to	d.



			}

Figure	13.9	Extended	module	dependency	diagram	for	Engine

13.5	DISCUSSION	OF	THE	METHOD

In	constructing	our	design,	we	have	used	a	single	method

for	focusing	our	attention	on	what	needed	to	be	done—we

broke	the	work	into	subtasks	and	then	investigated	how

we	might	accomplish	the	subtasks.	We	did	not	simply

introduce	a	procedure	for	each	subtask,	however.

Instead,	we	looked	for	abstractions,	especially	data	types,

to	take	care	of	the	details	of	the	tasks.	This	results	in	a

better	design,	by	making	it	easier	to	hide	details	until

later	stages	of	the	design	and	to	see	and	exploit

connections	among	different	tasks.

We	introduced	abstractions	to	hide	details	that	we

deemed	inappropriate	at	the	current	level.	This	raises	the

question	of	how	to	decide	what	is	appropriate	at	a	given

level.	Such	a	decision	is	largely	a	matter	of	judgment,	but

there	are	some	guidelines.	An	implementation	should

accomplish	something,	but	it	should	not	do	too	much.

Our	goal	is	to	end	up	with	small	modules;

implementations	of	data	abstractions	should	be	no	more

than	a	few	pages,	and	method	implementations	should

usually	be	shorter	than	a	page.	For	example,	if	Engine
had	taken	care	of	all	details	of	carrying	out	user	requests,

it	would	have	been	much	too	big.	In	addition,	the



different	parts	of	the	implementation	of	a	module	should

be	at	roughly	the	same	level	of	detail.	Finally,	each

abstraction	should	be	focused	on	a	single	purpose;	we

discuss	this	issue	further	in	Chapter	14.	See	Sidebar	13.6

for	a	summary	of	our	design	method.

Sidebar	13.6	The	Design	Method

Our	basic	approach	is	to	let	the	problem	structure	determine	the	program	structure:

List	the	tasks	to	be	accomplished.

Use	the	list	to	help	in	inventing	abstractions,	especially	data	abstractions,	to	accomplish	the
tasks.

Introduce	abstractions	to	hide	detail:	to	abstract	from	how	to	what.

Each	abstraction	should	be	focused	on	a	single	purpose,	and	its	implementation	should
actually	do	something.

The	design	of	Engine	is	typical	of	the	design	of	a	top-
level	abstraction	in	a	system.	The	implementations	of

such	abstractions	are	concerned	primarily	with

organizing	the	computation,	while	the	details	of	carrying

out	the	steps	are	handled	by	helpers.	Introducing

partially	specified	data	types	like	Doc	and	Query	is	also
typical.	In	the	early	stages	of	design,	we	frequently	know

that	two	modules	must	communicate	with	each	other,	but

we	do	not	know	exactly	how	this	communication	is	to

take	place.	In	particular,	we	know	that	modules	are	to

communicate	through	objects	of	some	type,	but	we	do	not

know	what	methods	on	those	objects	will	be	useful.

Therefore,	the	specification	of	the	shared	type	is

necessarily	incomplete.	It	will	be	completed	as	we

continue	with	the	design.

13.6	CONTINUING	THE	DESIGN

We	now	have	a	module	dependency	diagram	containing

several	abstractions.	How	do	we	select	the	next	target?

(See	Sidebar	13.7.)	The	first	thing	to	notice	is	that	not	all

abstractions	are	suitable	as	the	next	target;	those	that	are

suitable	we	shall	call	the	candidates.	Clearly,	Engine
itself	is	not	a	candidate	since	we	have	already	designed	its

implementation.	In	addition,	Doc	and	WordTable	are
not	candidates	since	we	have	not	yet	studied	how	to

implement	modules	that	use	them;	and	therefore	we

cannot	be	certain	that	their	specifications	are	complete.

•	

•	

•	

•	



(Actually,	we	shall	occasionally	select	an	incomplete

abstraction	as	a	candidate,	as	discussed	a	bit	later	in	this

section.)

Sidebar	13.7	Selecting	the	Next	Target

Identify	all	candidates;	these	are	abstractions	whose	implementation	has	not	yet	been	studied
but	whose	specification	is	complete.

Choose	the	target	T	from	among	the	candidates.	Reasons	for	choosing	a	particular	target
include	exploring	an	uncertainty,	increasing	insight	into	the	program	structure,	or	finishing	up	a
part	of	the	design.

Therefore,	we	have	three	candidates:	getDocs,
TitleTable,	and	Query.	How	do	we	choose	between
them?	There	are	no	hard	and	fast	rules	here;	either

candidate	could	be	studied.	However,	there	are	several

reasons	why	we	might	prefer	one	of	several	candidates:

1.	We	are	uncertain	about	how	to	implement	the

abstraction.	For	example,	we	might	need	to

implement	an	abstraction	very	efficiently,	and	we	are

not	sure	how	to	achieve	this	efficiency	or	even

whether	it	can	be	achieved.

2.	We	are	uncertain	about	its	appropriateness.

3.	One	candidate	may	be	more	central	to	the	design

than	another,	so	that	studying	its	implementation	will

provide	more	insight	into	the	design.

4.	We	may	have	been	working	on	some	area	of	the

design	and	would	like	to	finish	that	area.

The	first	two	rules	concern	the	investigation	of	areas

considered	to	be	questionable;	choosing	an	abstraction

for	one	of	these	two	reasons	is	likely	to	expose	design

errors	quickly.	If	such	an	uncertainty	exists,	it	is	almost

always	best	to	investigate	it	immediately.	In	fact,	we

might	even	investigate	a	data	abstraction	that	is	not	yet	a

candidate,	if	we	felt	sufficiently	uncertain	about	it.	The

other	two	rules	are	really	opposites:	finishing	up	an	area

is	unlikely	to	lead	to	further	insights,	but	it	may

nevertheless	be	useful	(not	to	mention	psychologically

comforting)	to	get	part	of	the	design	fully	out	of	the	way.

Furthermore,	doing	this	might	allow	us	to	start

implementing	that	part	of	the	program.

•	

•	



In	our	example,	all	candidates	are	central	to	the	design,

although	getDocs	raises	issues	about	how	to
communicate	with	other	sites,	whereas	the	other	two

candidates	will	expose	details	about	data	structures.	To

shorten	the	presentation,	we	will	not	go	into	the	design	of

getDocs;	instead,	we	will	assume	that	it	is	provided	by
some	library	(e.g.,	a	class	Comm).	Therefore,	we	need	to
choose	between	TitleTable	and	Query.	Both	will
provide	insight;	we	will	start	with	TitleTable	since	it
seems	a	bit	simpler,	and	also	it	will	shed	some	light	on

Doc.

There	are	two	main	issues	in	TitleTable:	how	to	get	a
title	from	a	document	(in	the	addDoc	method),	and	how
to	organize	the	table	so	that	lookup	will	be	fast.	The	title

can	be	obtained	by	calling	the	title	method	of	Doc.	A
fast	lookup	can	be	achieved	by	using	a	hash	table,	either

one	we	implement	directly	within	TitleTable	or	the
one	provided	by	java.util.	However,	we	need	to
decide	what	types	to	use	for	the	keys	and	values.	In	this

case,	the	values	are	Docs.	Either	we	can	use	a	string	for
the	key	or	we	can	introduce	a	Title	data	abstraction.
The	former	decision	seems	acceptable,	assuming	that

titles	are	random	enough	that	the	hash	method	for
strings	will	produce	sufficiently	random	results;	we	will

make	this	assumption	since	it	seems	to	be	reasonable.

We	do	not	need	to	extend	the	module	dependency

diagram	at	this	point	because	we	have	not	introduced	any

new	abstractions.	Even	if	we	had	decided	to	use	the	hash

table	in	java.util,	it	isn’t	necessary	to	add	it	to	the
diagram	since	it	is	in	a	standard	library.	However,	we	do

need	to	explain	in	the	documentation	about	the

implementation	of	TitleTable	that	we	intend	to	use	a
hash	table	mapping	from	strings	to	Docs.	And	if	we
decided	to	use	the	hash	table	in	java.util,	we	should
also	state	this.	In	this	case,	using	the	hash	table	in

java.util	should	be	adequate.

13.7	THE	QUERY	ABSTRACTION

Now	we	have	only	one	abstraction,	Query,	to	consider,
since	there	are	no	other	candidates.	Query	has	four



interesting	tasks	to	accomplish:

1.	Compute	a	new	query	given	a	keyword.

2.	Extend	a	query	with	a	new	keyword	(the	addKey
method).

3.	Extend	a	query	with	a	new	document	(the	addDoc
method).

4.	Provide	access	to	the	information	about	the	query	(in

the	observers).	Of	particular	interest	is	providing

access	to	the	documents	sorted	by	number	of

occurrences	of	the	keywords.

In	addition,	Query	must	create	an	empty	query,	but	that
task	is	trivial.

Probably	a	good	place	to	start	is	by	considering	how	to

make	a	query	given	akeyword.	To	do	so,	Query	must

1.	Find	all	the	documents	that	contain	the	keyword	with

its	count.

2.	Keep	track	of	the	keyword.

3.	Sort	the	documents	based	on	number	of	occurrences

of	keywords.

The	first	task	can	be	accomplished	by	calling	a	lookup
method	of	WordTable.	If	lookup	returned	the	matching
documents	sorted	by	a	count	of	matches,	the	third	task

would	be	trivial.	However,	having	this	work	done	in

WordTable	is	not	a	good	idea	for	two	reasons.	First,
many	words	will	never	be	used	as	keywords	yet	sorting

would	have	to	happen	for	them	anyway.	Second,	sorting

is	not	useful	for	extended	queries	since	there	we	care

about	the	sum	of	the	counts	for	all	the	keywords.

Therefore,	lookup	will	return	the	documents	unsorted,
and	Query	must	take	care	of	the	sorting.

If	we	could	assume	that	the	number	of	matching

documents	is	small,	the	technique	used	to	do	sorting	is

not	important.	However,	this	assumption	is	unlikely	to	be

true,	and	therefore	we	need	to	be	careful.	A	possible	way

to	do	the	sorting	is	to	use	a	sorted	tree	like	the	one

discussed	in	Chapter	6.	That	technique	will	work

efficiently	provided	the	ordering	of	the	documents	in	the



list	returned	by	WordTable	is	random	in	the	number	of
matches:	this	assumption	does	seem	reasonable.

Therefore,	using	a	sorted	tree	is	a	reasonable	choice.

Now	let’s	consider	the	addKey	method.	Here	the	tasks
are

1.	Check	whether	the	new	key	is	already	in	use.

2.	Find	the	documents	that	contain	the	new	key.

3.	Find	the	documents	matching	the	new	key	that	are

already	in	the	query.

4.	Sort	the	remaining	documents	by	the	sums	of	the

matches.

Task	2	can	be	done	using	the	WordTable	lookup
method.	To	do	a	good	job	of	task	3,	we	need	a	quick	way

to	check	whether	a	document	that	matches	the	new	key	is

already	in	the	query.	This	cannot	be	done	efficiently	using

the	sorted	tree,	since	that	is	sorted	on	number	of	matches

with	the	previously	known	keywords,	not	on	something

that	identifies	the	document.	Instead,	we	need	to	store

the	previous	matches	(or	the	new	matches)	in	a	hash

table	so	that	we	can	look	them	up	efficiently.	Using	a

hash	table	will	give	us	a	constant	rather	than	a	linear

lookup.

Next	let’s	consider	the	addDoc	method.	This	method
must	check	whether	each	of	its	keywords	is	in	the	new

document;	if	they	are,	it	must	add	the	document	to	the

matches	in	the	proper	sorted	order	(i.e.,	it	just	adds	the

document	with	its	sum	to	the	sorted	tree).	However,

there	is	a	problem	with	this	scheme:	how	does	addDoc
find	out	whether	the	keywords	are	in	the	new	document?

We	could	look	up	each	keyword,	and	then	determine

whether	the	new	document	is	in	the	list;	but	since	these

lists	can	be	long,	the	test	will	be	expensive.	As	an

alternative,	we	could	provide	another	WordTable
method	to	look	up	a	document	and	return	its	interesting

words,	but	either	that	method	requires	a	more	complex

implementation	for	WordTable,	or	it	will	be	time
consuming.	Also,	we	don’t	really	need	this	method;	the

only	time	we	are	interested	in	looking	up	the	words	of	a



document	is	when	it	is	first	added	to	the	database.

Therefore,	instead	let’s	have	the	addDoc	method	of
WordTable	return	a	hash	table	that	tracks	the	keywords
of	the	new	document.	This	table	can	be	constructed	in

time	linear	in	the	document	size,	and	testing	whether	the

document	matches	the	query	will	be	linear	in	the	number

of	keywords.	The	table	can	actually	map	each	word	in	the

document	to	its	number	of	occurrences	so	that	in	case	the

document	matches	the	query,	the	sum	of	matches	can	be

computed	easily.	The	table	will	need	to	be	an	argument	to

the	addDoc	method	of	Query.

Thus,	we	have	identified	a	need	to	change	the

specification	of	Query	and	also	of	WordTable,	which
means	we	need	to	re-examine	Engine	to	determine	the
impact	of	these	changes.	But	there	is	no	problem:

Engine	simply	passes	the	table	returned	by	the	call	of
the	addDoc	method	of	WordTable	to	the	addDoc
method	of	Query.

Finally,	let’s	consider	the	observers.	Keeping	the

documents	in	a	sorted	tree	or	a	hash	table	will	not	allow

an	efficient	implementation	for	fetch.	Although	we
could	imagine	replacing	the	fetch	method	with	an
elements	iterator	(over	the	sorted	tree),	fetch	is	really
what	is	needed	for	the	UI.	Therefore,	after	we	sort,	we

should	move	the	documents	into	an	array	so	that	fetch
can	be	implemented	efficiently.

However,	if	we	are	going	to	move	the	documents	into	an

array,	it	doesn’t	make	sense	to	use	the	sorted	tree	to	sort

them!	Instead.	we	should	store	them	in	an	array	and	sort

them	in	place,	using	a	good	sorting	algorithm	such	as

quickSort.	Actually,	we’ll	use	a	vector	so	that	in	the
addDoc	method,	we	can	simply	insert	the	new	document
into	the	proper	location	in	the	vector	(using	the	Vector
method	insertElementAt).	The	implementation	of	the
addKey	method	will	move	the	documents	into	a	hash
table,	store	the	documents	containing	all	keys	in	a	vector,

and	then,	as	in	the	constructor,	sort	the	vector.

Thus,	we	end	up	with	approximately	the	following	rep	for

a	nonempty	query:



			WordTable	k;
			Vector	matches;	//	elements	are	DocCnt	objects
			String[]keys;

DocCnt	is	a	record-like	type	with	two	fields,	the
document	and	the	count	of	the	occurrences	of	keywords

in	the	document.	The	rep	invariant	will	state	that

matches	is	sorted	by	count,	that	the	sums	are	correct,
and	that	the	matches	contain	all	the	keywords—in	other

words,	it	will	state	some	of	the	constraints	from	the	data

model!

Since	the	implementation	of	Query	is	not	obvious,	it’s
useful	to	document	our	decisions	by	making	sketches	of

some	of	the	methods.	Figure	13.10	shows	these	sketches.

They	can	be	used	to	help	in	developing	the	specifications

for

Figure	13.10	Sketches	of	some	Query	methods.

for	the	constructor	(of	a	non-empty	query):

					look	up	the	key	in	the	WordTable
					sort	the	matches	using	quickSort

for	the	addKey	method
					look	up	the	new	key	in	the	WordTable

					store	the	information	about	matches	in	a	hash	table

					for	each	current	match,	look	up	the	document	in	the

hash

										table	and	if	it	is	there,	store	it	in	a	vector

										sort	the	vector	using	quickSort

for	the	addDoc	method
					use	the	argument	table	to	get	the	number	of

occurrences

										of	each	current	key

					if	the	document	has	all	the	keywords,	compute	the

sum

										and	insert	the	doc,	sum>	pair	in	the	vector	of
matches

Figure	13.11	Extended	specifications	for	Query	and	WordTable

			class	Query	{
						//	As	before	except	the	addDoc	method	specification	has	changed.

						void	addDoc	(Doc	d,	Hashtable	h)



									//	REQUIRES:	d	is	not	null	and	h	maps	strings	(the	interesting	
words
									//			in	d)	to	integers	(the	count	of	occurrences	of	the	word	in
	d).
									//	modifies:	this
									//	EFFECTS:	If	each	keyword	of	this	is	in	h,	adds	d	to	matches	
of	this.
			}

			class	WordTable	{
						//	As	before	plus

						Vector	lookup	(String	k)
									//	REQUIRES:	k	is	not	null.
									//	EFFECTS:	Returns	a	vector	of	DocCnts	where	the	Doc	contains	
k	cnt	times.

						Hashtable	addDoc	(Doc	d)
									//	REQUIRES:	d	is	not	null
									//	MODIFIES:	this
									//	EFFECTS:	Adds	information	about	d
′s	interesting	words	and	their
									//		number	of	occurrences	to	this	;	also	returns	a	table	mappin
g	each
									//		interesting	word	in	d	to	its	number	of	occurrences.
			}

newly	identified	methods	and	abstractions,	and	they	can

also	be	entered	in	the	design	notebook	(in	the	section	for

the	Query	abstraction).

The	extended	specifications	for	Query	and	WordTable
are	given	in	Figure	13.11.	Figure	13.12	gives	the

specification	for	quickSort	and	related	abstractions.
quickSort	is	a	generic	abstraction	that	requires	that
elements	of	the	vector	belong	to	a	type	that	extends	the

Comparable	interface	(this	interface	was	defined	in
Figure	8.4).	Since	the	actual	vector	being	used	in	Query
contains	DocCnt	objects,	this	means	DocCnt	must
extend	this	interface.	Note	that	the	specification	of

DocCnt	does	not	contain	details	about	the	methods	for
accessing	the	components	since	these	are	standard	for

record-like	types,	as	explained	in	Chapter	5.

The	extended	module	dependency	diagram	is	shown	in

Figure	13.13.	The	most	interesting	point	here	is	the	use	of

hierarchy	to	explain	how	DocCnt

Figure	13.12	Specifications	of	quickSort	and	DocCnt

			class	Sorting	{
						//	OVERVIEW:	Provides	a	number	of	procedures	for	sorting	vectors.

				static	void	quickSort	(Vector	v)	throws	ClassCastException,	NullPointerException
									//	MODIFIES:	v
									//	EFFECTS:	If	some	member	of	v	is	null	throws	NullPointerException	;	
if
									//		elements	of	v	aren’t	comparable,	throws	ClassCastException;	
else



									//		uses	the	quick	sort	algorithm	to	sort	the	elements	of	v	so	
that
									//		elements	with	larger	indexes	are	less	than	those	at	smaller
	indexes.
		}

		class	DocCnt	implements	Comparable	{
						//	OVERVIEW:	DocCnt	is	a	record	like	type	with	two	fields,	a	Doc
						//		and	an	integer.

						//	methods
									int	compareTo	(Object	x)	throws	ClassCastException,	NullPointerException
									//	EFFECTS:	If	x	is	null	throws	NullPointerException;	if	x	isn’
t	a	DocCnt
									//			object,	throws	ClassCastException.	Otherwise,	if	this.cnt	
<	x.cnt
									//			returns	-1;	if	this.cnt	=	x.cnt	returns	0;	else	returns	1.
			}

Figure	13.13	Extended	module	dependency	diagram

satisfies	the	dependence	of	quickSort	on	Comparable.
Note	that	quickSort	does	not	depend	on	DocCnt	since
it	is	generic;	it	depends	only	on	Comparable.	Another
point	is	that	we	now	know	that	Query	has	only	a	weak
dependency	on	Doc	(since	it	doesn’t	call	any	Doc
methods),	whereas	in	Figure	13.9,	we	assumed	a	strong

dependency.	DocCnt	also	has	a	weak	dependency	on
Doc.

13.8	THE	WORDTABLE	ABSTRACTION

At	this	point,	we	have	only	one	candidate,	WordTable,
under	the	reasonable	assumption	that	quickSort	is
provided	in	a	library.	The	implementation	of	WordTable
is	fairly	clear.	It	will	use	a	hash	table	that	maps	strings



that	represent	uninteresting	words	to	null	and	strings
that	are	interesting	words	to	vectors,	where	each	element

of	the	vector	is	a	DocCnt.

The	addDoc	method	will	get	each	word	from	Doc	and	use
the	hash	table	to	determine	whether	the	word	is

interesting.	It	will	store	interesting	words	both	in	the

hash	table,	H,	it	is	returning	and	in	the	hash	table	that

records	the	state	of	the	WordTable.	Probably	the	best
approach	is	for	addDoc	to	store	information	in	H	as	it
processes	the	document,	and	then	add	the	information	to

its	rep	at	the	end.

Implementing	WordTable	does	require	a	way	of
iterating	over	the	words	in	the	documents.	Thus,	Doc
needs	to	provide	an	iterator	that	can	be	used	for	this

purpose	(or	size	and	fetch	methods).

We	have	not	yet	considered	one	additional	issue	for

WordTable:	it	concerns	canonical	forms	for	words.	For
example,	we	would	not	want	to	have	entries	for	both

“hash”	and	“Hash”	in	the	WordTable.	One	possibility	is
to	have	an	extended	equality	test	that	would	recognize,

for	example,	that	“hash”	and	“Hash”	are	the	same	word,

but	that	sounds	expensive.	A	better	solution	is	to	have	a

canonical	form	for	each	word—for	example,	all	lowercase.

Another	point	is	that	canonicalization	is	needed	in	other

places—for	example,	in	the	queryFirst	and
queryMore	methods	of	Engine	and	also	in	the
addDocs	method	of	TitleTable.	This	suggests	that	a
good	approach	is	to	have	a	canon	procedure	that
produces	a	canonical	form.	This	procedure	can	be	called

by	Engine	methods	so	that	a	word	entered	by	a	user	can
be	converted	to	canonical	form	just	once,	and	by

WordTable	when	it	enters	words	in	the	table,	including
in	its	constructor,	since	it	needs	to	keep	the	uninteresting

words	in	canonical	form	as	well.	Having	a	single

procedure	that	is	used	everywhere	for	canonicalization

allows	us	to	localize	knowledge	of	what	the	canonical

form	is	so	that

Figure	13.14	Specifications	of	Doc	and	canon

			class	Doc	{



						//	As	before	plus	we	now	know	that	Doc	is	immutable	and	that
						//	it	provides	an	iterator.

						Iterator	words	(	)
									//	EFFECTS:	Returns	a	generator	that	will	yield	all	the	words	i
n	the
									//			document	as	strings	in	the	order	they	appear	in	the	text.
			}

			class	Helpers	{
						//	Provides	various	helping	procedures;	at	present	only	canon	is	d
efined.

						String	canon	(String	s)	throws	NotPossibleException
									//	EFFECTS:	If	s	is	null	throws	NotPossibleException	else
									//			returns	a	string	that	is	the	canonical	form	of	s.
			}

we	can	change	it	easily	if	necessary.	Thus,	this	design	is

better	than	one	in	which,	for	example,	both	Engine	and
WordTable	needed	to	produce	canonical	forms.

Another	point	is	that	the	words	iterator	of	Doc	simply
returns	words.	It	does	not	determine	whether	those

words	are	keywords.	This	design	is	more	desirable	than

one	in	which	Doc	knows	about	keywords	since	it
represents	a	clean	separation	of	concerns.

The	specification	of	canon	and	the	extended
specifications	for	Doc	are	given	in	Figure	13.14.	Figure
13.15	shows	the	extended	module	dependency	diagram.

13.9	FINISHING	UP

Now	we	have	only	the	canon	and	Doc	abstractions	left.
canon	is	trivial	to	implement,	and	we	need	not	consider
it	further.	Doc	parses	its	input	string	as	needed.	When	a

Doc	is	constructed,	the	constructor	finds	the	title	by
parsing	the	first	part	of	the	string;	if	it	can’t	find	a	title,	it

throws	the	NotPossible-Exception.	The	rest	of	the
parsing	is	done	by	the	words	iterator;	at	each

Figure	13.15	Extended	module	dependency	diagram.



iteration	it	finds	the	next	word	and	returns	it.	It

terminates	when	it	reaches	the	end	of	the	document.

13.10	INTERACTION	BETWEEN	FP	AND	UI

Our	design	for	the	search	engine	used	only	the	simplea

form	of	interaction	between	the	FP	and	UI:	the	UI	calls

FP	methods	(or	methods	of	some	of	the	auxiliary	types).

Now	we	consider	a	more	complicated	interaction.

The	addDocs	operation	may	take	a	long	time	to	complete
since	it	involves	interaction	with	a	remote	site;	and,	in

addition,	there	may	be	lots	of	documents	to	retrieve.

When	an	operation	takes	a	long	time,	users	generally	like

to	be	reassured	that	the	program	is	making	progress.	This

reassurance	might	take	the	form	of	telling	the	user

periodically	what	is	going	on—for	example,	how	many

documents	have	been	retrieved.

Suppose	we	decide	to	add	this	to	our	design.	A	simple

way	to	do	it	is	to	have	the	FP	call	the	UI	with	progress

reports.	For	example,	each	time	the	addDocs

Figure	13.16	UI	Hierarchy



method	of	Engine	gets	another	document	from
getDocs,	it	could	call	a	UI	method	to	report	the	current
count;	the	UI	can	then	display	this	information	to	the

user.	The	UI	method	might	be

			void	docProgress	(int	n)
						//	REQUIRES:	An	addDocs	operation	is	in	progress
						//	EFFECTS:	Informs	the	user	that	n	documents	have	been	retrieved.

Now	we	have	the	structure	(b)	in	Figure	13.2.

When	we	have	structure	(b),	the	FP	will	need	to	have

access	to	the	UI	object	to	call	its	methods.	This	can	be

accomplished	by	passing	the	UI	object	as	an	argument	to

the	FP’s	constructor.

When	the	UI	and	FP	interact	as	in	structure	(a)	in	Figure

13.2,	the	FP	is	not	dependent	on	the	UI.	With	structure

(b)	the	FP	is	dependent	on	the	UI.	Since	our	goal	is	to

have	many	UIs,	we	need	a	way	to	relate	them	so	that	the

FP	will	work	with	any	of	them.	This	is	easily

accomplished	using	hierarchy:	the	FP	depends	on	an

abstract	UI,	and	real	UIs	are	subtypes	of	that	UI.	A

module	dependency	diagram	illustrating	this	situation

for	the	search	engine	is	shown	in	Figure	13.16	where	we

see	that	there	are	three	actual	UIs:	one	that	does

regression	testing	of	the	FP,	one	providing	a	command-

line	interface,	and	one	providing	a	GUI	interface.	In	the

diagram,	we	have	omitted	the	structure	of	the	Engine;
one	way	to	think	about	this	is	that	in	this	diagram,	the

node	labeled	Engine	stands	for	the	entire	module
dependency	diagram	shown	in	Figure	13.15.

Actually,	we	might	also	want	to	have	a	hierarchy	for	the



FP,	so	that	the	UI	can	be	used	with	variants	of	the	FP.	We

will	discuss	this	issue	further	in	Chapter	15.

The	extension	of	the	search	engine	to	inform	the	user

about	progress	in	fetching	documents	does	not	address

another	user	need:	when	an	operation	takes	a	long	time

to	carry	out,	the	user	may	want	to	terminate	it.	When	this

happens,	the	user	generally	requires	a	speedy	response	to

the	termination	command.	Our	current	design	allows	the

termination	to	happen	each	time	the	engine	calls	the

docProgress	method,	but	this	may	not	be	fast	enough,
for	example,	if	communication	is	very	slow	or	the	site

containing	the	documents	is	not	responding	well.

To	provide	faster	response,	however,	requires	the	use	of

concurrency.	An	FP	method	that	runs	for	a	long	time

would	fork	a	thread	to	do	the	lengthy	work	and	then

return	to	the	UI.	The	UI	can	then	call	some	other	FP

method	if	the	user	indicates	that	it	is	time	to	abandon

that	work.	For	example,	in	the	search	engine,	the	body	of

the	addDocs	method	would	fork	a	thread;	the	thread
would	carry	out	the	fetching	and	processing	of

documents,	while	the	addDocs	method	would	return
immediately.	Engine	would	need	to	provide	another
method	that	the	UI	can	call	to	terminate	fetching	of

documents:

			void	stopFetch	(	)
						//	EFFECTS:	Terminates	the	current	fetching	of	documents.

This	structure	allows	the	search	engine	to	go	on	to	the

next	user	command	immediately,	even	though	document

fetching	is	in	progress.	(To	find	out	how	to	use	threads	in

Java,	consult	a	Java	text.)

13.11	MODULE	DEPENDENCY	DIAGRAMS	VERSUS
DATA	MODELS

A	data	model	defines	the	abstract	state	of	a	program	at

the	level	of	the	requirements	specification.	It	does	not	say

anything	about	the	modular	structure	of	the	program.

The	sets	in	the	model	are	not	types.	We	do	not	produce	a

program	design	by	introducing	a	data	abstraction	for

each	set.	Instead,	we	consider	what	the	program	needs	to



do	and	introduce	abstractions	that	allow	it	to	be

accomplished	in	an	economical	way.	Furthermore,	in	our

design	process,	we	did	not	pay	much	attention	to	the

model	except	indirectly:	the	model	helps	keep	the	design

focused	on	what	is	wanted	because	it	plays	an	important

role	in	clarifying	the	requirements	specification.	The	end

result	of	the	design	is	a	structure	that	is	quite	different

from	the	model.	This	can	be	seen	for	the	search	engine	by

comparing	Figures	12.12	and	13.15.

However,	the	data	model	can	be	used	to	check	on	the

correctness	of	the	design.	First,	every	set	in	a	data	model

must	show	up	somewhere	in	the	program,	or	the	design

cannot	be	correct.	For	example,	here	is	an	explanation	of

what	happened	to	the	sets	for	the	search	engine:

			Cur,	Curmatch:		these	are	in	the	UI
			Doc:	there	is	no	set	of	all	documents,	but	all	documents	are
									accessible	from		WordTable	and		TitleTable
			Title:	TitleTable
			Entry:			handled	within	the		Doc	abstraction
			Word:				part	of		WordTable
			NK:			part	of		WordTable
			Key:	handled	by		Query
			Match:			handled	by		Query
			URL:	just	part	of	the	rep	of	Engine
			Num:	int

In	addition,	we	need	to	explain	what	happened	to	the

relations	and	the	constraints.	Some	relations	will

disappear;	for	example,	this	is	what	happens	to	the

index	relation	(since	Doc	provides	an	iterator	rather
than	access	by	index)	and	the	site	relation	(since	there
is	no	need	to	determine	the	site	that	provided	a

document).	The	constraints	on	relations	that	remain

must	be	enforced.	For	example,	the	Query	abstraction	is
responsible	for	ensuring	that	there	are	no	matches	when

Key	is	empty.	It’s	ideal	when	a	constraint	ends	up	being
enforced	within	a	single	abstraction,	but	that	is	usually

not	the	case.	For	example,	the	TitleTable	contains	an
entry	for	each	document	only	if	Engine	enters	each
document	in	the	table	and	the	table	stores	every

document	that	is	entered.	Thus,	it	is	useful	to	determine

which	modules	must	work	together	to	enforce	each

constraint.	Here	is	some	of	this	information	for	the

search	engine:



Every	document	has	a	title:	enforced	by		Engine	and		TitleTable
Every	word	in	each	document	is	in		Word:	enforced	by		Doc,
				WordTable,	and	Engine
NK	is	a	subset	of		Word:	enforced	by		WordTable
Key	is	a	subset	of		Word	–	NK:	enforced	by		Engine,		Query,
					and	WordTable

Sidebar	13.8	Data	Models	and	Design

A	module	dependency	diagram	identifies	program	modules	that	will	be	used	in	the
implementation.	A	data	model	defines	sets	that	do	not	correspond	to	program	modules.

Every	set	in	a	data	model	must	show	up	somewhere	in	the	design.	One	check	on	the
completeness	of	the	design	is	to	explain	how	it	handles	each	set.

Furthermore,	the	design	must	enforce	all	the	constraints	of	the	model.	A	good	check	on	the
correctness	of	the	design	is	to	explain	how	this	is	accomplished.

Exactly	the	matching	documents	are	in		Match:	enforced	by		Query,
				WordTable,	Doc,	and		Engine
Key	={	}				Match	=	{	}:	enforced	by		Query
						matches	are	sorted	properly:	enforced	by		Query,	WordTable,
				Doc,	and		Engine

Note	that	several	modules	are	usually	involved	in

enforcing	a	constraint	and,	furthermore,	that	Engine	is
often	involved.	For	example,	Engine	is	involved	in
keeping	Key	disjoint	from	NK	because	it	tests	whether	a
word	is	interesting	and	forms	a	query	with	it	only	if	it	is;

WordTable	is	also	involved	since	it	must	provide	the
correct	answer	when	the	isInteresting	method	is
called;	and	Query	is	involved	since	it	must	produce	the
answer	for	the	word	given	to	it	as	an	argument	and	not

for	some	other	word.	The	reason	Engine	is	involved	so
often	is	that	it	orchestrates	the	running	of	the	entire

program;	this	is	typical	of	a	top-level	module,	and	as	a

result,	such	modules	will	play	a	role	in	enforcing	many	of

the	constraints.

Sidebar	13.8	summarizes	this	discussion.

13.12	REVIEW	AND	DISCUSSION

The	design	of	Engine	was	accomplished	in	stages.	We

selected	a	new	target	at	each	stage	and	investigated	its

implementation	by	carrying	out	two	main	activities.	First,

we	invented	some	helping	abstractions	that	were	useful

in	the	problem	domain	of	the	target.	Then	we	defined	the

properties	of	the	helpers	precisely	and	described	those

properties	in	specifications.

•	

•	

•	



13.12.1	Inventing	Helpers

The	hardest	part	of	program	design,	and	the	place	where

the	greatest	creativity	is	required,	is	in	the	invention	of

the	helpers.	The	primary	method	used	here	is	to	study	the

problem	structure	and	derive	from	it	a	structure	for	the

program.	Our	study	of	the	problem	structure	takes	the

form	of	a	list	of	tasks	to	be	accomplished.	However,	we	do

not	simply	invent	a	program	structure	that	carries	out

those	tasks	one	after	another.	Instead,	we	use	the	list	as	a

way	of	focusing	attention	on	what	needs	to	be	done	and

then	invent	abstractions	to	accomplish	the	needed	work.

Abstractions	are	introduced	in	each	case	to	hide	detail.

For	example,	Query	hides	the	details	of	how	a	query	is
processed,	while	Doc	hides	the	details	of	how	a	document
is	interpreted.	It	is	desirable	to	hide	detail	for	two

reasons:	control	of	complexity	and	modifiability.	We

control	complexity	by	delaying	decisions	and	thus	limit

the	number	of	concerns	that	must	be	dealt	with	at	any

particular	level	of	the	design.	We	support	modifiability

because	the	hidden	details	can	be	changed	later	without

affecting	other	abstractions.

In	developing	the	design,	we	are	guided	by	several

factors:

Knowledge	of	what	abstractions	are	already	available.

This	includes	abstractions	present	in	the	programming

language	and	in	any	available	library	of	programs,	as

well	as	those	already	identified	during	this	design.	For

example,	we	knew	that	java.util	provided	hash
tables	and	that	quickSort	was	also	available	in	a
library.

Knowledge	of	preexisting	algorithms	and	data

structures.	It	is	necessary	to	know	about	the	methods

that	have	already	been	developed.	For	example,	the

designer	should	be	familiar	with	existing	sorting	and

searching	techniques	and	not	have	to	reinvent	them.

Knowledge	about	related	programs	and	their

structure.	As	we	get	deeper	into	the	design,	this

knowledge	is	likely	to	become	more	and	more	useful,

since	even	radically	different	applications	are	likely	to

•	

•	

•	



have	some	similar	subtasks.

For	example,	our	decision	to	process	the	words	in	a

document	as	we	added	them	to	the	WordTable	was
based	on	our	knowledge	that	one-pass	algorithms	are

usually	better	in	both	space	and	time	than	two-pass

algorithms.	Also,	we	relied	on	the	existence	of	Java	types,

including	those	in	packages	such	as	java.io,	and	made
explicit	choices	between	them	and	data	abstractions;	for

example,	we	might	have	defined	an	abstraction	for	the

title	of	a	document,	but	it	seemed	sufficient	to	use	a

string	in	this	case.

Role	of	Data	Types

Types	usually	have	the	most	impact	on	the	shape	of	the

design,	with	procedures	and	iterators	as	methods,	but

independent	procedures	and	iterators	are	also	important.

We	look	for	types	in	four	areas:	input,	output,	internal

data	structures,	and	individual	data	items.	Most	of	our

data	abstractions	in	Engine	hide	details	of	internal	data
structures.	(The	design	of	Engine	is	somewhat	unusual
in	its	repeated	use	of	the	same	data	structure—a	hash

table;	more	typically,	a	program	will	make	use	of	several

different	data	structures.)	However,	Doc	is	an	abstraction
of	a	data	item,	and	WordTable	abstracts	from	details	of
input	(the	structure	of	the	file	defining	the	uninteresting

words).	We	might	have	had	an	abstraction	of	output	if

there	were	a	way	for	a	user	to	request	the	search	engine

to	write	information	about	matching	documents	to	a	file;

in	this	case,	an	InfoStream,	where	information	about
an	entire	document	is	added	at	once,	might	have	been

useful.

Encapsulating	input	and	output	permits	us	to	consume

input	or	produce	output	in	terms	of	abstract	quantities.

Input	and	output	are	often	handled	with	procedures	or

iterators,	since	we	typically	just	read	or	write	the	next

item.	The	getDocs	iterator	is	an	example.	It	could	be
doing	fancy	buffering—for	example,	fetching	documents

in	batches	or	fetching	the	next	document	while	we	are

processing	the	current	one.	Since	it	is	an	abstraction,

these	details	are	hidden	from	us,	and	we	need	not	be



concerned	with	them.

13.12.2	Specifying	Helpers

In	inventing	helpers,	we	are	concerned	only	with

concepts;	the	details	of	those	concepts	are	usually	left	ill

defined.	In	the	second	step	of	design,	we	firm	up	those

details	and	document	them	by	means	of	specifications.

During	this	activity,	we	commonly	uncover	cases	that

have	been	overlooked,	especially	error	cases	and	end

cases	(for	example,	the	empty	input).	We	may	discover

missing	arguments	or	results,	or	find	that	arguments	or

results	are	of	the	wrong	type.	In	the	case	of	data	types,	we

may	discover	missing	operations.	Moreover,	if	an

abstraction	has	become	overly	complex,	this	may	be

evident	when	we	try	to	write	the	specification.	A

complicated	specification	leads	naturally	to	the	question

of	how	things	can	be	simplified.	A	better,	simpler

abstraction	is	often	the	result.

We	can	use	sketches	of	the	implementation	as	an	aid	to

identifying	and	specifying	the	helper	abstractions	and	to

document	our	implementation	decisions.	These	sketches

are	written	in	English	and	contain	descriptions	of

subtasks	to	be	accomplished.	We	can	then	identify	for

each	subtask	what	standalone	procedure	or	iterator,	or

operation	of	a	type,	is	to	be	used	and	what	its	arguments

are.	Unlike	the	list	of	tasks	used	to	start	the	design,	the

order	in	which	subtasks	are	carried	out	in	the	sketch	is

significant.	These	sketches	are	worth	doing	only	when

something	complicated	is	going	on;	we	used	them	only

for	the	Query	abstraction.

After	we	have	specified	all	the	helpers	precisely,	we

document	our	design	decisions	in	the	notebook	by

extending	the	module	dependency	diagram,	and	by

adding	or	extending	definitions	of	the	helpers.	Although

we	have	shown	only	the	new	parts	of	specifications	in	the

figures	in	this	chapter,	the	entire	specification	will	appear

as	a	unit	in	the	notebook.	We	will	also	include	a	sketch	of

the	implementation	of	the	target	if	one	was	made;	as

mentioned,	this	is	done	only	if	the	implementation	is

clever.	Also,	for	data	abstractions,	we	will	record



decisions	made	about	what	data	structures	to	use	in	the

rep,	and	we	may	provide	a	sketch	of	the	rep	(what	it	will

contain).

One	issue	we	have	not	yet	discussed	is	how	thorough	the

design	of	an	abstraction	implementation	must	be.	At	each

stage,	the	investigation	must	be	thorough	enough	that	all

helpers	are	identified	and	specified	precisely.	It	is	not

necessary	to	go	further	than	this.	For	example,	we	did	not

look	closely	at	the	implementation	of	WordTable	since	it
was	clear	what	to	do.	By	contrast,	the	design	of	Query
was	carried	out	in	detail	since	we	needed	to	understand

what	it	did	and	how	the	helpers	should	be	defined.

However,	in	general,	we	expect	more	design	(but	of	a

localized	nature)	to	be	needed	during	implementation,

including	possibly	the	recognition	of	the	need	for	private

methods	within	data	abstractions.

13.12.3	Continuing	the	Design

As	soon	as	one	target	has	been	studied,	the	next	step	is	to

select	a	new	target.	First,	the	candidates	are	identified;

these	candidates	are	abstractions	whose	implementations

have	not	yet	been	studied	but	whose	using	abstractions

have	all	been	analyzed.	One	candidate	is	then	chosen	as

the	next	target.	While	there	are	guidelines	for	making	this

choice,	there	are	no	rules.	For	example,	there	is	no

requirement	that	all	abstractions	at	one	level	in	the

design	must	be	studied	before	those	at	lower	levels.

Instead,	common	sense	should	be	used,	with	the	goal	of

finishing	the	entire	design	as	quickly	as	possible.	This	is

why	we	look	at	questionable	abstractions	as	soon	as

possible	and	even	study	them	before	they	are	complete.

If,	while	studying	the	implementation	of	some	target,	we

discover	an	error	in	the	abstraction	itself	(i.e.,	a	change	in

its	specification),	we	must	correct	the	error	before

proceeding	further	with	the	current	target.	We	use	the

arcs	in	the	module	dependency	diagram	to	discover	all

implementations	affected	by	the	error.	Then	we	correct

the	design	for	those	implementations.	In	the	process,	we

may	discover	more	errors	that	must	also	be	corrected.	We

saw	several	examples	of	such	errors	in	our	design,	but	all



of	them	were	easy	to	handle.	In	a	real	design,	we	are

likely	to	find	more	significant	problems	that	may	lead	us

to	back	up	through	several	abstractions	before	the

problem	can	be	fixed.	In	fact,	some	design	errors	may	not

be	found	until	the	implementation	is	underway.	The	data

model	can	be	used	to	check	for	design	errors	as	discussed

in	Section	13.11;	other	techniques	for	finding	errors	early

will	be	discussed	in	Chapter	14.

When	there	are	no	more	candidates,	then	ordinarily	the

design	is	finished.	There	is	one	special	case,	however.

When	two	or	more	abstractions	are	mutually	recursive,

then	none	can	be	a	candidate,	since	each	is	used	by

another	abstraction	that	has	not	yet	been	studied.	When

dealing	with	mutually	recursive	abstractions,	we	must

proceed	with	caution.	One	must	be	selected	as	a

candidate	and	studied	first.	Since	this	candidate	is	used

by	another	abstraction	that	has	not	been	studied,	we	may

discover	later	that	its	behavior	is	not	what	is	needed.	This

problem	is	another	indication	of	why	mutual	recursion

must	be	viewed	with	suspicion.

13.12.4	The	Design	Notebook

The	result	of	a	finished	design	is	a	design	notebook

containing	the	completed	module	dependency	diagram

and	sections	for	each	abstraction.	It	is	important	that	this

notebook	contain	not	only	the	decisions	that	were	made,

but	also	the	reasons	for	them.	Ideally,	this	part	of	the

documentation	will	explain	both	what	problems	are	being

solved	by	a	particular	structure	and	what	problems	are

being	avoided	that	would	have	been	introduced	by	other

structures	studied	during	the	design.

Because	such	documentation	is	difficult	and	time

consuming	to	produce,	it	is	often	neglected.	It	is

important	in	the	later	stages	of	program	development,

however,	whenever	a	situation	arises	in	which	a	design

decision	must	be	reconsidered	or	changed.	The	new

decision	can	best	be	made	by	someone	who	fully

understands	the	design.	The	documentation	makes	the

needed	information	available,	both	to	people	other	than

the	original	designers	and	even	to	the	original	designers,



who	will	forget	it	as	time	goes	by.

13.13	TOP-DOWN	DESIGN

Our	design	process	is	a	top-down;	that	is,	we	always

reason	from	what	is	wanted	to	how	to	achieve	it.	In	this

way,	we	keep	our	goal	(the	required	program)	firmly	in

view	and	are	free	to	use	our	intuition	about	programs	to

guide	us	to	a	solution.	Through	experience	in	writing

programs,	programmers	develop	intuition	about	what	is

implementable	with	what	efficiency.	They	also	come	to

know	what	program	structures	are	appropriate	to	various

problems.	This	knowledge	can	be	used	to	good	effect	in

top-down	design.

An	alternative	to	top-down	design	is	bottom-up	design,

which	starts	with	what	is	known	to	be	implementable	and

somehow	proceeds	from	there	to	achieve	what	is	wanted.

Bottom-up	design	is	not	really	a	tenable	process	for	any

but	the	smallest	programs.	For	large	programs,	the	gap

between	what	is	available	and	what	is	wanted	is	large	and

must	be	bridged	by	the	introduction	of	many

abstractions.	This	gap	is	easier	to	bridge	top-down

because	we	can	concentrate	on	the	thing	that	is	least

understood	(the	program	that	is	wanted)	and	use	what

we	know	to	help	us.	With	top-down	design,	our	intuition

about	what	is	implementable	tells	us	whether	we	are

making	progress:	the	helpers	should	be	easier	to

implement	than	the	target.	With	bottom-up	design,	it	is

much	harder	to	measure	progress	since	it	is	hard	to

evaluate	how	close	we	are	to	what	is	wanted.

In	reality,	we	tend	to	go	back	and	forth	between	top-

down	and	bottom-up	design.	For	example,	we	may

investigate	the	implementation	of	key	abstractions	or

questionable	abstractions	even	when	all	uses	are	not	yet

understood.	However,	it	is	important	that	the	design	be

driven	from	the	top	and	that	we	avoid	actually

implementing	any	abstractions	until	their	design	and	that

of	their	helpers	is	complete;	doing	implementation	before

then	is	truly	a	waste	of	effort,	since	the	chances	of	all	the

details	being	right	are	small.



13.14	SUMMARY

This	chapter	has	discussed	program	design.	Design

progresses	by	modular	decomposition	based	on	the

recognition	of	useful	abstractions.	We	discussed	how	this

decomposition	happens	and	illustrated	the	design

process	with	an	example.	We	also	discussed	a	method	of

documenting	a	design	in	a	notebook.

The	example	used	was	a	simple	search	engine,	and	the

resulting	program	was	small.	In	addition,	the

presentation	of	the	design	process	was	unrealistic:	we

made	very	few	errors	as	we	went	along,	and	these	errors

had	little	impact	on	the	overall	design.	In	the	real	world,

any	design,	even	of	a	simple	program,	requires	a	great

deal	of	iteration,	and	many	errors	will	be	introduced	and

corrected	as	it	progresses.	Nevertheless,	the	basic

methods	we	presented	still	apply,	even	to	much	larger

programs.	We	have	used	them	in	such	programs

ourselves.

We	do	not	claim	that	the	search	engine	design	is	the	best

possible.	In	fact,	the	goal	of	the	design	process	is	never	a

“best”	design.	Instead,	it	is	an	“adequate”	design,	one	that

satisfies	the	requirements	and	design	goals	and	has	a

reasonably	good	structure.	We	discuss	this	issue	in	the

next	chapter.

This	chapter	carried	out	the	design	in	its	entirety,	without

any	implementation	occurring	until	the	design	was

finished.	It	is	often	desirable	to	start	the	implementation

earlier.	If	some	portion	of	the	design	is	complete,	those

modules	can	be	implemented	while	the	remainder	of	the

design	is	carried	out.	For	example,	we	might	have

implemented	the	TitleTable	while	we	were	working	on
the	design	of	query	processing.	Starting	the

implementation	early	is	desirable	because	it	can	lead	to

earlier	completion	of	the	program	or	to	the	early	release

of	a	product	that	provides	some	features.	However,

before	doing	any	implementation,	it	is	important	to

evaluate	the	design	to	determine	whether	it	is	“correct”—

that	is,	will	lead	to	a	program	that	meets	the

requirements.	Techniques	for	determining	this	are



discussed	in	the	next	chapter.

EXERCISES

13.1	In	many	places	in	the	design	of	Engine,	we	chose
to	require	that	arguments	were	not	null	rather
than	having	the	called	method	throw	an	exception

if	the	argument	was	null.	What	do	you	think	of

this	approach	versus	having	the	called	methods

throw	exceptions?

13.2	In	the	design	of	Query,	sorting	matches	using	a
sorted	tree	was	rejected	in	favor	of	sorting	a

vector.	Compare	the	performance	differences

between	these	two	alternatives.

13.3	Suppose	we	change	the	design	so	that	the	addDoc
method	of	WordTable	is	passed	an	extra
argument,	an	Iterator	that	it	uses	to	get	the
words	of	the	document:

									Hashtable	addDoc	(Iterator	e,	Doc	d)

			Provide	a	specification	for	this	method.	Also

discuss	its	ramifications	on	the	design	and	how	it

affects	the	module	dependency	diagram.	Discuss

whether	this	change	is	an	improvement	over	the

design	presented	in	the	chapter.

13.4	Suppose	the	search	engine	is	no	longer	going	to

store	documents	once	they	have	been	entered	in

the	word	and	title	table;	instead,	if	a	user	wants	to

view	a	document	(selected	through	a	match	on	a

title	or	a	query),	the	engine	will	refetch	the

document.	Modify	the	requirements	specification

and	the	design	to	accommodate	this	change.

13.5	Modify	the	search	engine	to	support	disjunctive

queries—that	is,	queries	that	match	all	documents

that	contain	at	least	one	keyword	in	a	list	of

keywords.	First,	change	the	requirements

specification,	including	changes	to	the	data	model

if	any	are	needed.	Then	change	the	design.

13.6	Modify	the	search	engine	requirement

specification	and	design	to	allow	more	than	one



document	to	have	the	same	title.

13.7	Design	and	implement	the	stock	tracker	program

specified	in	Chapter	12.

13.8	Design	and	implement	the	xref	program
specified	in	the	exercises	of	Chapter	12.

13.9	Design	and	implement	the	spelling	checker

specified	in	the	exercises	of	Chapter	12.

13.10	Design	and	implement	the	path	finder	program

specified	in	the	exercises	of	Chapter	12.

13.11	Form	a	team	of	three	or	four	people	and	design	and

implement	a	moderately	large	program.



14	Between	Design	and	Implementation

In	this	chapter,	we	discuss	briefly	the	two	considerations

that	arise	between	the	completion	of	a	design	and	the

start	of	implementation—namely,	evaluation	of	the

design	and	choice	of	a	program	development	strategy.

14.1	EVALUATING	A	DESIGN

During	the	design	of	a	large	program,	it	is	worthwhile	to

step	back	periodically	and	attempt	a	comprehensive

evaluation	of	the	design	so	far.	This	process	is	called

design	review	(see	Sidebar	14.1).	Design	reviews	should

always	be	conducted	by	a	team	composed	of	some	people

involved	in	the	design	and	others	who	are	not.	Those	not

involved	in	the	design	should	be	familiar	with	both	the

program	requirements	and	the	technology	that	will	be

used	in	implementing	the	design.	They	should	also	be

familiar	with	the	design	itself.

It	is	important	that	both	the	designers	and	the	outside

reviewers	understand	that	the	point	of	a	design	review	is

not	to	discover	the	perfect	design,	but	rather	to	discover

whether	the	existing	design	is	adequate—will	do	the	job

with	acceptable	performance	and	cost.	While	the

designers	will	inevitably	find	themselves	attempting	to

justify	their	design	decisions	to	the	outside	reviewers,

they	should	not	view	this	as	their	primary	goal.	In

addition,	both	the	reviewers	and	the	designers	must	keep

in	mind	that	the	purpose	of	the	review	is	only	to	find

errors,	not	to	correct	them.	Errors	should	be	recorded	in

an	error	log,	and	then	the	review	should	continue	(unless

so	many	errors	have	been	found	that	continuing	is	no

longer	productive).

Sidebar	14.1	Goals	of	a	Design	Review

A	design	review	evaluates	the	correctness,	performance,	and	quality	of	a	design:

The	design	must	enable	an	implementation	that	satisfies	the	requirements	both	functionally
and	with	respect	to	performance.

The	design	structure	must	be	relatively	easy	to	implement,	and	it	must	accommodate	potential
modifications	relatively	easily.

•	

•	



It	is	useful	for	the	designers	to	present	not	only	the

design	but	also	the	alternatives	that	were	considered	and

rejected.	This	will	give	the	outside	reviewers	a	context	for

evaluating	the	chosen	design.	It	may	also	help	the

reviewers	to	find	flaws	in	the	design.	A	common	problem

is	failure	to	apply	design	criteria	uniformly.	Explaining

that	an	alternative	was	rejected	because	it	failed	to	meet

some	criterion	may	well	prompt	the	reviewers	to	notice

that	some	other	part	of	the	design	fails	to	meet	that	same

criterion.

There	are	three	critical	issues	to	address	in	evaluating	a

design:

1.	Will	all	implementations	of	the	design	exhibit	the

desired	functionality?	That	is,	will	the	program	be

“correct”?

2.	Are	there	implementations	of	the	design	that	will	be

acceptably	efficient?

3.	Does	the	design	describe	a	program	structure	that

will	make	implementations	reasonably	easy	to	build,

test,	and	maintain?	Also,	how	difficult	will	it	be	to

enhance	the	design	to	accommodate	future

modifications,	especially	those	identified	during	the

requirements	phase?

14.1.1	Correctness	and	Performance

Earlier	in	this	book,	we	discussed	two	approaches,	testing

and	informal	verification,	to	increasing	our	confidence

that	a	program	will	behave	as	desired.	Unfortunately,

neither	of	these	approaches	can	be	applied	to	designs.

Since	designs	cannot	be	run,	testing	is	out	of	the

question.	If	designs	were	presented	completely	in	a

formal	language,	some	verification	might	be	possible.

However,	formal	specification	of	designs	of	large

programs	is	beyond	the	current	state	of	the	art.

While	there	are	no	completely	rigorous	techniques	for

reviewing	a	design,	it	is	important	that	design	reviews	be

systematic.	They	should	examine	both	local	and	global

properties	of	the	design.	Local	properties	can	be



examined	by	studying	the	specifications	of	individual

modules,	global	properties,	by	studying	how	the	modules

fit	together.

Two	important	local	properties	are	consistency	and

completeness,	which	were	discussed	in	Chapter	9.

Another	important	local	property	is	performance.	The

first	step	in	estimating	the	overall	performance	of	a

system	is	to	construct	for	each	abstraction	an	expression

relating	its	running	time	and	storage	consumption	to	its

arguments.	How	accurately	this	can	be	done	depends

upon	the	completeness	of	the	design.	Consider	the	sort
procedure:

			void	sort	(Vector	v)	throws	ClassCastException
									//	MODIFIES:	v
									//	EFFECTS:	If	v	is	not	null,	sorts	it	into	ascending	order	usi
ng
									//				the	compareTo	method;	if	some	elements	of	v
									//				are	null	or	aren’t	comparable	throws	ClassCastException.

If	the	design	does	not	specify	any	performance

constraints	for	sort,	relatively	little	can	be	said	about
the	performance	of	its	implementations	or	about	the

performance	of	abstractions	to	be	implemented	using

sort.	The	problem	is	that	implementations	of	sort	span
a	wide	range	with	respect	to	performance.	Considerably

more	can	be	said	about	the	performance	of

implementations	if	the	design	includes	the	following

criterion:

//	worst	case	time	=	n*log(n)	comparisons,	where	n	is	the	size	of	a

and	more	yet	if	the	design	states

//	worst	case	time	=	n*log(n)	comparisons,	where	n	is	the	size	of	a.
//	Maximum	temporary	main	memory	allocated	is	a	small	constant.

An	important	function	of	a	design	review	is	to	discover

places	where	the	design	needs	to	be	more	specific	about

what	is	required	of	implementations.

After	each	module	has	been	evaluated	in	isolation,	we

examine	the	design	as	a	whole.	A	good	way	to	begin	is	by

discussing	the	relationship	of	the	module	dependency

diagram	to	the	data	model.	As	discussed	in	Chapter	13,	it

must	be	possible	to	explain	how	the	implementation



handles	every	set	and	preserves	each	constraint.

The	next	step	is	to	trace	paths	through	the	design	that

correspond	to	the	various	operations.	We	select	some	test

data	and	then	trace	how	both	control	and	data	would	flow

through	an	implementation	based	on	the	design.	This

tracing	process	is	sometimes	called	a	walk-through.	The

test	data	are	chosen	in	much	the	same	way	as	described

in	Chapter	10.	However,	since	“testing”	a	design	is	labor

intensive,	we	must	be	very	selective	in	choosing	our	test

data.

Since	the	point	of	tracing	the	design	is	to	convince

ourselves	that	all	implementations	of	the	design	will	have

the	desired	functionality,	the	success	of	this	method	is

related	to	the	completeness	of	the	test	cases.	We	are

using	the	test	cases	to	carry	out	an	informal	verification

process.	During	the	design	review,	it	is	also	important	to

discuss	the	completeness	of	the	process—that	is,	to	argue

that	all	cases	have	been	considered.	Both	normal	and

exceptional	cases	should	be	considered.

Picking	test	cases	for	a	design	review	is	simplified	by	the

fact	that	the	data	can	be	symbolic.	We	need	only	identify

properties	that	the	test	data	should	have;	we	do	not	need

to	invent	data	with	those	properties.

As	an	example,	consider	the	search	engine	program

designed	in	Chapter	13.	We	start	with	the	call	of	the

constructor	of	Engine.	If	an	error	occurs	in	creating	the
“WordTable”	(because	the	file	of	uninteresting	words	is	ill

formed),	the	program	will	terminate.	Otherwise,	the	table

will	be	initialized,	and	we	can	proceed	with	user

commands.	At	this	point,	no	documents	are	in	the

collection;	and	therefore	an	attempt	to	look	up	a

document	using	its	title	will	fail,	and	queries	will	either

fail	(if	the	input	is	uninteresting	or	not	a	word)	or	give	no

matches.

Now	suppose	the	user	requests	the	fetching	of	some

documents.	Here	we	can	define	some	symbolic	data:	the

fetch	produces	three	documents:

d1	contains	w1	6	times	and	w2	12	times	and	has	title•	



t1

d2	contains	w1	10	times	and	has	title	t2

d3	contains	w2	4	times	and	has	title	t3

All	of	these	words	are	interesting	words;	in	addition,	the

documents	contain	some	uninteresting	words.

We	use	these	data	to	walk	through	the	design	of	Engine.
The	walk-through	is,	in	effect,	a	hand	simulation	of	the

design.	The	main	thing	we	want	to	examine	is	the	flow	of

information	through	the	program.	Here	is	how	we	might

start	a	walk-through	based	upon	the	previous	data:

1.	Processing	the	fetch	causes	three	Docs	to	be	created.
The	Docs	are	then	added	to	the	title	and	word	tables.
When	the	Doc	is	passed	to	the	WordTable	addDoc
method,	its	words	are	added	to	the	table	if	they	are

interesting.	This	work	is	done	efficiently	since	the	title

table	and	the	word	table	are	hash	tables,	and	the

documents	are	processed	incrementally.

2.	Suppose	the	user	performs	a	query	for	w1.	This	word
will	be	canonicalized,	found	to	be	interesting,	and

passed	to	Query.	Query	looks	up	the	word	in	the
WordTable	and	finds	that	it	is	contained	in	d1	and
d2.	It	will	sort	in	the	order	d2,	d1.	Now	the	user	can
examine	the	documents	via	the	UI.	The	lookups	in	the

word	table	are	fast	since	it	is	a	hash	table,	and	the	sort

is	also	efficient.

3.	Next	the	user	adds	w2	to	the	query.	This	is
canonicalized,	found	to	be	interesting,	and	passed	to

the	addKey	method	of	query.	The	method	looks	up
the	word	in	the	WordTable	and	finds	that	it	matches
d1	and	d3.	It	combines	this	information	with	its
previous	query	results	to	determine	that	only	d1	has
both	words.

4.	Next	the	user	looks	up	a	title	t.	This	is	looked	up	in
the	title	table,	which	returns	the	appropriate	match	or

throws	an	exception	if	t	is	not	a	title	of	an	existing
document.

The	walk-through	continues	in	this	fashion	until	the

behavior	of	the	entire	program	has	been	explored.	In	the

•	

•	



process,	we	estimate	the	performance	of	each	module,	so

that	we	can	construct	estimates	of	worst-case	and	average

efficiencies	for	the	whole	program.

Walk-throughs	are	a	laborious	and	imprecise	process.

Experience	indicates	that	designers	are	seldom	able	to

examine	their	own	designs	adequately.	The	process	works

best	when	it	is	performed	by	a	team	of	people	including,

but	not	dominated	by,	the	designers.

Tracing	through	the	entire	design	with	a	small	set	of

inputs	helps	us	to	uncover	gross	errors	in	the	way	the

abstractions	that	make	up	the	design	fit	together.	A	good

next	step	is	to	work	bottom-up	through	the	module

dependency	diagram,	isolating	subsystems	that	can	be

meaningfully	evaluated	independently	of	the	context	in

which	they	will	be	used.	Since	these	subsystems	are	likely

to	be	considerably	smaller	than	the	system	as	a	whole,	we

can	trace	more	sets	of	test	data	through	them.	For

example,	if	canonicalization	had	been	left	out	of	the

design,	the	error	might	be	noticed	during	a	review	of	the

WordTable	because,	at	that	point,	we	could	look	in	more
detail	at	the	words	in	documents.

The	modifiability	of	the	design	should	be	addressed

explicitly	during	the	review.	A	discussion	of	how	the

design	must	be	changed	to	accommodate	each	expected

modification	should	take	place.	A	plausible	measure	of

how	well	the	design	accommodates	modifications	is	how

many	abstractions	must	be	reimplemented	or	respecified

in	each	case.	The	best	situation	is	one	in	which	only	a

single	abstraction	needs	to	be	reimplemented.

For	example,	suppose	the	search	engine	were	modified	to

not	store	the	text	of	documents;	instead,	when	a	user

wanted	to	examine	a	document,	the	document	would

need	to	be	refetched	from	its	site.	This	requires	our

design	to	be	changed	in	a	number	of	ways.	First,	we

would	probably	like	to	refetch	the	document	using	its

URL,	but	this	means	that	we	need	to	obtain	that	URL	and

to	relate	it	to	its	document	(e.g.,	by	storing	it	in	the	Doc).
One	way	to	do	so	is	to	replace	the	getDocs	iterator	with
an	iterator	that	produces	the	URLs	of	the	documents	and



then	use	a	procedure	to	fetch	a	document	given	its	URL;

this	procedure	can	also	be	used	to	refetch	documents.	We

also	need	to	decouple	the	production	of	words	in	the

body	of	the	document	from	the	objects	stored	in	the	title

and	word	tables	so	that	the	storage	for	the	body	can	be

deleted	once	the	document’s	words	have	been	added	to

the	word	table.	One	way	to	handle	this	change	is	to

introduce	a	FullDoc	abstraction,	with	a	words	iterator,
and	also	a	method	that	will	return	a	Doc.	The	Engine
creates	a	FullDoc	and	passes	it	to	the	addDoc	method
of	the	title	and	word	tables,	but	both	tables	map	to	Docs
and	not	to	FullDocs.	Therefore,	the	FullDoc	can	be
garbage	collected	once	information	about	it	has	been

added	to	the	two	tables.	The	Doc	stores	only	the	URL	of
the	document	and	perhaps	other	identifying	information

(e.g.,	the	title),	but	not	the	full	contents.	Thus,	this

modification	requires	quite	a	few	changes,	but	they	are

reasonably	straightforward.

A	walk-through	forces	us	to	look	at	the	design	from	a

different	perspective	than	the	one	that	characterized	the

design	process.	During	design,	we	focused	on	identifying

abstractions	and	specifying	their	interfaces.	These

abstractions	arose	from	considering	what	steps	were	to

be	carried	out,	but	our	attention	was	focused	on	parts	of

the	program	separately.	Now	we	go	back	over	the	steps

carried	out	by	the	whole	program	as	it	uses	the

abstractions,	and	this	exercise	forces	us	to	address	the

question	of	whether	the	abstractions	can	be	composed	to

solve	the	original	problem.

Sidebar	14.2	summarizes	this	part	of	the	design	review.

Sidebar	14.2	A	Design	Review:	Evaluating	Functionality

Explain	how	the	design	captures	the	sets	and	constraints	of	the	data	model.

Do	a	walk-through	of	the	program	on	symbolic	test	data	to	show	that	the	design	will	be	able	to
perform	correctly	and	with	the	required	performance.

Do	the	same	process	on	individual	modules	or	groups	of	related	modules,	to	show	that	their
arguments	are	sufficient	and	that	their	performance	can	be	adequate.

Discuss	how	the	design	will	accommodate	potential	modifications.

14.1.2	Structure

The	most	important	structural	issue	to	address	in

•	
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evaluating	a	design	is	the	appropriateness	of	the	module

boundaries.	There	are	two	key	questions	to	ask:

1.	Have	we	failed	to	identify	an	abstraction	that	would

lead	to	a	better	modularization?

2.	Have	we	grouped	together	things	that	really	do	not

belong	in	the	same	module?

We	can	provide	no	formula	for	answering	these

questions.	What	we	can	provide	is	a	list	of	symptoms	that

occur	when	a	program	has	been	badly	modularized.	We

shall	concentrate	on	local	symptoms—that	is,	problems

that	can	be	detected	by	looking	at	a	single	module	or	at

the	interface	between	two	modules.

Coherence	of	Procedures

Each	procedure	in	a	design	should	represent	a	single

coherent	abstraction.	The	coherence	of	an	abstraction	can

be	examined	by	looking	at	its	specification.	A	procedure

should	perform	a	single	abstract	operation	on	its

arguments.	(Our	discussion	applies	to	iterators	too.	An

iterator	maps	its	inputs	to	a	sequence	of	items;	this

mapping	should	be	a	single	abstract	operation.)

Some	procedures	have	no	apparent	coherence.	They	are

held	together	by	nothing	more	than	some	arbitrarily

placed	bracketing	mechanism.	In	the	early	days	of

“structured	programming,”	many	people	failed	to

understand	that	good	program	structure	is	basically	a

semantic	notion.	They	looked	for	simple	syntactic

definitions	of	“well-structured.”	Many	of	these	simplistic

definitions	included	an	arbitrary	upper	bound,	such	as

one	page,	on	the	size	of	procedures.	Another	example	of

an	arbitrary	size	restriction	occurs	in	programs	that	must

manage	their	own	memory	and	are	divided	into	modules

to	facilitate	overlays.	Such	arbitrary	restrictions

frequently	led	to	procedures	totally	lacking	in	coherence.

A	second	cause	of	lack	of	coherence	is	hand	optimization

of	programs.	An	eagle-eyed	programmer	may	notice	that

some	arbitrary	group	of	statements	appears	several

times.	In	an	attempt	to	save	space,	the	programmer	may

bundle	these	statements	into	a	procedure.	In	the	long



run,	however,	such	optimizations	are	generally

counterproductive	because	they	make	the	program

harder	to	modify.

There	are	two	reliable	indicators	of	a	total	lack	of

coherence.	If	it	seems	that	the	best	way	to	specify	a

procedure	involves	describing	its	internal	structure	(that

is,	how	it	works),	the	procedure	is	probably	incoherent.

The	second	good	tip-off	is	difficulty	in	finding	a	suitable

name	for	a	procedure.	If	the	best	name	we	can	come	up

with	is	“procedure1,”	there	is	probably	something	wrong

with	our	design.	If	there	is	no	apparent	coherence	to	a

procedural	abstraction,	we	should	rethink	the	design	with

the	goal	of	eliminating	that	procedure.

Conjunctive	coherence	is	a	step	up	from	no	coherence	at

all.	It	is	indicated	by	a	specification	of	the	form:

			A	&&	B	&&	C	&&	…

Conjunctive	coherence	usually	occurs	when	a	sequence	of

temporally	contiguous	actions	is	combined	into	a	single

procedure.	A	typical	example	is	an	abstraction	whose	job

is	to	initialize	all	data	structures.	The	specification	of

such	an	abstraction	is	likely	to	be	a	conjunction:

			initialize	A	&&	initialize	B	&&	…

Note	that	such	a	structure	can	make	it	more	difficult	to

identify	data	abstractions	since	part	of	the	job	of	each

type	is	taken	over	by	the	procedure.

The	isInteresting	method	of	WordTable	could	be
viewed	as	exhibiting	conjunctive	coherence	because	it

checks	for	both	nonwords	and	uninteresting	words.

However,	it	seems	reasonable	to	view	a	nonword	as

uninteresting,	and	therefore	combining	these	checks

within	a	single	method	seems	acceptable.	However,	we

might	have	gone	further	and	had	isInteresting
canonicalize	its	input	and	return	the	canonical	form	if	the

word	is	interesting.	Making	this	change	means	that	the

query	and	queryMore	methods	of	Engine	need	to
make	just	one	call	where	now	they	make	two	calls	(first	to

canon	and	then	to	isInteresting).	Nevertheless,	this



grouping	seems	undesirable	because	canonicalizing	a

word	and	checking	whether	a	word	is	interesting	do	not

seem	closely	related.

In	an	environment	in	which	procedure	calls	are	unduly

expensive,	conjunctive	coherence	may	be	useful	since	it

can	eliminate	some	calls.	However,	unless	the	actions

have	a	strong	logical	connection,	it	is	generally	better	not

to	combine	procedures.	The	more	we	put	into	a

procedure,	the	harder	it	will	be	to	debug	and	maintain	it.

Furthermore,	as	we	maintain	a	program,	we	are	likely	to

discover	occasions	when	it	would	be	useful	to	perform

some	subset	of	the	conjuncts.	If	this	happens,	the

appropriate	thing	to	do	is	probably	to	break	up	the

original	procedure.	What	people	often	do	instead,

however,	is	to	add	another	procedural	abstraction.	This

leads	to	more	code	to	debug	and	maintain,	and	to	a

program	that	occupies	more	space	at	runtime.

Alternatively,	the	programmer	might	modify	the	original

abstraction	to	take	a	flag	that	controls	what	subset	of	the

work	is	to	be	performed.	This	is	also	a	bad	idea	since	it

leads	to	disjunctive	coherence,	which	is	discussed	next.

Disjunctive	coherence	is	indicated	by	a	specification	with

an	effects	clause	of	the	form:

			A	||	B	||	…

often	in	the	guise	of	an	if-then-else	or	a	conjunction	of

implications.	A	robust	procedure	is	likely	to	involve	some

disjunctive	coherence	to	separate	the	normal	return	from

exceptions.	However,	if	the	specification	of	what	happens

when	the	procedure	returns	normally	involves

disjunction,	one	should	be	concerned.	Consider	the

specification	in	Figure	14.1.	If	getEnd	returns	normally,
it	can	do	one	of	two	different	things.	Each	of	these	two

would	have	been	a	perfectly	reasonable	abstraction	in	its

own	right;	that	is	to	say,	we	could	have	had	the	two

abstractions	of	Figure	14.2.

Combining	these	two	procedures	into	one	has	no

advantage	and	several	disadvantages.	First,	a	call	of	the

form	getEnd(a,	1)	is	likely	to	be	harder	for	a	reader	to



understand	than	a	call	of	the	form	getFirst(a).
Second,	a	new	class	of	errors	is	possible—for	example,	a

call	of	the	form	getEnd(a,	3).	Third,	a	program	using
getEnd	is	less	efficient	than	one	using	the	two
abstractions	of	Figure	14.2.	Whenever	a	call	to	getEnd	is
made,	the	caller	knows	which	of	the	procedures	is

wanted.	However,	this	information	must

Figure	14.1	An	example	of	disjunctive	coherence

																public	static	int	getEnd	(List	a,	int	j)
																									throws	EmptyException,	NullPointerException
						//	REQUIRES:	0	<	j	=	3	and	all	elements	of	a	are	Integers
						//	EFFECTS:	If	a	is	null	throws	NullPointerException
						//				else	if	a	is	empty	throws	EmptyException
						//				else	if	j	=	1	returns	the	first	element	of	a
						//				else	if	j	=	2	returns	the	last	element	of	a.

Figure	14.2	Two	coherent	procedures

													public	static	int	getFirst(List	a)
																									throws	EmptyException,	NullPointerException
						//	REQUIRES:	All	elements	of	a	are	Integers.
						//	EFFECTS:	If	a	is	null	throws										NullPointerException
						//				else	if	a	is	empty	throws	EmptyException
						//				else	returns	the	first	element	of	a.

			public	static	int	getLast(List	a)
															throws	EmptyException,	NullPointerException
						//	REQUIRES:	All	elements	of	a	are	Integers.
						//	EFFECTS:	If	a	is	null	throws	NullPointerException
						//				else	if	a	is	empty	throws	EmptyException
						//				else	returns	the	last	element	of	a.

be	encoded	into	the	second	argument	of	the	call,	and

getEnd	must	test	this	argument	to	figure	out	what	to	do.
This	extra	work	requires	both	time	and	space.	Also,	we

may	implement	getEnd	using	subsidiary	abstractions
such	as	getFirst	and	getLast,	thus	increasing	the
number	of	procedure	calls	that	get	executed.

Disjunctive	coherence	often	arises	from	a	misguided

attempt	to	generalize	abstractions.	When	a	program

design	contains	two	or	more	similar	abstractions,	it	is

always	worthwhile	to	consider	whether	a	single	more

general	abstraction	might	replace	all	or	some	of	the

similar	ones.	If	successful,	generalization	saves	space	and

programmer	effort	with	little	cost	in	execution	speed	or

complexity	in	the	implementation	of	the	generalized

abstraction.	However,	if	the	result	is	an	abstraction	with

disjunctive	coherence,	then	it	is	usually	better	not	to	do



the	replacement.

Occasionally,	the	appearance	of	excessive	disjunctive

coherence	indicates	failure	to	introduce	appropriate	data

abstractions	into	the	design.	In	such	cases,	combining

several	distinct	functions	into	one	procedure	may	be	an

attempt	to	encapsulate	representation	information	that

should	have	been	encapsulated	in	a	missing	type.	In

effect,	the	type	is	implemented	by	a	single	procedure,	and

extra	arguments	are	used	to	identify	the	operation	being

called.

Disjunctive	coherence	isn’t	always	bad	(and	neither	is

conjunctive	coherence).	For	example,	a	compiler	might

take	an	environment	object	as	an	argument	and	produce

somewhat	different	outputs	depending	on	the

environment.	This	represents	a	kind	of	disjunctive

coherence.	However,	it	also	represents	a	generalization	of

the	compiler	(to	handle	several	kinds	of	environments);

here	the	benefits	outweigh	the	disadvantages.	In	general,

conjunctive	or	disjunctive	coherence	is	permissible	in	a

design	but	only	if	there	is	a	good	explanation	of	why	it	is

worthwhile.

Coherence	of	Types

Each	method	of	a	type	should	be	a	coherent	procedure	or

iterator.	In	addition,	a	type	should	provide	an	abstraction

that	its	users	can	conveniently	think	of	as	a	set	of	values

and	a	set	of	methods	intimately	associated	with	those

values.	One	way	of	judging	the	coherence	of	a	type	is	to

examine	each	method	to	see	whether	it	really	belongs	in

the	type.	As	discussed	in	Chapter	5,	a	type	should	be

adequate—that	is,	should	provide	enough	methods	so

that	common	uses	are	efficient.	In	badly	designed	types,

one	frequently	finds	additional	methods	that	do	not	seem

particularly	relevant	to	the	abstraction	and	whose

implementation	can	take	little	or	no	advantage	of	direct

access	to	the	representation.	It	is	generally	better	to	move

such	methods	out	of	the	type.	If	fewer	operations	have

access	to	the	representation,	it	is	easier	to	modify	the

representation	if	it	becomes	desirable	to	do	so.

Consider,	for	example,	a	stack	type	containing	sqrtTop



method:

			float	sqrtTop	(	)	throws	EmptyException
									//	EFFECTS:	If	this.size	=	O	throws	EmptyException	else	returns
	the
									//				square	root	of	this.top.

sqrtTop	has	little	to	do	with	stacks,	and	its
implementation	can	run	just	fine	without	access	to	a

stack’s	representation.	Therefore,	this	method	should	be

moved	out	of	the	stack	abstraction.

Communication	between	Modules

A	careful	examination	of	how	much	and	what	kind	of

information	is	exchanged	between	modules	can	uncover

important	flaws	in	a	design.	Throughout	this	book,	we

have	stressed	the	importance	of	narrow	interfaces:	a

module	should	have	access	to	only	as	much	information

as	it	needs	to	do	its	job.	Our	methodology	is	designed	to

encourage	narrow	interfaces—for	example,	by	not

allowing	procedures	to	refer	to	global	variables—but	it	is

still	possible	to	pass	too	much	information	to	a	module.

A	module	may	be	passed	too	much	information	because	a

type	has	not	been	identified.	In	the	absence	of	a	type,	all

modules	that	would	have	communicated	in	terms	of	the

abstract	objects	instead	communicate	in	terms	of	the

representation.	The	result	is	modules	that	have	much

wider	interfaces	than	necessary;	instead	of	being	related

only	through	the	type,	they	share	knowledge	of	how	that

type	is	implemented.	This	includes	the	abstraction

function	and	representation	invariant	in	addition	to	the

representation	itself.	Note	that	all	using	modules	must	be

considered	in	reasoning	that	the	implementation	of	the

(missing)	type	is	correct.	Furthermore,	if	the

implementation	of	the	type	changes,	every	using	module

must	also	change.

Even	if	all	needed	types	have	been	identified	and	are

implemented	by	their	own	classes,	some	interfaces	may

still	be	wider	than	necessary.	Well-designed	programs

frequently	have	types	that	include	a	great	deal	of

information.	Some	modules	may	not	need	to	access	all	of

this	information.	Yet	many	designs	call	for	passing	the



entire	abstract	object	when	a	small	piece	of	it	would	be

sufficient.	For	example,	we	might	have	a	type

StudentRecord	that	includes,	among	other	things,	a
student’s	name,	social	security	number,	residence,	and

transcript.	A	procedure,	printAddress,	that	prints	an
address	label	might	need	only	a	student’s	name	and

residence.	Such	a	procedure	should	not	be	passed	the

whole	student	record;	instead,	the	information	it	needs

should	be	extracted	from	the	student	record	by	its	caller

and	passed	to	it	explicitly.	There	are	several	good	reasons

for	this:

If	printAddress	is	passed	an	object	of	type
StudentRecord,	its	implementor	will	have	to	know
how	to	extract	the	needed	information—that	is,	what

methods	to	call.	If	the	specification	of

StudentRecord	changes,	the	implementation	of
printAddress	may	have	to	change.	None	of	this
would	be	necessary	if	the	needed	information	were

passed	explicitly.

The	implementation	of	printAddress	may	have	a
bug	that	causes	it	to	mutate	the	StudentRecord.
Such	bugs	can	be	very	hard	to	find.

Reducing	Dependencies

A	design	with	fewer	dependencies	is	generally	better	than

one	with	more.	Having	fewer	dependencies	can	result

from	narrower	interfaces;	for	example,	passing	an

element	instead	of	a	set	can	mean	that	the	called

abstraction	no	longer	depends	on	Set.	It	can	also	result
from	changing	strong	dependencies	into	weak	ones.	Such

a	change	can	be	an	improvement	because	the	module

with	the	dependency	is	not	affected	by	changes	to	the

specification	of	the	data	abstraction	it	depends	on.

For	example,	in	the	design	of	Engine,	the	WordTable
depends	on	Doc	because	its	addDoc	method	calls	the
Doc	words	method;	a	similar	situation	exists	for
TitleTable.	We	can	reduce	these	dependencies	to	weak

dependencies	by	changing	the	design	slightly.	First,

rather	than	having	the	addDoc	method	of	WordTable
call	the	words	iterator,	we	could	instead	pass	it	the

•	
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generator	returned	by	the	words	iterator:

			Hash	table	addDoc	(Iterator	e,	Doc	d)
									//	REQUIRES:	e	produces	strings
									//	MODIFIES:	this
									//	EFFECTS:	Adds	each	interesting	word	w	produced	by	e
									//				to	this,	mapped	to	d	and	the	number	of	occurrences	of	w	in	e;
									//				also	returns	a	table	mapping	each	interesting	word	produc
ed	by	e
									//				to	a	count	of	its	occurrences	in	e.

Second,	we	can	change	the	specification	for	the	addDoc
method	of	TitleTable	to:

														void	addDoc	(String	t,	Doc	d)	throws	DuplicateException
						//	REQUIRES:	d	and	t	are	not	null
						//	MODIFIES:	this
						//	EFFECTS:	If	a	document	with	title	t	is	already	in	this	throws
						//					DuplicateException	else	adds	d	to	this	with	title	t.

The	module	dependency	diagram	that	results	from	these

changes	is	shown	in	Figure	14.3.	One	advantage	of	this

structure	over	the	one	shown	in	Figure	13.15	is	that

TitleTable	no	longer	needs	to	canonicalize	the	title
since	this	can	be	done	in	Engine,	and	therefore	there	are
fewer	dependencies	in	the	design.	Another	advantage	is

that	the	structure	more	easily	accommodates	the

modification	discussed	in	Section	14.1.1	in	which

document	bodies	are	discarded	and	refetched	when

needed.	With	the	revised	structure,	changes	to	the	title

and	word	tables	are	not	needed	to	accommodate	the

modification.

Figure	14.3	Module	dependency	diagram	for	modified	design



14.2	ORDERING	THE	PROGRAM	DEVELOPMENT
PROCESS

Throughout	this	book,	we	have	stressed	a	program

development	strategy	that	is	basically	top-down.	While

we	recognize	that	program	development	is	an	iterative

process,	we	have	argued	that	in	each	iteration,

specification	and	design	should	precede	implementation,

at	least	for	the	part	of	the	implementation	that	is

underway.	We	have	not	yet	discussed	how	to	order	the

process	of	going	from	a	design	to	an	implementation.	The

basic	choice	is	between	a	top-down	strategy	and	a

bottom-up	strategy	(see	Sidebar	14.4).

Sidebar	14.3	A	Design	Review:	Evaluating	Program	Structure

Each	abstraction	should	be	coherent:	it	should	have	a	well-defined	purpose,	and	if	its
specification	exhibits	conjunctive	or	disjunctive	coherence,	there	should	be	a	plausible
explanation.	Furthermore,	data	types	should	not	contain	methods	that	are	irrelevant	to	their
purpose.

The	interfaces	of	abstractions	should	be	no	wider	than	necessary.

A	design	with	fewer	dependencies	is	usually	better	than	one	with	more,	and	weak
dependencies	are	better	than	strong	ones.

Sidebar	14.4	Top-Down	and	Bottom-Up	Development

In	a	top-down	development,	all	modules	that	use	module	M	are	implemented	and	tested	before
M	is	implemented.

In	a	bottom-up	development,	all	modules	used	by	module	M	are	implemented	and	tested
before	M	is	implemented.

•	

•	

•	

•	

•	



The	traditional	mode	of	development	is	bottom-up.	In

bottom-up	development,	we	implement	and	test	all

modules	used	by	a	module	M	before	we	implement	and

test	M.	Consider,	for	example,	implementing	a	design

with	the	module	dependency	diagram	shown	in	Figure

14.4.	We	might	begin	by	implementing	and	unit	testing	D

and	E.	We	might	then	implement	and	test	B	and	C;	here

we	might	use	D	and	E	to	avoid	writing	stubs.	Finally,	we

would	implement	and	test	A.	Note,	by	the	way,	that	this	is

not	the	only	possible	bottom-up	order.	We	might	equally

well	have	used	the	order	D,	B,	E,	C,	A.

When	we	use	D	and	E	in	testing	B	and	C	we	are	no	longer

performing	unit	testing,	since	we	are	not	testing	a	single

module	in	isolation.	This	is	both	good	and	bad.	It’s	bad

because	B	and	C	might	depend	on	implementation	details

(and	errors)	in	the	actual	code	of	D	and	E.	However,	it’s

good	because	it	can	be	difficult	to	write	stubs	for	some

abstractions,	and	one	advantage	of	bottom-up

implementation	is	that	we	can	avoid	writing	stubs.

Figure	14.4	A	simple	module	dependency	diagram

In	top-down	development,	we	implement	and	test	all

modules	that	use	a	module	M	before	implementing	and

testing	M.	Possible	top-down	orders	for	the	previous

example	include	A,	B,	C,	D,	E	and	A,	C,	E,	B,	D.	Just	as

bottom-up	development	reduces	our	dependence	on

stubs,	top-down	development	reduces	our	dependence	on

drivers.	It	is	important,	however,	that	top-down



development	be	accompanied	by	careful	unit	testing	of	all

modules.	If	we	tested	B	only	as	it	is	used	by	A,	we	might

see	only	part	of	B’s	specified	behavior.	Were	we	to	change

A	later,	new	bugs	might	be	revealed	in	B.	Therefore,	if	we

choose	to	use	A	as	a	driver	for	B,	we	must	make	sure	that

A	tests	B	thoroughly.	Otherwise,	we	must	use	a	separate

driver	to	test	B.

Neither	development	strategy	strictly	dominates	the

other.	Most	of	the	time,	it	seems	best	to	work	top-down.

However,	there	can	be	compelling	reasons	to	pursue	a

bottom-up	approach.	We	advocate	a	mixed	strategy	in

which	one	works	top-down	on	some	parts	of	the	system

and	bottom-up	on	others.

Top-down	development	has	the	advantage	of	helping	us

to	catch	serious	design	errors	early	on.	When	we	test	a

module,	we	are	testing	not	only	the	implementation	of

that	module,	but	also	the	specifications	of	the	modules

that	it	uses.	If	we	follow	a	bottom-up	strategy,	we	might

easily	spend	a	great	deal	of	effort	implementing	and

testing	modules	that	are	not	useful	because	there	is	a

problem	with	the	design	of	one	of	their	ancestors	in	the

module	dependency	diagram.	A	similar	problem	can

occur	in	top-down	development	if	we	discover	that	some

crucial	descendent	module	is	unimplementable	or	cannot

be	implemented	with	acceptable	performance.

Experience	indicates,	however,	that	this	problem	occurs

less	often.	This	may	be	because	lower-level	abstractions

are	often	similar	to	things	we	have	built	before,	whereas

higher-level	abstractions	tend	to	be	more	idiosyncratic.

In	top-down	development,	it	is	always	possible	to

integrate	one	module	at	a	time.	We	merely	replace	a	stub

by	the	module	it	is	intended	to	simulate.	In	bottom-up

development,	on	the	other	hand,	we	tend	to	integrate

several	modules	at	once;	in	most	cases,	a	single	higher-

level	module	corresponds	not	to	one	but	to	several

drivers.	For	example,	when	A	is	integrated	into	the

program	of	Figure	14.4,	it	will	be	replacing	drivers	for

both	B	and	C.	Since	system	integration	tends	to	proceed

more	smoothly	if	we	can	add	one	interface	at	a	time,	top-



down	development	has	a	significant	advantage	in	this

regard.	Furthermore,	system	integration	can	be	the	real

bottleneck	in	completing	the	development:	with	bottom-

up	development,	a	system	that	is	“90	percent

implemented”	can	require	much	more	than	10	percent	of

the	time	to	complete	because	what	is	left	is	system

integration.

When	the	design	contains	a	type	hierarchy,	top-down

development	is	required.	In	this	case,	we	must	consider

the	implementation	of	supertypes	before	subtypes,	so

that	we	can	decide	what	parts	of	the	implementation	of

the	entire	family	are	handled	by	the	supertype	and	what

must	be	deferred	to	the	subtypes.

Top-down	development	increases	the	likelihood	of

bringing	up	useful	partial	versions	of	the	program	being

developed.	Suppose	a	program	to	compute	income	tax

payments	has	the	(partial)	module	dependency	diagram

of	Figure	14.5.	By	working	top-down,	it	is	possible	to

bring	up	many	useful	partial	implementations	of	this

design.	A	system	without	the	investment	and
itemized	procedures,	for	example,	might	be	quite
useful	to	some	people.

Even	if	partial	versions	of	the	system	cannot	be	used

productively	by	the	customer,	bringing	partial	versions

up	early	in	the	development	process	may	have	some

important	benefits.	If	implementors	are	able	to

demonstrate	something	early,	they	can	get	feedback	that

may	reveal	problems	with	the	requirements	for	the

program.	Furthermore,	on	lengthy	projects,	the	ability	to

produce	a	series	of	working	partial	systems	seems	to	help

the	morale	of	both	the	customer	and	the	developers.

While	bottom-up	development	delays	the	point	at	which

one	has	a	working	partial	system,	it	does	lead	to	the

earlier	completion	of	useful	subsystems.	These

subsystems	generally	have	wider	applicability	than	do	the

partial	systems	we	get	when	working	top-down.	This	is

particularly	true	of	low-level	subsystems	(for	example,

input/output	subsystems).	In	an	environment	in	which

several	related	systems	are	being	developed



simultaneously,	it	can	be	helpful	to	bring	up	shared

subsystems	by	working	bottom-up.	Moreover,	it	is

sometimes	easier	to	build	a	low-level	subsystem	than	to

build	a	stub	to	simulate	it.

Figure	14.5	Module	dependency	diagram	for	an	income	tax	program

Another	potential	advantage	of	bottom-up	development

is	that	it	may	place	less	of	a	load	on	machine	resources

than	does	top-down	development.	Top-down

development	tends	to	use	more	machine	time	because	we

are	running	a	larger	part	of	the	system	during	many

phases	of	development.	Typically,	full	tests	of	the	system

are	developed	and	then	run	each	time	a	new	module	is

added.	Such	tests	may	exercise	many	other	parts	of	the

system	besides	the	module	being	added,	and	thus

consume	much	time	and	space	that	really	is	not	needed

for	this	step	of	the	integration.	On	the	other	hand,	such	a

systematic	approach	to	testing	is	bound	to	uncover	more

errors	and	be	more	thorough	than	a	more	ad	hoc

approach.

A	related	advantage	of	bottom-up	development	is	that	it

may	allow	us	to	proceed	in	the	absence	of	some

computational	resource.	Consider	building	a	system	that

is	to	run	on	a	machine	with	a	very	large	amount	of

memory.	If	that	machine	has	not	yet	arrived,	but	a

similar	machine	with	less	memory	were	available,	we

might	be	able	to	do	quite	a	bit	of	bottom-up	development

before	memory	becomes	a	problem.	We	might	run	out	of

memory	sooner	working	top-down.

Generally,	it’s	best	to	use	a	mixed	strategy	in	which	top-



down	development	is	favored	but	not	followed	entirely.

In	working	out	this	strategy,	both	technical	and

nontechnical	factors	should	be	taken	into	account.	The

most	important	point	is	that	a	development	strategy

should	be	defined	explicitly	before	implementation

begins.

Sidebar	14.5	summarizes	the	issues	that	arise	in	choosing

a	development	order.

Some	insight	into	implementation	and	testing	order	can

be	gained	by	considering	the	search	engine:

1.	Doc	should	be	implemented	and	unit	tested	so	that
we	can	deal	with	real	documents	throughout	the

testing	process.

2.	Now	we	can	implement	Engine.	It	will	use	Doc	and
also	the	real	getDocs	iterator	(since	this	is	provided
by	a	library)	but	stubs	for	canon,	Query,	and	the	title
and	word	tables.	canon	just	returns	its	input.	The
addDoc	methods	of	the	two	tables	will	simply	record
the	document	in	an	array.	In	addition,	the

isInteresting	method	of	WordTable	returns
false,	and	the	lookup	method	of	TitleTable
throws	the	exception.	Only	the	empty	Query	will	be
implemented	since	all	words	are	uninteresting.	Now

we	can	test	a	fair	amount	of	the	logic	of	Engine;	we
will	be	able	to	see	that	the	right	calls	are	made	on	the

two	tables,	and	we	can	also	test	certain	base	cases

(e.g.,	bad	and	uninteresting	words	in	queries,	titles

that	don’t	match).

Sidebar	14.5	The	Development	Strategy

A	development	strategy	should	be	defined	explicitly	before	implementation	begins.

It	should	be	primarily	top-down,	with	bottom-up	used	mainly	for	modules	that	are	easier	to
implement	than	to	simulate,	because	the	advantages	of	top-down	development	outweigh	those
of	bottom-up	development:

•	Top-down	development	greatly	simplifies	system	integration	and	test.
•	Top-down	development	makes	it	possible	to	produce	useful	partial	versions	of	the	system.

•	Top-down	development	allows	critical	high-level	design	errors	to	be	caught	early.

3.	Next	we	implement	and	unit	test	the	canon
procedure.	Thenwe	implement	TitleTable	and	unit
test	it	using	Doc	and	canon.	This	allows	us	to	test

•	

•	



searches	based	on	titles.

4.	Next	we	implement	and	unit	test	the	WordTable
using	Doc	and	canon.

5.	Next	we	extend	the	stub	for	Query	so	that	size
returns	0,	and	the	various	mutators	record	their

arguments.	This	will	allow	us	to	complete	testing	the

logic	of	Engine.

6.	Finally	we	implement	DocCnt	and	Query	and	unit
test	them	using	Doc	and	WordTable.	Then	we	can
run	the	entire	Engine.

This	strategy	allows	us	to	get	an	early	version	of	the

engine:	we	can	do	searches	on	titles	after	step	3.

The	strategy	is	typical	of	testing	strategies	in	that	either

we	implement	the	entire	data	abstraction,	or	we	use	very

simple	stubs:	some	methods	record	their	input,	others

return	canned	responses,	and	still	others	are	not

implemented	because	they	are	not	called	at	this	stage	of

the	development.	For	example,	in	step	2,	the	addDoc
method	of	WordTable	records	its	argument,
isInteresting	has	a	canned	response,	and	the
lookup	method	isn’t	called.	Sometimes,	however,	we
implement	a	data	abstraction	in	stages.	For	example,	we

might	provide	a	complete	implementation	of	the	empty

query	(as	a	subtype	of	Query)	in	step	2;	nonempty
queries	are	implemented	later.

The	testing	of	Engine	should	be	done	using	the
regression	test	code	(i.e.,	the	TestUI	of	Figure	13.16).	In
addition,	of	course,	the	actual	UI	must	be	implemented
and	run	against	the	Engine,	but	testing	the	UI	will	be
simpler	if	we	can	separate	it	from	tests	that	determine

that	Engine	is	functionally	correct.	The	UI	tests	will
focus	on	how	the	display	looks,	and	whether	user	inputs

lead	to	the	right	calls	on	Engine	methods;	these	tests
could	even	be	done	with	a	simple	stub	for	Engine	(e.g.,
using	a	predefined	set	of	documents).

14.3	Summary

In	this	chapter,	we	discussed	some	things	that	should	be

done	between	the	completion	of	a	design	and	the	start	of



implementation.	The	key	points	to	take	away	are	the

importance	of	conducting	a	systematic	evaluation	of	the

design	and	developing	a	plan	specifying	the	order	of

implementation	and	testing	of	the	modules	comprising

the	design.

In	a	design	review,	one	considers	whether	or	not

implementations	of	the	design	will	exhibit	the	desired

behavior	and	performance,	and	whether	or	not	the

program	structure	described	by	the	design	will	be

reasonably	easy	to	build,	test,	and	maintain.	We

suggested	conducting	design	reviews	by	tracing	the	path

of	symbolic	test	data	through	the	design.	We	also

suggested	several	criteria	that	could	be	used	in	evaluating

structural	issues.	All	of	the	criteria	were	related	to	the

appropriateness	of	module	boundaries.

We	did	not	give	fixed	rules	for	picking	an	order	of

implementation	and	testing.	We	discussed	the	relative

merits	of	top-down	and	bottom-up	development	and

testing.	Our	conclusion	was	that	most	of	the	time,	it	is

best	to	follow	a	mixed	strategy	but	with	an	emphasis	on

proceeding	top-down.

In	our	discussion	of	design	reviews,	we	presented	an

extremely	abbreviated	review	of	the	search	engine

designed	in	Chapter	13.	The	reader	should	not	infer	from

this	that	design	reviews	should	be	conducted	only	after	a

design	is	complete.	For	larger	programs,	it	is	imperative

that	we	conduct	careful	reviews	during	the	design	phase.

If	we	want	to	start	the	implementation	of	some

subsystem	before	the	design	is	complete,	it	should

happen	only	after	the	design	at	that	point	has	been

carefully	reviewed.	But	even	if	we	are	not	planning	to

start	implementation	early,	we	need	reviews	before

design	is	complete	since	it	is	critical	to	catch	design

errors	early.

It	is	also	important	to	start	considering	how	the

implementation	effort	is	to	be	organized	early	in	the

design.	A	need	for	early	completion	of	subsystems,	for

example,	can	have	a	significant	impact	on	design

decisions	and	on	the	order	in	which	abstractions	are



studied	during	the	design	process.

EXERCISES

14.1	A	Map	abstraction	might	provide	an	insert
method	to	add	a	string	with	its	associated	element

to	the	Map	and	a	change	method	to	change	the
element	associated	with	the	string.	Suppose	these

two	operations	were	replaced	by	a	single	method

that	adds	the	association	if	it	does	not	already	exist

and	changes	it	if	it	does.	Discuss	the	coherence	of

this	modified	abstraction.	How	does	the	modified

abstraction	compare	with	the	original?

14.2	Consider	the	effect	of	various	potential

modifications	for	the	search	engine	on	its	design.

For	example,	suppose	we	want	to	support	more

sophisticated	queries,	or	we	want	to	allow	several

documents	to	have	the	same	title,	or	we	want	the

engine	to	record	persistently	the	sites	where

documents	are	located	so	that	they	can	be

refetched	the	next	time	it	runs.

14.3	One	could	argue	that	having	a	single	word	table

that	keeps	track	of	both	interesting	and

uninteresting	words	is	less	coherent	than	a	design

with	two	separate	tables.	Discuss	this	point	and

compare	the	two	alternatives.

14.4	Consider	an	alternative	design	for	Query	in	which
a	query	object	is	initially	empty	and	keywords	are

added	to	it.	Discuss	the	advantages	and

disadvantages	of	this	design	relative	to	the	one

that	was	presented	in	Chapter	13.

14.5	Perform	a	design	review	for	some	program	that

you	have	designed.	Be	sure	to	include	a	discussion

of	the	structure	and	modifiability	of	the	program

as	well	as	a	discussion	of	its	correctness.

14.6	Define	an	implementation	strategy	for	a	program

that	you	have	designed.



15	Design	Patterns

When	designing	a	program,	it	is	useful	to	understand	the

ways	that	people	have	organized	programs	in	the	past,

since	these	approaches	might	speed	up	the	design

process	or	lead	to	a	better	program	in	the	end.	This

chapter	discusses	a	number	of	such	design	patterns	.

Each	pattern	provides	a	benefit:	some	patterns	improve

performance,	while	others	make	it	easier	to	change	the

program	in	certain	ways.

In	this	book	we	have	already	used	several	design

patterns.	One	is	the	iterator	pattern.	As	explained	in

Chapter	6,	we	use	iterators	as	a	basic	part	of	our

methodology	since	it	allows	us	to	provide	efficient	access

to	elements	of	collection	objects	without	either	violating

encapsulation	or	complicating	the	abstraction.	Another	is

the	template	pattern.	This	pattern	captures	the	idea	of

implementing	concrete	methods	in	a	superclass	in	terms

of	abstract	methods	that	will	be	implemented	in

subclasses;	the	concrete	method	defines	a	template	for

how	execution	proceeds,	but	the	details	are	filled	in	later,

when	the	subclasses	are	implemented.	Examples	of	the

use	of	this	pattern	can	be	found	in	the	implementations

of	IntSet	(see	Figure	7.8)	and	Poly	(see	Figure	7.14).

1

Design	patterns	often	take	advantage	of	type	hierarchy	to

accomplish	their	goals.	They	abstract	from	detail	to

certain	commonalities,	which	are	captured	in	a

supertype.	Using	code	is	written	based	on	the	supertype

specification	and	is	intended	to	work	correctly	regardless

of	which	subtype	is	actually	in	use.	Therefore,	it	is	critical

that	the	subtypes	obey	the	substitution	principle:	a

subtype’s	objects	must	behave	like	those	of	the	supertype

as	far	as	using	code	can	tell	by	calling	supertype	methods.

The	downside	of	patterns	is	that	some	of	them	can

More	information	about	design	patterns	can	be	found	in	Gamma,	Erich,	Richard	Helm,	Ralph	Johnson,	and

John	Vlissides,	Design	Patterns,	Addison-Wesley,	Reading,	Mass.,	1995.

1



increase	program	complexity.	The	most	common	mistake

made	by	novice	programmers	is	over-design:	the

program	is	more	complicated	than	is	necessary	to

accomplish	its	job.	Therefore,	your	motto	should	be

“When	in	doubt,	leave	it	out.”	In	other	words,	you	should

use	a	pattern	only	when	its	benefits	outweigh	any

additional	complexity	it	introduces.

Design	patterns	are	like	a	bag	of	tricks	that	every

competent	programmer	should	understand.	This	doesn’t

mean	that	you	use	them	indiscriminately;	rather	it	means

that	you	can	recognize	situations	where	they	might	apply

and	then	decide	whether	their	use	is	merited	in	that

particular	case.	An	additional	point	is	that	patterns	can

help	you	understand	other	people’s	programs	more

easily,	and	you	can	also	use	them	to	explain	both	your

own	and	other	people’s	programs.	They	provide	a

vocabulary	that	can	make	it	easier	to	both	develop	and

describe	designs.	Sidebar	15.1	summarizes	this

discussion.

Sidebar	15.1	Design	Patterns

Design	patterns	provide	a	vocabulary	for	understanding	and	discussing	designs.

Design	patterns	can	improve	the	performance	or	flexibility	of	code.	They	can	increase
complexity,	however,	and	should	be	used	only	when	analysis	indicates	the	benefits	outweigh
the	disadvantages.

Patterns	should	always	be	used	in	a	way	that	observes	the	substitution	principle.

15.1			HIDING	OBJECT	CREATION

Much	of	the	code	in	an	object-oriented	program	does	not

depend	directly	on	the	particular	class	that	implements

an	object	it	uses.	Instead,	it	depends	only	on	the	object’s

behavior—that	is,	the	object’s	methods	with	their

associated	behavior	as	defined	in	the	specification	of	the

object’s	type.	However,	not	all	code	has	such	a	loose

connection	to	the	class	implementing	an	object:	any	code

that	calls	a	constructor	depends	on	the	class.

Limiting	dependencies	on	classes	is	desirable	for	two

reasons.	First,	it	makes	it	easier	to	replace	the	class

currently	implementing	an	object	with	another	one,	since

all	code	that	depends	only	on	the	object’s	type	and	not	its

class	is	unaffected	by	the	change.	Second,	it	provides	a
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way	to	hide	details	associated	with	selecting	what	class	to

use,	in	the	case	where	multiple	classes	implement	a	type.

For	example,	we	discussed	multiple	implementations	for

polynomials	in	Chapter	7.	Two	implementations	were

provided,	DensePoly	and	SparsePoly,	and
programmers	writing	code	that	used	polynomials	had	to

decide	for	each	new	polynomial	whether	its

representation	should	be	sparse	or	dense.	But	why	should

users	need	to	make	this	decision?	A	better	approach

would	be	to	shield	them	from	this	detail	by	providing

some	code	that	they	could	call	to	create	a	polynomial,

where	the	code	would	decide	what	to	do.	In	this	way,	the

existence	of	two	implementations	for	polynomials	is

completely	hidden	from	using	code,	which,	as	a	result,

becomes	less	complex.	In	addition,	if	we	decide	to	add	a

third	implementation,	or	to	change	the	parameters	that

are	used	to	determine	which	implementation	to	choose,

we	can	change	just	the	code	that	actually	creates	the

polynomials;	no	other	code	needs	to	be	changed.

Object	creation	can	be	hidden	by	using	the	factory

pattern.	The	name	“factory”	captures	the	idea	that	the

factory	manufactures	the	objects.	The	factory	pattern	is

based	on	factory	methods.	A	factory	method	creates	an

object	of	some	class,	but	it	is	not	a	constructor	for	that

class.

We	have	seen	many	examples	of	factory	methods	already.

For	example,	every	iterator	is	a	factory	method:	it	creates

a	generator	object,	but	it	is	not	a	constructor	of	some

subclass	of	Iterator.	The	iterator	hides	the	exact	type
of	generator	being	used,	and	using	code	depends	only	on

the	Iterator	interface.	This	structure	is	illustrated	in
Figure	15.1.	The	figure	shows	how	a	program	P	that	uses

the	set	elements	iterator	depends	only	on	the
Iterator	interface	and	not	on	the	particular	type	of
generator	(SetGen	in	this	case).	This	structure	is	flexible
because	we	can	change	the	type	of	generator	by	just

reimplementing	the	elements	method;	the	using	code
does	not	need	to	change	at	all.

Figure	15.1	Iterators	are	factory	methods



Factory	methods	are	sometimes	gathered	together	in

their	own	factory	class.	A	factory	class	might	provide

static	methods,	or	it	might	have	objects	of	its	own.	Such

objects	are	called	factory	objects.

The	methods	of	a	factory	class	might	create	objects	of	a

single	type	or	of	several	types.	For	example,	Figure	15.2

shows	a	factory	class	containing	static	factory	methods

that	create	polynomials:	one	method	creates	the	zero

polynomial,	and	the	other	creates	an	arbitrary	monomial.

This	class	creates	objects	of	only	one	type	(Poly).	In	a
symbolic	manipulation	program,	you	might	have	a

factory	class	with	methods	to	create	polynomials,

matrices,	vectors,	and	so	on.	Such	a	factory	has	an

additional	benefit;	it	provides	an	easy	way	to	ensure	that

the	objects	it	creates	all	work	together	properly.	For

example,	suppose	there	are	several	types	whose

implementations	differ	depending	on	the	environment	in

which	the	system	is	supposed	to	run.	The	factory	can

ensure	that	all	these	types’	objects	are	created	for	the

same	environment.	Thus,	the	use	of	the	factory	not	only

hides	complexity	so	that	using	code	is	simpler;	it	also

ensures	that	certain	errors	aren’t	possible	since	using

code	cannot	create	incompatible	objects	based	on

different	environments.



Figure	15.2	A	factory	class	for	Poly

			public	class	PolyProcs	{
					public	static	Poly	makePoly(	)
						//	EFFECTS:	Creates	the	zero	polynomial.
					public	static	Poly	makePoly(int	n,	int	c)	throws	NegativeExponentException
						//	EFFECTS:	If	n	<	0	throws	NegativeExponentException	else	returns

						//		the	polynomial	cxn.
			}

Sidebar	15.2	The	Factory	Pattern

A	factory	method	creates	an	object	of	some	class.

A	factory	class	provides	a	number	of	factory	methods.	If	the	class	has	objects,	they	are	called
factory	objects.

Methods	of	a	factory	class	might	create	objects	of	several	different	types.	The	factory	class	can
ensure	that	these	objects	come	from	compatible	classes	(e.g.,	ones	that	all	work	in	a	particular
environment).

Sidebar	15.2	summarizes	the	preceding	discussion.

Factory	objects	are	useful	when	many	places	in	a

program	need	to	use	the	factory	methods.	In	such	a	case,

a	single	module	creates	the	factory	object,	which	is

passed	to	other	modules.	The	advantage	of	this	structure

is	that	the	dependency	on	the	particular	implementation

choice	is	limited	to	that	one	module.	The	rest	of	the	code

will	depend	only	on	the	interface	of	the	factory	object	and

not	its	class!

Figure	15.3	shows	the	module	dependency	diagram	for	a

program	that	uses	factory	objects.	The	figure	shows	a

factory	interface	with	two	implementations,	Factory1
and	Factory2.	Objects	of	two	types,	S	and	T,	are	created
by	the	factory;	Factory1	creates	one	“flavor”	for	these
types	(S1	and	T1),	while	Factory2	creates	another.
Module	M	creates	the	factory	objects	by	using	Factory1
and/or	Factory2.	It	passes	a	factory	object	to	module	P,
which	stands	for	the	rest	of	the	program;	P	is	shown	as	a

single	module	but	will	actually	consist	of	many	modules.

P	then	uses	the	factory	object	passed	to	it	by	M	to	create

S	and	T	objects	of	the	“flavor”	selected	by	M.	Note	that
because	there	are	factory	objects,	they	need	to	be	passed

to	code	in	the	rest	of	the	program.	Thus,	this	code	(e.g.,

P)	takes	a	factory	object	as	an	extra	argument.

Figure	15.3	The	factory	pattern	hierarchy
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The	figure	illustrates	the	way	that	factories	reduce

dependencies.	P	does	not	depend	on	the	specific

implementation	of	the	factory	(i.e.,	Factory1	and
Factory2)	since	this	information	is	limited	to	M.	M
weakly	depends	on	Factory	since	it	uses	none	of	its
methods;	instead,	it	only	uses	constructors	of	Factory1
and	Factory2.	Neither	M	nor	P	depends	on	the
implementation	choices	for	S	and	T	since	that
information	is	limited	to	the	factory	implementation.	Yet

we	can	be	certain	that	P	will	use	compatible

implementations	of	S	and	T.

Factories	aren’t	needed	when	all	you	want	to	do	is	to

reimplement	some	types,	replacing	old	implementations

with	new	ones.	In	this	case,	you	can	just	relink	your	code

to	use	the	new	classes	rather	than	the	old	ones.	However,

factories	are	useful	when	a	single	problem	uses	several

implementations	for	a	type	or	when	each	of	several

versions	of	a	program	uses	a	different	implementation

choice	for	some	set	of	types.

Sidebar	15.3	When	to	Use	Factories

A	factory	is	not	needed	when	all	you	want	to	do	is	reimplement	some	type.	In	this	case,	you
can	just	relink	your	code	with	the	new	class.

A	factory	is	useful	when	you	use	multiple	implementations	of	a	type	within	a	program.

A	factory	is	also	useful	when	you	want	several	different	versions	of	a	program,	each	using	a
different	implementation	for	one	or	more	types.

Using	a	factory	object	can	limit	dependency	on	the	factory	class	to	a	single	module.
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Two	other	patterns	are	closely	related	to	factories.	A

builder	is	a	method	that	not	only	hides	implementation

choices	for	one	or	more	types	but	also	constructs	a

collection	of	objects	of	these	types.	A	prototype	is	an

object	that	can	be	used	to	create	other	objects	of	its	type.

The	prototype	is	created	by	one	module;	the	rest	of	the

code	calls	a	method	of	the	prototype	to	obtain	other

objects	of	the	prototype’s	type.	The	new	objects	will	be	in

an	initial	state,	rather	than	a	clone	of	the	prototype	(in

case	the	prototype	has	been	modified).	Sidebar	15.3

summarizes	the	uses	of	factories.

15.2	NEAT	HACKS

A	number	of	patterns	are	useful	for	either	speeding	up	a

computation	or	reducing	its	storage	requirements.	Every

competent	programmer	should	know	about	them;	they

should	be	part	of	your	bag	of	tricks,	so	that	you	can	use

them	when	the	right	situation	arises.

15.2.1	Flyweights

Sometimes	you	will	encounter	a	situation	where	you	have

many	instances	of	identical	objects.	When	this	happens

you	can	greatly	reduce	your	storage	requirements	if	you

can	manage	to	use	just	one	object	per	set	of	identical

ones.

Sidebar	15.4	The	Flyweight	Pattern

The	flyweight	pattern	allows	one	object	to	be	used	to	represent	many	identical	instances.

Flyweights	must	be	immutable.

Flyweights	always	depend	on	an	associated	table,	which	maps	identical	instances	to	the	single
object	that	represents	all	of	them.	This	table	can	either	be	hidden	within	the	flyweight	class	or
can	be	visible	to	users.

Flyweights	should	be	used	when	there	is	a	sufficiently	large	amount	of	sharing	to	justify	the
extra	complexity	of	maintaining	the	related	table.

The	technique	for	accomplishing	this	sharing	is	called	the

flyweight	pattern;	the	shared	objects	are	called

flyweights	(see	Sidebar	15.4).	The	name	comes	from	the

fact	that	the	pattern	makes	even	very	small	objects,	such

as	individual	characters,	practical.	The	overhead	for	such

an	object	is	high	relative	to	the	information	it	stores,	but

the	cost	is	insignificant	if	there	is	enough	sharing.

However,	the	use	of	the	pattern	is	not	restricted	to	small
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objects;	for	example,	it	might	be	used	for	font	objects	in	a

document	processing	system.

You	can	take	advantage	of	the	savings	provided	by	using

flyweights	only	if	the	objects	are	immutable.	This	is

clearly	necessary	since	the	objects	are	going	to	be	shared.

If	the	flyweights	were	mutable,	they	could	not	be	shared

since	modifications	made	because	of	the	needs	of	one

using	context	would	be	visible	to	the	others.

For	example,	flyweights	might	be	useful	in	the	search

engine.	Each	document	is	potentially	very	large,	yet	a

document	contains	many	occurrences	of	the	same	word,

and	the	same	word	may	occur	in	many	different

documents.	Rather	than	storing	a	document	as	a	(very

long)	string,	or	as	a	collection	of	strings	with	one	string

per	word,	why	not	have	just	one	object	for	each	unique

occurrence	of	a	word?	Having	one	object	is	acceptable

since	strings	are	immutable.

Thus,	there	would	be	just	one	object	for	the	word	“the”,

even	though	“the”	occurs	many	times	in	the	documents.	A

document	might	be	represented	as	an	array	(or	vector)	of

Words;	the	objects	representing	the	unique	words	would
be	shared	both	within	the	array	representing	a	single

document	and	between	arrays	representing	different

documents.

To	use	this	pattern,	there	must	be	a	way	to	avoid	creating

duplicate	objects.	This	implies	that	we	cannot	create	the

objects	using	a	constructor	since	a	new	object	is	created

each	time	a	constructor	is	called.	Therefore,	we	need

another	way	to	create	new	objects.	But	we	know	how	to

do	this—by	using	a	factory	method.	The	factory	method

needs	access	to	a	table	that	keeps	track	of	already	existing

objects.	When	a	new	object	is	requested,	the	method

checks	whether	the	desired	object	already	exists	in	the

table;	it	returns	the	preexisting	object	if	one	exists	and

otherwise,	creates	a	new	object.

There	are	two	structures	for	providing	flyweights.	In	the

first,	the	table	is	inaccessible	to	users.	In	this	case,	the

flyweight	class	provides	a	static	factory	method	that	is

used	to	create	flyweights,	and	the	table	is	maintained



within	the	class,	in	a	static	variable.	Figure	15.4	illustrates

this	structure.	When	make-Word	encounters	a	string	that
is	not	in	the	table,	it	calls	the	constructor	to	create	a	new

word,	but	users	can’t	create	words	directly	since	the

constructor	is	private.

The	mapWord	method	shown	in	the	figure	provides
different	results	depending	on	a	context.	For	example,	a

context	might	indicate	that	the	resulting	string	should

have	all	alphabetic	characters	capitalized.	Having	the

context	information	be	an	argument	enhances	sharing:	a

word	can	be	shared	even	in	different	contexts.	Another

point	is	that	the	context	might	be	mutable—for	example,

the	using	code	might	have	a	context	object	that	it	changes

to	reflect	the	current	constraints.	Obviously,	a	mutable

context	could	not	be	part	of	the	flyweight,	since

flyweights	must	be	immutable.	This	type	of	mutable

information	is	referred	to	as	the	extrinsic	state;	the	idea

is	that	it	is	related	to	the	flyweight	object	but	not	inside	it

since	flyweights	cannot	contain	mutable	information.	The

information	inside	the	flyweight	is	referred	to	as	its

intrinsic	state.

Figure	15.4	Flyweight	pattern	with	a	hidden	table

			public	class	Word	{
			//	OVERVIEW:	Words	are	strings	that	provide	methods	to	produce	them	
			//			in	various	forms.	words	are	immutable,	and	for	each	unique	strin
g	
			//			there	is	at	most	one	word.
			private	static	Hashtable	t;					//	maps	strings	to	words
			public	static	makeWord	(String	s)
						//	EFFECTS:	Returns	the	word	corresponding	to	s.
			private	Word(String	s)
						//	EFFECTS:	Makes	this	be	the	word	corresponding	to	s	.

			public	String	mapWord(Context	c)
						//	EFFECTS:	Returns	the	string	corresponding	to	this	in
						//		the	form	suitable	for	context	c.
			//	other	word	methods	
}

The	second	structure	for	flyweights	makes	the	table

accessible	to	users:	there	is	a	table	object,	and	the	factory

method	is	a	method	of	this	object.	This	structure	is	useful

when	there	are	other	things	to	do	with	the	table	(e.g.,

iterate	over	its	elements)	or	if	more	than	one	table	is

needed.	This	structure	is	illustrated	in	Figure	15.5,	which

shows	a	type	Ident	and	an	associated	table	type



IdentTable.	The	Ident	type	might	be	used	in
implementing	a	compiler.	An	Ident	is	a	string,	but	there
are	two	kinds	of	identifiers:	reserved	words	(e.g.,

“class”,	“for”),	which	have	a	predefined	meaning,	and
all	the	other	words,	which	are	used	for	naming	variables,

methods,	and	so	on.	The	main	point	to	notice	is	that

tables	have	a	number	of	methods.	A	second	point	is	that

Ident’s	constructor	is	package	visible,	which	means	it	is
not	accessible	to	users	but	is	accessible	to	IdentTable
provided	they	are	defined	in	the	same	package.

A	final	point	about	flyweights	is	that	it	may	be	necessary

to	remove	entries	from	the	associated	table	when	they	are

no	longer	in	use.	For	example,	if	documents	were

removed	from	the	search	engine,	some	words	might	no

longer	appear	in	any	document,	in	which	case	we	might

want	to	be	sure	they	no	longer	consumed	storage.	This

can	be	accomplished	in	Java	by	having	the	table	refer	to

its	elements	using	weak	pointers;	details	can	be	found	in

a	Java	text.

15.2.2			Singletons

Sometimes	a	type	needs	just	a	single	object	(or	a	few

objects).	In	this	case,	we	may	want	to	ensure	that

additional	objects	aren’t	created.	This	can	be	important

for	performance:	for	example,	if	there	were	more	than

one	IdentTable,	we	would	not	be	able	to	guarantee	just
one	object	for	a	unique	identifier.	The	constraint	can	also

be	important	for	correctness.	For	example,	we	might

implement	equals	for	Ident	by	simply	checking
whether	the	two	objects	are	the	same	object:

Figure	15.5	Flyweight	pattern	with	a	visible	table

		public	class	IdentTable	{
			//	OVERVIEW:	A	IdentTable	is	a	mutable	collection	of	Ident
			//			objects;	each	distinct	string	has	at	most	one	entry	in	the	table.
			//	constructors:
		public	IdentTable(	)
				//	EFFECTS:	Makes	this	be	the	empty	IdentTable.

			//	methods:
		public	Ident	makeReserved	(String	s)	throws	WrongKindException
				//	MODIFIES:	this
				//	EFFECTS:	If	s	is	already	in	this	as	a	reserved	word	returns
				//		the	prestored	object	else	if	it	is	in	this	as	a	nonreserved	word
				//		throws	WrongKindException	else	adds	s	to	this	as	a	reserved	word.

		public	Ident	makeNonReserved	(String	s)	throws	WrongKindException
				//	MODIFIES:	this



				//	EFFECTS:	If	s	is	already	in	this	as	a	nonreserved	word	returns
				//		the	prestored	object	else	if	it	is	in	this	as	a	reserved	word	th
rows
				//			WrongKindException	else	adds	s	to	this	as	a	nonreserved	word.
		public	Iterator	idents	(	)
				//	EFFECTS:	Returns	a	generator	that	will	produce	all	identifiers	in	this,
				//		each	exactly	once,	in	arbitrary	order.
				//	REQUIRES:	this	not	be	modified	when	generator	is	in	use.
}
public	class	Ident	{
			//	OVERVIEW:	An	Ident	is	an	identifier	that	occurs	in	a	program.
			//			Idents	are	,	immutable.	They	are	created	by	using	an	IdentTable.
		Ident(String	s)	//	package	visible
			//	various	methods
}

Sidebar	15.5	The	Singleton	Pattern

When	a	type	has	just	one	object,	that	object	is	called	a	singleton.

Using	a	singleton	can	improve	performance	or	eliminate	errors.

To	enforce	singleton-ness,	the	constructor	must	be	made	private	and	access	to	the	object
provided	through	a	static	method.

Although	the	static	method	makes	it	possible	to	access	the	object	without	having	it	be	a
parameter,	this	structure	is	undesirable	since	it	increases	dependencies.	Making	the	entire	class
static	is	even	less	desirable.

boolean	equals	(Object	x)	{	return	this	==	x;	}

(Actually	this	is	the	definition	of	equals	provided	by
Object.)	This	test	is	very	efficient,	but	it	will	work
correctly	only	if	both	identifier	objects	come	from	the

same	IdentTable.	This	condition	will	certainly	be	true
if	we	can	guarantee	there	is	just	one	IdentTable.

The	notion	of	a	type	with	just	one	object	is	captured	by

the	singleton	pattern,	and	the	single	object	is	called	a

singleton	(see	Sidebar	15.5).

The	way	to	ensure	that	there	is	just	one	object	of	a	type	is

to	make	the	constructor	unavailable	to	using	code.

Instead,	using	code	can	access	the	object	by	calling	a

static	method	of	the	class	that	implements	the	type.	This

method	is	a	factory	method.	It	will	return	the	single

object,	creating	the	object	if	this	is	the	first	time	it	has

been	requested.	The	structure	is	illustrated	in	Figure	15.6.

The	main	points	to	notice	are	that	the	implementation

maintains	a	pointer	to	the	object	in	a	static	variable	and

that	the	constructor	is	private.

The	static	method	used	to	access	a	singleton	provides	a

kind	of	global	variable:	the	method	names	the	singleton.
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For	example,	IdentTable.getTable	names	the
singleton	IdentTable	object	(given	the	code	in	Figure
15.6),	which	means	we	can	avoid	passing	the	singleton	as

a	parameter.	However,	even	if	the	singleton	object	is	not

passed	explicitly,	any	module	M	that	uses	it,	either

directly	or	indirectly	by	calls	on	other	modules,	still

depends	on	the	singleton.

Figure	15.6	The	singleton	pattern

public	class	IdentTable	{
			//	OVERVIEW:	As	before	except	there	is	just	one	IdentTable	object,	wh
ich
			//		can	be	obtained	by	calling	the	getTable	procedure.
		private	static	IdentTable	t;	//	the	single	table
		public	static	IdentTable	getTable(	)	{
			if	(t	==	null)	t	=	new	IdentTable(	);
			return	t;	}
		private	IdentTable(	)	{	…	}
			//	methods	go	here
}

This	means	that	M’s	specification	must	explain	its	use	of

the	singleton,	and	the	module	dependency	diagram	must

show	the	dependency.

For	example,	exactly	one	WordTable	and	exactly	one
TitleTable	are	used	in	the	search	engine.	We	could

make	these	tables	singletons	and	thus	eliminate	a

potential	source	of	errors.	However,	the	search	engine

will	still	have	the	module	dependency	diagram	shown	in

Figure	13.15	even	if	the	word	table	object	is	a	singleton

and	is	not	passed	explicitly	to	Query.	Also,	the
specification	of	Query	would	still	need	to	describe	its	use
of	the	word	table.

Since	the	dependencies	and	specifications	need	to	reflect

the	use	of	the	singleton	object,	it	is	better	to	pass	it	as	an

explicit	parameter.	Not	only	does	this	make	the	code

cleaner,	but	it	also	provides	better	modifiability:	if	we

should	later	change	the	way	to	access	the	singleton,	all

code	that	receives	it	as	an	argument	will	be	unaffected	by

the	change.	This	really	is	just	an	argument	in	favor	of

abstraction	by	parameterization:	code	is	more	general	if

it	uses	parameters	rather	than	depending	on	specific

objects.

One	final	point:	it	is	possible	to	use	a	class	as	the



singleton	object.	In	this	case,	there	are	only	static

methods;	for	example,	makeReserved,	makeNon-
Reserved,	and	elements	would	all	be	static	methods	of
the	IdentTable	class	shown	in	Figure	15.6.	However,
doing	things	this	way	is	less	desirable	than	having	an

actual	object	because	classes	cannot	easily	be	treated	as

objects	in	Java.

There	is	a	connection	between	singletons	and	flyweights:

sometimes	a	singleton	is	a	special	kind	of	flyweight.	For

example,	since	lists	are	immutable,	we	can	use	the

flyweight	pattern	to	represent	specific	lists.	This	might	be

worthwhile	for	the	empty	list,	which	is	likely	to	be	created

and	then	discarded	many	times.	Since	there	is	just	one

empty	list,	we	can	implement	it	as	a	singleton.	(It’s	not

clear,	however,	that	use	of	the	pattern	is	justified	here.	It

saves	storage	and	less	garbage	needs	to	be	collected,	but

the	program	structure	is	a	bit	strange:	we	no	longer	have

a	public	constructor	for	creating	an	empty	list	but	have	to

use	a	static	[factory]	method	instead.)

15.2.3	The	State	Pattern

It	is	sometimes	worthwhile	to	change	how	an	object	is

represented	dynamically.	This	might	happen	because	the

object	changes	state	from	time	to	time,	and	in	different

states,	different	information	needs	to	be	stored.	Or	it

might	happen	because	as	the	object	changes	state,	its

performance	can	be	improved	by	changing	its

representation.

For	example,	we	might	implement	a	set	by	starting	with	a

vector	that	stores	the	elements	in	consecutive	locations.

However,	this	representation	is	suitable	only	for

relatively	small	sets.	Therefore,	when	the	size	of	the	set

passes	a	threshold,	we	switch	the	implementation	to	use	a

hash	table.	Later,	if	the	set	shrinks,	we	switch	back	to	the

vector;	this	typically	will	happen	at	a	smaller	threshold

than	the	one	that	causes	the	switch	in	the	reverse

direction	since	otherwise,	the	implementation	might	be

unstable:	it	would	end	up	switching	between	the	vector

and	the	hash	table	repeatedly,	in	the	case	of	a	set	whose

size	remains	around	the	threshold.



To	support	a	representation	that	switches	from	one	form

to	another,	we	might	simply	have	the	rep	contain	an

Object.	For	example,	the	rep	of	a	Set	object	might
contain

			Object	els;	//	a	vector	or	a	hash	table

The	object	would	be	a	vector	for	a	small	set	and	a	hash

table	for	a	large	one.	However,	this	approach	has	the

disadvantage	that	the	code	of	each	method	needs	to

determine	what	the	current	state	is	and	then	cast	els	to
either	a	vector	or	a	hash	table—for	example,	each	method

would	have	roughly	the	following	form:	This	is	both

inconvenient	and	expensive	(since	casts	are	relatively

costly).

			if	(els	instanceof	Vector)	{
				Vector	v	=	(Vector)	els;	}	//	process	the	vector
			else	{	Hashtable	t	=	(Hashtable)	els;	}	//	process	the	hash	table

The	state	pattern	provides	a	better	approach.	It	separates

the	type	being	implemented	from	the	type	used	to

implement	it.	The	type	being	implemented	is	called	the

context;	the	type	used	to	implement	it	is	called	the	state

type.	The	structure	is	illustrated	in	Figure	15.7,	which

shows	a	portion	of	the	set	implementation.	The

implementation	makes	use	of	a	SetState	type;	this	type
has	two	implementations,	SmallSet,	which	uses	a
vector,	and	BigSet,	which	uses	a	hash	table.

Figure	15.7	The	state	pattern

			public	class	Set	{
					private	SetState	els;
					private	int	t1;	//	the	threshold	for	growing
					private	int	t2;	//	the	threshold	for	shrinking
					public	Set(	)	{els	=	new	SmallSet(	);}	//	set	the	thresholds
					public	boolean	empty	(	)	{	returns	(els.size(	)	==	0);	}
					public	void	insert	(Object	x)	{
							int	sz	=	els.size(	);
							els.insert(x);
							if	(sz	==	t1	&&	els.size(	)	>	t1)
													els	=	new	BigSet((Vector)	els);
					}

						//	other	methods	go	here
			}
			public	interface	SetState	{
						//	OVERVIEW:	SetState	is	used	to	implement	Set;	it	provides	most	o
f	the	Set
						//		methods.	SetState	objects	are	mutable.
			}



			public	class	SmallSet	implements	SetState	{
						//	implementation	similar	to	that	shown	in	Figure	5.6
		}
			public	class	BigSet	implements	SetState	{	…	}

Chapter	15	Design	Patterns

There	are	three	points	to	note	here.	First,	the

implementation	of	Set	does	not	need	to	determine	the
type	of	its	els	object;	instead,	its	calls	on	methods	of	els
go	directly	to	the	code	of	els’s	current	implementation,
which,	of	course,	knows	its	type.	Second,	the	state	type	is

not	in	the	same	hierarchy	as	the	type	being	implemented

and	therefore	need	not	have	the	same	methods;	instead,

we	can	choose	methods	as	needed	for	the	implementation

of	the	context	type.

The	third	point	concerns	changing	the	implementation	of

an	object	of	the	context	type	from	one	state	to	another.

Figure	15.7	shows	how	to	do	this:	the	work	is	done	in	the

context	type’s	implementation.	The	figure	shows	how	the

switch	occurs	in	the	Set	insert	method;	the
implementation	of	remove	would	be	similar,	except	that
it	would	check	for	the	set	becoming	smaller	than

threshold	t2.

There	is	another	way	of	causing	the	state	change	to

happen:	the	subtypes	of	the	state	type	could	detect	the

need	for	change	and	modify	the	containing	object

accordingly.	But	to	do	this,	the	state	objects	would	have

to	use	the	context	object;	and	therefore	the	state	type

would	depend	on	the	context	type.	The	structure	shown

in	Figure	15.7	is	better	because	the	dependency	is	not

needed.

Sidebar	15.6	summarizes	the	discussion	about	the	state	pattern

Sidebar	15.6	The	State	Pattern

The	state	pattern	allows	the	representation	of	an	object	to	change	as	the	object’s	state
changes.	It	uses	a	state	type	to	implement	objects	of	a	context	type.

The	pattern	applies	only	to	mutable	types.

The	pattern	is	worthwhile	if	there	is	a	significant	benefit	to	using	different	implementations	as	state
changes	(e.g.,	because	different	reps	are	suitable	for	large	and	small	objects).

Having	the	context	type’s	implementation	control	when	objects	change	their	implementation
provides	better	modularity	than	having	this	be	controlled	by	subtypes	of	the	state	type.

15.3			 	THE	BRIDGE	PATTERN

•	

•	

•	
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We	use	hierarchy	for	two	different	purposes:	to	extend

behavior	and	to	provide	multiple	implementations.	These

two	uses	can	interfere.

For	example,	suppose	you	want	to	define	ExtendedSet,
a	subtype	of	Set	with	more	methods	(e.g.,	union	and
intersection	methods).	But	suppose,	in	addition,	that	you

had	already	defined	SmallSet	and	BigSet	to	be
subtypes	of	Set.	How	do	these	types	interact	with
ExtendedSet?	What	we	would	really	like	is	to	use	them

to	implement	ExtendedSet	as	well	as	Set.	However,	to
do	so,	we	would	need	to	move	them	down	in	the

hierarchy,	so	that	they	are	subtypes	of	ExtendedSet.
And	this	really	does	not	capture	our	intent	because	there

is	no	reason	for	SmallSet	and	BigSet	to	have	the	extra
methods	of	ExtendedSet.

We	can	solve	this	problem	by	keeping	implementations

outside	the	hierarchy	used	to	define	the	type	family.	The

resulting	structure	for	this	example	is	shown	in	Figure

15.8.	The	implementation	hierarchy	has	been	separated

from	the	type	family	for	Set.	Set	and	ExtendedSet
objects	refer	to	SetState	objects,	and	their	methods	will
be	implemented	by	using	SetState	methods.	However,
as	discussed	in	Section	15.2.3,	since	SetState	is	not	part
of	the	Set	hierarchy,	its	objects	need	not	provide	the
same	methods	as	set	objects.

The	pattern	shown	in	Figure	15.8	is	the	bridge	pattern

(see	Sidebar	15.7).	The	name	implies	that	a	relationship

(a	“bridge”)	exists	between	the	two	hierarchies	but	they

are	not	the	same	hierarchy.

Figure	15.8	Structure	of	the	bridge	pattern.



Sidebar	15.7	The	Bridge	Pattern

The	bridge	pattern	separates	the	implementation	hierarchy	from	the	subtype	hierarchy.

The	pattern	occurs	naturally	when	the	state	pattern	is	used,	but	it	can	be	used	more	generally.

The	bridge	pattern	adds	complexity,	and	therefore	it	should	be	used	only	in	conjunction	with	the
state	pattern,	or	when	there	is	a	need	for	both	multiple	implementations	and	subtype	hierarchy.

The	bridge	pattern	occurs	naturally	for	mutable	types

whose	objects	change	their	implementation	over	time,

since	we	needed	to	introduce	this	structure	for	them

anyway.	The	pattern	can	be	used	whenever	there	are

multiple	implementations;	for	example,	we	could	use	it

for	Poly.	However,	the	pattern	does	add	complexity:	we
now	have	two	hierarchies	where	before	we	had	just	one.

Therefore,	the	pattern	should	be	used	only	when	there	is

a	need	for	the	state	pattern,	or	when	there	is	a	need	for

both	multiple	implementations	and	extension	subtypes.

15.4	PROCEDURES	SHOULD	BE	OBJECTS	TOO

Many	object-oriented	languages,	including	Java,	do	not

allow	procedures	to	be	used	as	objects.	In	particular,

there	is	no	easy	way	to	store	a	procedure	in	a	data

structure	or	to	pass	it	as	an	argument	or	result	of	a	call.

However,	sometimes	you	need	to	do	these	things.

The	only	practical	way	to	obtain	a	procedure	object	in

Java	is	to	create	an	object	that	has	the	procedure	as	its

method;	that	object	can	then	be	passed	as	an	argument	or

result,	or	stored	in	a	data	structure.	Of	course,	many

procedures	belong	to	objects	already:	they	are	regular

•	
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methods	rather	than	static	methods.	If	the	object’s	type	is

a	subtype	of	an	interface	that	describes	the	needed

procedures,	no	extra	mechanism	is	needed.	Comparable
(see	Figure	8.4)	is	an	example	of	such	an	interface;	it

allows	the	use	of	the	compareTo	method	for	objects
belonging	to	its	subtypes.

When	the	procedure	in	question	is	a	static	method,

however,	or	when	the	object	does	not	belong	to	a	subtype

of	the	needed	interface,	we	must	fall	back	on	a	different

approach:	we	define	an	interface	that	describes	the

needed	procedures,	and	each	subtype	of	that	interface

implements	the	procedures.	We	saw	examples	of	how	to

do	this	in	Chapter	8.	For	example,	Figure	8.6	defined	the

Adder	interface;	objects	belonging	to	subtypes	of	Adder
provide	methods	to	add	and	subtract	their	arguments.

Similarly,	objects	belonging	to	subtypes	of	the

Comparator	interface,	which	is	defined	in	java.util
and	also	in	Section	8.5,	provide	a	compare	method	that
defines	an	ordering	on	its	arguments.

As	another	example,	suppose	a	collection	has	a	doWork
method	that	performs	some	operation	on	those	elements

of	the	collection	that	satisfy	a	certain	check.	The	idea	here

is	that	doWork	doesn’t	define	the	check;	instead,	its	user
does	this	by	passing	doWork	a	procedure	argument.
Having	a	procedure	argument	gives	the	user	the	ability	to

control	what	doWork	does.

Figure	15.9	shows	an	interface	that	defines	the	needed

procedure.	doWork	uses	this	interface,	for	example,

			public	void	doWork	(Filterer	f)
						//	MODIFIES:	this
						//	EFFECTS:	Changes	all	elements	of	this	that	match	filter	f.check.

(The	exact	change	will	depend	on	what	is	going	on	in	the

collection.)

Figure	15.9	also	shows	two	subtypes	of	the	Filterer
interface.	Pos-Filterer	accepts	only	positive	integers.
Here	is	an	example	of	its	use:

			Filterer	f	=	new	PosFilterer(	);
			c.doWork(f);	//	call	the	collection	method,	using	f	as	the	filter



The	second	subtype,	LTFilterer,	accepts	all	integers
less	than	a	predefined	value.	The	point	to	notice	here	is

that	LTFilterer’s	check	method	actually	requires	a
second	argument,	the	integer	bound	that	it	is	checking

against.	However,	doWork	expects	a	check	method	that
takes	just	one	argument,	the	object	being	checked.	We

resolve	this	incompatibility	by	having	the	bound	be	part

of	the	rep	of	the	LTFilterer	object.	An	example	of	a	use
is:

			Filterer	g	=	new	LTFilterer(100);
			c.doWork(g);

Here	the	filter	will	accepts	all	elements	of	c	that	are	less
than	100.

Figure	15.9	Defining	a	filter

												public	interface	Filterer	{
																public	boolean	check	(Object	x)	throws	ClassCastException
																			//	EFFECTS:	If	x	cannot	be	checked	throws	ClassCastException;
																		//			if	x	passes	the	check	returns	true	else	returns	f
alse.

}

public	class	PosFilterer	implements	Filterer	{
			//	OVERVIEW:	Accepts	all	positive	integers.
public	PosFilterer	(	)	{	}
public	boolean	check	(Object	x)	throws	ClassCastException	{
			if	(!x	instanceof	Integer)	throw	ClassCastException;
			return	((Integer)	x).intValue(	)	>	0;	}
}

public	class	LTFilterer	implements	Filterer	{
			//	OVERVIEW:	All	Integers	less	than	some	bound	pass	the	check;
			//			the	bound	is	an	argument	to	the	constructor.
			private	int	b;
			public	LTFilterer	(int	x)	{	b	=	x;	}
public	boolean	check	(Object	x)	throws	ClassCastException	{
			if	(!x	instanceof	Integer)	throw	ClassCastException;
			return	((Integer)	x).intValue(	)	<	b;	}
}

The	class	LTFilterer	implements	a	closure.	A	closure
is	a	procedure,	some	of	whose	formal	arguments	are

already	bound.	In	this	case,	the	upper	bound	is	the	extra

argument.	The	value	selected	for	this	extra	argument	is

bound	when	the	LTFilterer	object	is	created,	by
providing	it	as	an	argument	to	the	constructor.	The

check	method	of	the	newly	created	object	then	uses	this
prebound	value	to	do	the	computation.

There	are	two	design	patterns	whose	purpose	is	to	make

up	for	the	lack	of	procedure	objects.	The	strategy	pattern



is	used	when	the	using	context	has	some	expectation

about	what	the	procedure	will	do.	All	the	examples

discussed	so	far	are	examples	of	strategies;	the	using	code

expects	to	do	addition	(with	the	Adder	interface),
comparisons	(with	the	Comparator	interface),	or
filtering	(with	the	Filterer	interface).	Note	also	that	in
all	cases,	the	calling	context	expects	there	to	be	no	side

effects	(since	the	specifications	of	the	interfaces	indicate

modifies	nothing).

Figure	15.10	The	Runnable	interface

													public	interface	Runnable	{

																public	void	run	(	)
																			//	MODIFIES:	Anything	
																			//	EFFECTS:	Anything

}

The	command	pattern	is	used	when	there	is	no

expectation	about	the	behavior	of	the	procedure.	All	the

calling	context	expects	is	a	particular	signature;	the

effects	clause	does	not	constrain	what	the	procedure
does,	and	the	modifies	clause	allows	arbitrary
modifications.	Typically,	the	modifications	will	be	to

objects	that	are	accessible	from	the	rep	of	the	command

object,	and	at	least	some	of	these	objects	are	likely	to

have	been	provided	when	the	command	object	was

created	(i.e.,	the	command	object	is	highly	likely	to	be	a

closure).

An	example	of	such	an	interface	is	the	Runnable
interface	shown	in	Figure	15.10.	This	interface	is	used	in

Java	to	start	up	new	threads.	(See	a	Java	text	for

information	about	how	to	use	threads	in	Java.)	When	a

new	thread	is	created,	the	creating	thread	provides	a

procedure	for	the	new	thread	to	run	by	supplying	a

Runnable	object.	The	new	thread	runs	the	procedure	by
calling	the	run	method	on	this	object.	The	procedure	is
almost	certainly	a	closure;	for	example,	it	may	know	of

certain	objects	that	it	uses	to	communicate	with	its

creating	thread.

Both	the	strategy	pattern	and	the	command	pattern	have

the	structure	shown	in	Figure	15.11.	Here	S	specifies	the



interfaces	for	the	needed	procedures;	its	subtypes	S1	and

S2	implement	the	procedures.	The	Creator	module
creates	an	object	of	subtype	S1	and	passes	it	to	the	using

module	U.	Note	that	U	depends	only	on	interface	S	and

not	on	its	subtypes.

Sidebar	15.8	summarizes	the	discussion	about	these	two

patterns.

Figure	15.11	Structure	of	strategy	and	command	patterns

Sidebar	15.8	Strategy	and	Command	Patterns

The	strategy	pattern	and	the	command	pattern	allow	the	use	of	procedures	as	objects.

With	the	strategy	pattern,	the	using	context	expects	a	certain	behavior	from	the	procedure;	with
the	command	pattern,	it	expects	only	a	certain	interface.

In	either	pattern,	the	procedure	may	be	a	closure.	A	closure	makes	use	of	some	prebound
arguments,	which	are	provided	when	the	procedure’s	object	is	created.

Both	patterns	are	defined	via	an	interface	that	specifies	the	procedures	as	methods.	Subtypes
of	the	interface	implement	the	procedures.

15.5	COMPOSITES

Certain	applications	use	a	tree	of	objects	to	store	their

information,	where	all	the	objects	in	the	tree	belong	to

types	in	a	type	hierarchy.	The	top	object	in	the	tree

belongs	to	such	a	type;	it	has	descendants	(its	children)

that	also	belong	to	such	types;	they	in	turn	have	such

descendants,	and	this	continues	until	you	reach	the

leaves	of	the	tree.	This	sort	of	structure	arises	in	user

interfaces;	for	example,	the	entire	display	is	a	window,
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which	has	other	windows	as	subcomponents,	and	so	on,

and	all	these	windows,	such	as	plain	windows	and

bordered	windows,	belong	to	the	same	type	family.

Another	place	where	the	structure	arises	is	in	compilers

and	interpreters.	In	these	programs,	the	text	to	be

compiled	or	interpreted	is	processed	to	arrive	at	a	parse

tree.	Then	the	tree	is	manipulated	in	various	ways.	For

example,	an	interpreter	might	first	walk	over	the	tree	to

determine	whether	the	program	it	represents	is	type

correct,	and	then	each	time	the	interpreter	is	asked	to	run

the	program,	it	walks	over	the	tree	to	carry	out	the

execution.	A	compiler	would	also	do	a	tree	walk	to	carry

out	type	checking,	but	then	it	would	do	another	tree	walk

for	each	later	processing	phase.	There	typically	will	be

many	optimization	phases	in	which	the	compiler	gathers

information	about	the	program	that	can	be	used	to

produce	efficient	code	in	the	later,	code	generation

phases.

The	nodes	of	a	parse	tree	are	entities	that	represent

portions	of	the	program.	For	example,	in	the	tree

corresponding	to	a	Java	program,	there	would	be	a	node

for	an	if	statement,	and	this	node	would	contain
references	to	its	components—namely,	a	node	for	the

expression	being	tested,	a	node	for	the	statement	to

execute	if	the	test	is	true,	and	possibly	a	node	for	the

statement	to	execute	if	the	test	is	false	(if	the	statement

has	an	else	part).	Similarly,	the	expression	node	would
point	to	other	nodes	for	its	components,	which	might	be

subexpressions,	variables,	or	literals.	An	example	of	such

a	tree	is	shown	in	Figure	15.12;	it	corresponds	to	the

program	fragment:

						if	(x	>	6)	return;	else	z	=	x;

The	figure	shows	that	the	node	for	the	if	statement	has
three	descendants:	the	node	for	the	if-expression	(x>6),
the	node	for	the	then-part	(the	return	statement),	and
the	node	for	the	else-part	(the	assignment	statement).

The	if-expression	is	a	binary	expression	consisting	of	the

variable	x,	the	operator	>,	and	the	literal	6.	The
assignment	statement	consists	of	the	variable	being



assigned	to	(z)	and	the	variable	being	assigned	(x).

All	the	types	appearing	in	a	parse	tree	are	similar	in	the

sense	that	as	the	compiler	or	interpreter	interacts	with

them,	it	does	so	in	similar	ways;	that	is,	it	calls	the	same

methods.	Therefore,	all	these	types	are	members	of	a

hierarchy.	A	part	of	the	hierarchy	for	our	fragment	of

Java	is	shown	in	Figure	15.13.

Figure	15.12	A	parse	tree

Figure	15.13	Partial	hierarchy	for	Java

Higher	levels	in	the	hierarchy	are	abstract—that	is,	the

types	have	no	objects.	This	might	be	true,	for	example,

for	the	types	Node,	Expr,	and	Stmt.

Such	a	hierarchy	is	an	example	of	the	composite	pattern

(see	Sidebar	15.9).	All	types	in	the	hierarchy	have	certain

methods.	However,	the	types	may	also	differ;	for

example,	internal	nodes,	which	are	called	components,



might	have	methods	to	access	their	descendants,	while

the	leaf	nodes	do	not	need	such	methods.

Sidebar	15.9	The	Composite	Pattern

The	composite	pattern	composes	objects	in	trees	containing	nodes,	all	of	which	belong	to	the
same	type	family.	Component	nodes	have	descendants	in	the	tree,	while	leaf	nodes	have	no
descendants.

This	pattern	occurs	naturally	in	certain	applications,	ranging	from	user	interfaces	to	compilers
and	interpreters.

Sidebar	15.10	Ways	of	Traversing	Composites

There	are	three	ways	of	traversing	the	trees	that	arise	when	using	the	composite	pattern:

The	interpreter	pattern	uses	a	method	in	each	node	for	each	phase.	With	this	pattern,	it	is	easy
to	add	a	new	node	type	but	more	difficult	to	add	a	new	phase.

The	procedural	approach	has	a	class	per	phase,	with	each	class	containing	a	static	method
per	node	type.	This	pattern	makes	it	easy	to	add	a	new	phase	but	requires	lots	of	casts.

The	visitor	pattern	also	has	a	class	per	phase,	with	each	class	containing	a	(nonstatic)	method
for	each	concrete	node	type.	This	pattern	makes	it	easy	to	add	a	new	phase,	and	it	does	not
require	casts.	But	it	is	more	complex	than	the	interpreter	or	procedural	approaches.

15.5.1	TRAVERSING	THE	TREE

Gathering	all	the	node	types	into	a	common	family	helps

to	regularize	the	processing	of	the	tree.	The	code	that

carries	out	a	computation	over	the	tree	interacts	with

each	node	in	a	similar	way.	In	general,	there	will	be	many

types	of	such	computations—for—example,	one	for	each

phase	in	a	compiler.

There	are	three	different	ways	to	organize	how	the	code

of	a	phase	interacts	with	the	nodes	(see	Sidebar	15.10).

The	first	approach	is	to	have	each	node	type	provide	a

method	for	each	phase.	This	is	called	the	interpreter

pattern.	This	structure	is	illustrated	in	Figure	15.14.	The

figure	sketches	the	implementation	of	IfStmt,	the	node
type	for	the	if	statement.	IfStmt	provides	a	method	for
each	phase	carried	out	by	the	compiler;	the

implementations	of	other	node	types	are	similar.

Figure	15.14	The	interpreter	pattern

													public	class	IfStmt	implements	Stmt	{
																private	Expr	e;	//	the	if	expression
																private	Stmt	s1;	//	the	then	statement
																private	Stmt	s2;	//	the	else	statement

																public	boolean	typeCheck(	)	{
																			//	EFFECTS:	Returns	true	if	this	type	checks	else	ret
urns	false
																			if	(!e.typeCheck(	)	||	!s1.typeCheck(	)	||

•	

•	

•	

•	

•	



																										(s2	!=	null	&&	!s2.typeCheck(	)))	return	false;
																				return	e.type(	).equals("boolean");	}

																public	node	optX(	)
																			//	EFFECTS:	If	there	is	a	way	of	reorganizing	this	to
	reflect
																			//	this	optimization,	returns	a	new	node	that	reflect
s	the
																			//	optimization	else	returns	this.

															//	methods	for	other	optimizations	and	for	code-
generation

}

The	figure	shows	how	methods	on	node	objects	are

implemented—by	calling	the	corresponding	method	on

the	node’s	descendants.	Thus,	the	code	for	the

typeCheck	method	of	the	IfStmt	object	first	checks
that	each	of	its	child	nodes	is	type	correct,	and	then	it

checks	that	the	expression	returns	a	boolean	result.

The	interpreter	pattern	allows	new	types	of	nodes	to	be

defined	with	only	localized	effort:	just	define	the	class	for

the	new	node	type.	However,	it	doesn’t	work	so	well	when

a	new	phase	is	added	to	the	compiler	because,	in	this

case,	every	class	that	implements	a	node	type	must	be

modified.	And,	unfortunately,	the	latter	kind	of

modification	is	more	likely	than	the	former	because

compilers	are	often	improved	by	adding	additional

phases.

The	second	way	of	traversing	the	tree	is	to	implement	a

class	per	phase:	a	class	to	do	type	checking,	a	class	for

each	optimization	phase,	and	a	class	for	each	code

generation	phase.	Each	class	contains	a	static	method	for

each	node	type,	and	these	methods	call	one	another

recursively.	Figure	15.15	illustrates	the	structure	for	the

type-checking	phase.	Each	static	method	is	passed	a	node

of	the	tree	as	an	argument.	It	uses	methods	of	that	node

object	to	obtain	the	node’s	descendants;	it	then	passes

each	descendant	as	an	argument	to	the	static	method	for

the	descendant’s	type.	Thus,	TypeCheck.ifStmt	calls
TypeCheck.expr,	passing	it	the	node	corresponding	to
the	if-expression	as	an	argument.

Figure	15.15	The	procedural	approach	to	traversing	a	composite	tree

			public	class	TypeCheck	{
						//	handles	the	type-checking	phase



		
					public	static	boolean	ifStmt(IfStmt	n)	{
								if	(!TypeCheck.expr(n.expr(	))	||	!TypeCheck.stmt(n.thenStmt(	))	||
											(n.elseStmt(	)	!=	null	&&	!TypeCheck.stmt(n.elseStmt(	))))	return	false;
								return	n.expr(	).type(	).equals("boolean");	}

					public	static	boolean	stmt(Stmt	n)	{
								if	(n	instanceof	IfStmt)	return	TypeCheck.ifStmt((IfStmt)	n);
								if	(n	instanceof	Return)	return	TypeCheck.returnStmt((Return)	n);
								if	(n	instanceof	Assign)	return	TypeCheck.assign((Assign)	n);
								if	…
						}

							//	methods	for	other	node	types	go	here
			}

Using	this	approach,	we	have	effectively	moved	the

knowledge	about	how	to	perform	a	phase	such	as	type

checking	out	of	the	nodes	and	into	the	class

implementing	that	phase.	This	means	that	when	we	add

another	phase,	we	merely	need	to	implement	another

class;	the	classes	implementing	the	node	types	need	not

change.	However,	if	we	add	another	node	type,	we	need

to	add	procedures	to	each	class,	so	this	kind	of	change	is

more	difficult	than	it	was	with	the	interpreter	pattern.

A	problem	with	the	procedural	approach	is	that	many

methods	must	do	casts,	which	is	both	inconvenient	and

expensive.	For	example,	to	type	check	the	statement	in

the	then	part,	TypeCheck.ifStmt	must	call
TypeCheck.stmt,	since	it	does	not	know	what	kind	of
statement	it	is	dealing	with.	Type-Check.stmt	must
then	figure	this	out	by	using	casts,	as	shown	in	Figure

15.15.	These	casts	are	avoided	with	the	interpreter

approach	since	the	call	on	the	s1.typeCheck	method
shown	in	Figure	15.14	goes	to	s1’s	object,	which	knows
what	kind	of	statement	it	is.	(For	example,	for	the

structure	in	Figure	15.12,	it	is	a	return	statement.)

The	third	way	of	traversing	the	tree	is	intermediate

between	these	forms.	This	technique	is	called	the	visitor

pattern.	With	this	pattern,	the	knowledge	about	what	the

tree	structure	is	like	below	a	node	is	localized	to	the	node,

as	in	the	interpreter	pattern,	but	the	knowledge	about

what	phase	is	being	executed	is	localized	in	a	separate

class,	as	in	the	procedural	approach.	The	classes	that

implement	the	phases	are	the	visitor	classes.

The	visitor	pattern	is	illustrated	in	Figure	15.16.	As	in	the



procedural	approach,	there	is	a	class	for	each	phase,	and

within	that	class	is	a	method	for	each	node	type.

However,	these	methods	are	not	static;	there	is	an	actual

visitor	object	instead.	Furthermore,	we	need	methods

only	for	concrete	node	types—that	is,	those	that	actually

have	objects.	With	the	procedural	approach,	methods	are

needed	for	some	abstract	types	as	well	since	the	code

must	handle	such	nodes;	for	example,	Stmt	is	such	a
type.

Figure	15.16	also	shows	part	of	the	IfStmt	class.	Every
node	class	provides	an	accept	method	that	takes	a
visitor	object	as	an	argument.	This	method	traverses	the

tree	beneath	its	node	by	calling	accept	methods	on	its
child	nodes,	each	of	which	will	call	its	own	method	on	the

visitor	as	part	of	its	processing.	When	all	child	nodes

have	been	traversed,	the	parent	calls	the	method

associated	with	its	node’s	type	on	the	visitor.	Thus,	the

IfStmt	accept	method	calls	accept	on	the	if-
expression	node,	the	then-statement	node,	and	the	else-

statement	node	if	there	is	one.	Then	it	calls	the	ifStmt
method	on	its	visitor.

The	visitor	object	keeps	track	of	what	has	been	learned	in

the	processing	so	far.	In	the	case	of	type	checking,	this	is

information	about	type	correctness	up	to	this	point.	The

information	is	shown	as	being	kept	on	a	stack	within	the

visitor	object.	For	statements,	the	only	possibilities	are

“correct”,	meaning	the	statement	type	checked	correctly,

or	“error”,	meaning	it	did	not	type	check	correctly.	For

expressions,	the	information	is	the	actual	type	of	the

expression	or	“error”	if	there	is	a	mismatch	in	the	types	of

subexpressions.

The	module	dependency	diagram	for	the	visitor	pattern	is

shown	in	Figure	15.17.	The	figure	shows	that	in	this

pattern	there	is	a	mutual	dependency:	the	nodes	use	the

visitors,	and	the	visitors	use	the	nodes.	Note	that	the

node	types	depend	only	on	the	Visitor	interface,	but
the	visitor	types	depend	on	various	node	subtypes:	each

visitor	method	depends	on	the	related	node	type	(e.g.,	the

ifStmt	visitor	method	depends	on	the	IfStmt	node



type).	(It’s	possible	to	make	the	visitor	types	depend	only

on	Node,	but	this	complicates	the	code	of	the	visitor
methods	and	makes	them	more	costly	since	they	need	to

do	casts.)

Figure	15.16	The	visitor	pattern

			public	class	TypeCheckVisitor	implements	Visitor	{
						//	implements	the	type-checking	phase
						//	provides	a	method	for	each	concrete	node	type
								private	StringStack	els;					//	stores	the	types	of	expressions	as	strings
			
							public	void	ifStmt	(IfStmt	n)	{
								String	s2	=	null;
								if	(n.hasElse(	))	s2	=	els.pop(	);			//	the	else	stmt
								String	s1	=	els.pop(	);	//	the	then	stmt
								String	e	=	els.pop(	);	//	the	if	expression
								if	(e.equals("boolean")	&&	s1.equals("correct")	&&
										(s2	==	null	||	s2.equals("correct")))
								els.push("correct");	else	els.push("error");
							}

							public	void	var	(Var	n)	{	els.push(n.type);	}
			
		
									//	other	methods	go	here
			}

			public	class	IfStmt	implements	Stmt	{
							private	Expr	e;	//	the	if	expression
							private	Stmt	s1;	//	the	then	statement
							private	Stmt	s2;	//	the	else	statement
	
							public	void	accept	(Visitor	v)	{
								e.accept(v);
								s1.accept(v);
								if	(s2	!=	null)	s2.accept(v);
								v.ifStmt(this);	}

									//	other	IfStmt	methods
			}

Figure	15.17	Dependencies	in	the	visitor	pattern

The	visitor	pattern	is	similar	to	the	procedural	approach

in	the	way	it	accommodates	change:	a	new	phase	requires



writing	a	new	visitor	class,	but	a	new	node	type	requires

implementing	a	new	method	in	every	existing	visitor

class.	The	pattern	avoids	the	need	for	the	casts	used	in

the	procedural	approach	because	a	node	object	calls	the

visitor	method	for	its	type,	which	it	knows.	The	pattern

implements	a	form	of	what	is	called	double	dispatch:	it

gets	to	the	right	code	based	on	both	the	type	of	the	node

being	traversed	and	the	phase	being	run.

However,	the	visitor	pattern	is	more	complicated	than

either	the	interpreter	pattern	or	the	procedural	approach,

and	it	has	a	problem	that	arises	from	the	fact	that	all

phases	do	not	have	identical	structure.	For	example,	for

type	checking,	we	want	to	return	a	boolean;	but	for

optimization,	we	might	modify	the	parse	tree,	and	for

code	generation,	we	might	modify	the	object	storing	the

code	being	generated.	In	the	interpreter	and	procedural

approaches,	these	differences	showed	up	as	different

types	of	results	in	different	phases.	The	visitor	pattern

doesn’t	allow	different	kinds	of	results;	instead,

information	about	what	has	happened	so	far	must	be

stored	within	the	visitor	(e.g.,	the	els	stack	in	Figure
15.16),	and	the	code	can	be	more	complex	as	a	result.

An	additional	problem	is	that	sometimes	more

interaction	is	required	between	a	node	and	the	visitor.

For	example,	the	node	might	need	to	call	a	visitor	method

both	before	it	starts	calling	accept	on	its	child	nodes
and	after.	To	allow	this	interaction,	we	would	need	to

have	two	visitor	methods	associated	with	each	node	type

(the	“before”	method	and	the	“after”	method).

Furthermore,	we	probably	would	want	a	different

accept	method	for	each	way	of	interacting	with	a	visitor,
since	if	there	were	just	one	accept	method,	it	would
sometimes	make	unnecessary	calls	(e.g.,	to	the	“before”

method	in	a	phase	that	doesn’t	need	it).

The	visitor	classes	are	more	closely	coupled	to	the	node

classes	than	was	the	case	in	the	procedural	approach

because	of	the	callbacks	from	the	node	to	the	visitor

methods.	Furthermore,	if	a	new	phase	is	added	that

needs	to	have	nodes	interact	with	the	visitor	in	a	new



way,	all	node	types	must	be	modified	to	accommodate	the

change.	Such	changes	are	not	necessary	with	the

procedural	approach.

15.6	THE	POWER	OF	INDIRECTION

Suppose	you	are	adding	code	to	a	system	that	is	already

using	objects	of	some	type	T	and	will	continue	to	do	so.

Your	new	code	will	use	these	preexisting	objects	but	in	a

different	way	than	they	are	already	being	used.	This

different	way	might	correspond	to	a	different	interface,	or

it	might	simply	be	an	augmented	implementation	of

some	of	the	methods	of	the	original	object.

In	such	a	situation,	you	can	customize	the	original	object

to	provide	the	desired	behavior	by	interposing	an	object

between	it	and	the	using	code.	The	using	code	interacts

with	the	interposed	object,	which	does	some	work	itself

and	forwards	most	of	it	to	the	original	object.	The

structure	is	illustrated	in	Figure	15.18:	the	using	code

makes	use	of	the	interposed	object,	which	in	turn	makes

use	of	the	original	object.

Three	patterns	capture	this	paradigm	(see	Sidebar	15.11).

The	adaptor	pattern	covers	the	situation	where	the

interface	required	by	the	new	code	does	not	match	that

provided	by	the	object;	in	other	words,	the	interposed

object	does	not	belong	to	the	same	type	family	as	the

original	object.	In	the	other	two	patterns,	proxy	and

decorator,	the	interposed	object	supports	the	same

interface	as	the	original	object.	In	the	case	of	the	proxy

pattern,	the	interface	is	identical	to	that	of	the	original

object;	the	goal	with	this	pattern	is	to	control	access	to

the	object	in	some	way.	With	the	decorator	pattern,	the

behavior	is	enhanced:	the	existing	methods	might	do

more,	and	there	might	be	some	extra	methods.	All	these

patterns	have	the	object	structure	shown	in	Figure	15.18.

Figure	15.18	Using	indirection



Sidebar	15.11	The	Adaptor,	Proxy,	and	Decorator	Patterns

The	adaptor,	proxy,	and	decorator	patterns	all	interpose	an	object	between	using	code	and	the
original	object.

In	the	adaptor	pattern,	the	interposed	object	has	different	behavior	than	the	original	object,	and
therefore	it	can	be	used	only	by	new	(or	modified)	code.

In	the	proxy	pattern,	the	new	object	has	identical	behavior	to	the	original	object,	while	in	the
decorator	pattern	the	new	object	has	extended	behavior.	In	both	patterns,	the	new	object	can
be	used	by	either	new	or	preexisting	code.

To	illustrate	these	patterns,	consider	a	Registry	type
that	provides	a	mapping	from	strings	to	objects	and

assume	at	least	one	registry	object	is	already	in	use.	A

registry	object	has	a	lookup	method:

			public	Vector	lookup	(String	s)	throws	NotFoundException
						//	EFFECTS:	If	there	is	a	mapping	for	s	in	this	returns	a	vector	t
hat
						//			contains	all	the	associated	objects	else	throws	NotFoundException.

If	you	decide	that	you	need	to	also	do	the	reverse	lookup

(from	an	object	to	the	string	that	maps	to	it),	you	can

accomplish	it	by	using	a	decorator.	This	decorator	has	all

the	registry	methods	plus	the	new	reverseLookup
method;	it	forwards	calls	on	all	the	old	methods	to	the

original	object,	and	it	implements	the	new	method	itself,

using	the	original	object	as	needed.	(The	reverse	lookup

won’t	be	very	efficient,	but	that	may	not	matter,	for

example,	if	the	registries	are	small.)

Alternatively,	if	you	decide	that	you	want	the	lookup
method	to	retrieve	only	the	first	matching	object,	you	can

use	an	adaptor.	In	this	case,	the	specification	of	the

lookup	method	changes	to:

			public	Object	lookup	(String	s)	throws	NotFoundException
						//	EFFECTS:If	there	is	a	mapping	for	s	in	this	returns	the	object
						//			first	associated	with	s	else	throws	NotFoundException.

and,	therefore,	the	adaptor	type	cannot	be	a	subtype	of

the	type	of	the	original	object.

Finally,	suppose	the	new	code	is	going	to	run	at	a

different	computer	than	the	rest,	yet	it	needs	to	access

one	of	the	preexisting	registries.	In	this	case,	you	can	use

a	proxy.	The	proxy	resides	on	the	same	machine	as	the

new	code,	which	makes	calls	on	it	as	if	it	were	making

calls	directly	on	the	real	registry	object	at	the	other

•	

•	



computer.	The	proxy	forms	a	packet	that	represents	the

call	and	sends	it	across	the	network	to	the	registry	object

using	some	remote	procedure	call	mechanism.	When	the

reply	packet	arrives,	the	proxy	extracts	the	result	and

returns	to	the	caller.

Since	the	adaptor	changes	the	observable	behavior	of	the

original	object,	its	type	is	unrelated	to	that	of	the	original

object.	The	proxy	and	decorator	do	not	change	the

observable	behavior	of	the	original	object,	and	therefore

their	types	can	be	subtypes	of	the	type	of	the	original

object.	This	allows	them	to	be	used	in	another	situation:

where	a	system	is	being	extended	with	a	new	kind	of

object	that	needs	to	fit	in	with	existing	code.

For	example,	adding	a	new	kind	of	window	to	a	window

system	can	be	done	with	the	decorator	pattern.	Since	the

new	window	type	(e.g.,	“bordered	window”)	is	a	subtype

of	the	some	preexisting	window	type,	it	can	be	placed	in

an	existing	tree	of	windows	(e.g.,	a	composite	structure),

and	it	can	be	manipulated	with	the	preexisting	code	that

already	interacts	with	existing	types	of	windows.

On	the	other	hand,	suppose	you	need	to	redistribute

objects,	so	that	an	object	that	at	present	runs	at	the	same

machine	as	the	code	that	uses	it	is	moved	to	some	other

machine.	In	this	case,	you	can	use	the	proxy	pattern:	a

proxy	is	left	behind	on	the	original	machine,	and	it

forwards	all	the	calls	made	by	the	preexisting	code	to	the

machine	where	the	original	object	now	resides.

15.7	PUBLISH/SUBSCRIBE

A	change	in	one	object	is	sometimes	of	interest	to	a

number	of	other	objects.	We	will	refer	to	the	object	of

interest	as	the	subject	and	to	the	other	objects	as

observers.	For	example,	when	a	document	changes,	one

observer	might	print	a	new	copy,	while	another	might

send	e-mail	to	an	interested	user.	Or,	when	e-mail	arrives

in	your	mailbox,	one	observer	might	add	its	header	to	a

list,	while	another	might	cause	your	terminal	to	alert	you

by	making	a	noise.	Another	example	arises	in	a

distributed	file	system;	when	a	file	is	modified,	all	remote



sites	that	have	cached	the	file	need	to	be	notified.

In	this	kind	of	situation,	it	is	desirable	to	decouple	the

subject	from	the	observers,	since	it	allows	the	observers

to	change	without	having	to	modify	the	subject.	The

number	of	observers	might	change	over	time,	and	the

observers	need	not	all	belong	to	the	same	type.

The	observer	pattern	captures	this	structure.	The	subject

maintains	a	list	of	interested	parties;	it	provides	methods

that	allow	observers	to	add	and	remove	themselves	from

the	list.	When	the	subject’s	state	changes,	it	notifies	every

observer	in	the	list	by	calling	its	update	method.

The	structure	is	illustrated	in	Figure	15.19	where	S	is	a
particular	subtype	of	Subject	and	O	is	a	subtype	of
Observer.	Some	object	of	type	S	would	act	as	a	subject
in	a	program,	and	it	might	be	observed	by	objects	of	type

O	(and	of	other	types	not	shown	in	the	diagram).	In
addition	to	the	nodes	representing	the	subject	and

observer	types,	the	figure	also	shows	a	User	type;	an
object	of	this	type	causes	the	state	of	the	subject	to

change.

Note	that	very	loose	coupling	exists	between	the	subject

and	its	observers:	the	observer	depends	on	the	subject

only	to	support	the	Subject	interface,	and	the	subject
depends	on	the	observers	only	to	support	the	Observer
interface.	Other	details	about	the	actual	subject	and

observer	objects—that	is,	their	other	methods—are

hidden.

Either	the	update	method	takes	no	arguments,	in	which
case	the	observer	must	call	other	methods	on	the	subject

to	find	out	about	its	current	state,	or	the	observer	can	be

passed	information	about	the	subject’s	state	directly	as

extra	arguments	of	the	update	method.	The	former
structure	is	called	a	pull	structure	because	the	observers

explicitly	ask	for	the	information	they	need	(this	asking	is

the	“pull”);	the	latter	structure	is	called	a	push	structure,

since	information	is	given	to	observers	directly	(it	is

“pushed”	to	them).	Each	form	has	advantages	and

disadvantages.	The	pull	approach	requires	extra	calls	to

methods	of	the	subject,	but	the	push	approach	might



provide	more	arguments	than	a	particular	observer

needs.	These	issues	are	especially	significant	if	subject

and	observers	are	on	different	machines:	the	pull	method

requires	extra	remote	communicate,	while	the	push

method	can	consume	bandwidth	unnecessarily.

Figure	15.19.	The	observer	pattern

The	observer	pattern	is	sometimes	referred	to	as

publish/subscribe	because	the	subject	publishes

information	to	the	subscribers	(which	are	the

observers).sidebar	15.12.summarizes	this	discussion.

15.7.1	Abstracting	Control

In	the	observer	pattern,	the	subject	does	not	know	the

types	of	the	observer	objects	(other	than	that	they	are	all

subtypes	of	the	observer	interface),	but	it	does	know	what

objects	are	observing	it.	Furthermore,	it	controls	the

order	in	which	the	observers	are	notified	of	a	change.	The

subject	and	observers	can	be	further	decoupled	by

removing	these	relationships.

This	decoupling	can	be	accomplished	by	using	the

mediator	pattern.	In	this	pattern,	the	subject	and

observers	communicate	via	a	shared	mediator	object.

Each	observer	registers	with	the	mediator.	Then	when

the	subject	wants	to	communicate	with	the	observers,	it

calls	a	method	of	the	mediator,	and	the	mediator

forwards	the	information	to	the	observers.	The	structure

is	illustrated	in	Figure	15.20.



Sidebar	15.12	The	Observer	Pattern

The	observer	pattern	captures	a	situation	in	which	changes	in	the	state	of	some	subject	object
are	of	interest	to	other	observer	objects.	It	abstracts	from	the	number	of	observers	and	defines
a	standard	way	for	subjects	and	observers	to	interact.

With	the	pull	structure,	the	observer	is	notified	of	a	change	and	then	it	communicates	further
with	the	subject	to	determine	the	details	of	what	happened.

With	the	push	structure,	all	information	about	the	change	is	sent	to	the	observer	as	part	of	the
notification.

The	pull	structure	causes	more	communication,	since	the	observer	must	make	calls	on
methods	of	the	subject	to	find	out	the	details,	but	the	push	structure	can	cause	more
information	to	be	sent	to	an	observer	than	it	needs.

In	this	structure,	the	subject	and	observers	know	nothing

about	one	another;	they	are	related	only	through	their

use	of	the	mediator.	Of	course,	complete	decoupling

works	only	with	a	push	model.	If	we	used	the	pull

approach	instead,	the	observers	would	depend	on	a

Subject	interface	that	provided	the	methods	used	to	get
the	additional	information.

Although	we	have	described	the	mediator	pattern	as	a

way	for	the	subject	to	communicate	with	the	observers,

the	communication	need	not	be	asymmetric.	Instead,	the

mediator	can	be	used	by	a	group	of	“colleagues”;	each

communication	goes	from	one	of	them	to	all	the	others.

In	addition	to	decoupling	the	subject	and	observers,	the

mediator	pattern	also	centralizes	control	over	the	details

of	communication.	For	example,	the	mediator	might

prioritize	the	observers	and	communicate	with	them	in

priority	order.	Or,	it	might	use	a	“first	acceptor”

approach:	rather	than	communicate	with	all	observers,	it

communicates	with	them	one-by-one	and	stops	as	soon

as	one	“accepts”	the	information.	Since	the

communication	details	are	localized	to	the	mediator,	they

can	be	changed	just	by	reimplementing	the	mediator;	the

code	of	subjects	and	observers	that	use	the	mediator	need

not	change.

Figure	15.20	The	mediator	pattern

•	

•	
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The	mediator	pattern	can	be	generalized	further	into	a

white	board.	A	white	board	is	a	place	where	information

is	posted;	it	provides	a	naming	mechanism	that	is	used	to

control	interactions.	For	example,	one	group	of

interacting	objects	might	communicate	using	the	names

A	and	B,	while	another	group	uses	different	names.	The

object	wanting	to	communicate	writes	information	to	the

white	board	under	some	name.	Either	this	information	is

automatically	disseminated	to	interested	parties	(the

subscribers)	or	interested	parties	periodically	examine

the	white	board	to	see	what	has	changed.

Communication	through	a	white	board	is	sometimes

proposed	as	an	alternative	to	direct	calls	on	methods;	the

caller	publishes	a	request	to	the	white	board,	and

producers	of	the	desired	service	find	out	about	the

request	from	the	white	board.	One	advantage	of	this

structure	compared	to	direct	calls	is	that	the	publisher

need	not	know	who	the	subscribers	are,	nor	even	how

many	of	them	there	are;	in	other	words,	the	white	board

easily	generalizes	a	call	into	a	multicast	to	a	group	of

service	providers.	A	second	advantage	is	that

synchronization	is	not	necessary.	The	publisher	need	not

wait	for	some	subscriber	to	handle	its	request.	Instead,	it

can	do	something	else	and	check	for	the	result	later	by

looking	somewhere	else	on	the	white	board.

Sidebar	15.13	summarizes	this	discussion.

Sidebar	15.13	Abstracting	Control



A	mediator	decouples	subjects	from	observers	by	providing	an	intermediary	that	allows	them	to
communicate.	It	localizes	details	of	how	communication	takes	place	and	allows	these	details	to
be	changed	without	having	to	change	subjects	or	observers.

A	white	board	provides	a	place	for	posting	and	looking	for	information.	It	can	be	used	as	an
alternative	to	procedure	calls:	it	allows	the	caller	to	be	independent	of	the	identities	and	number
of	objects	that	provide	the	desired	service,	and	it	allows	asynchronous	communication.

15.8	SUMMARY

This	chapter	has	discussed	a	number	of	design	patterns.

Patterns	typically	impose	a	level	of	indirection	since	it

allows	something	to	be	changed.	For	example,	a	factory

object	is	interposed	between	the	code	that	uses	some

types	and	the	code	that	implements	them;	the	indirection

allows	us	to	easily	switch	to	different	implementations	for

the	types.	Similarly,	the	state	pattern	uses	a	level	of

indirection	between	the	object	being	implemented	to	the

one	that	represents	it,	so	that	we	can	change	to	a	different

implementation.	And,	a	mediator	is	interposed	between	a

subject	and	its	observers	so	that	the	subject	does	not

depend	on	the	observers	nor	on	the	order	in	which	they

receive	the	information.

Patterns	can	be	used	to	improve	the	flexibility	or

performance	of	a	program.	However,	they	can	also	make

a	program	more	complex	and	more	difficult	to

understand.	For	example,	the	down	side	of	using	a

mediator	is	that	it	is	not	clear	from	reading	the	code	of

the	subject	what	communication	paradigm	(e.g.,

broadcast	or	first	acceptor)	is	in	use.	Therefore,	it	is

important	to	have	a	sound	motivation	for	using	a	pattern.

In	general,	a	pattern	should	be	introduced	into	a	program

only	when	a	substantial	benefit	can	be	gained	by	using	it.

Even	though	restraint	is	necessary	when	using	patterns,

they	are	a	useful	design	tool.	They	provide	a	vocabulary

for	design.	They	are	useful	when	you	design	yourself,

since	they	give	you	more	options;	and	they	are	useful	for

explaining	designs	and	for	understanding	the	designs	of

others.

EXERCISES

15.1	Analyze	the	design	of	the	stock	tracker	(see

Chapter	13)	to	identify	places	where	patterns

might	be	used	and	decide	whether	the	use	of	the

•	

•	



pattern	is	justified	in	each	case.

15.2	Analyze	some	program	you	have	designed	to

identify	places	where	patterns	would	be	useful	and

decide	whether	the	use	of	the	pattern	is	justified	in

each	case.



Glossary

Abstract	class			A	class	that	has	no	objects.

Abstract	method			A	method	without	an	implementation;	an

abstract	method	is	defined	in	an	interface	or	abstract	class.

Abstraction			The	process	of	forgetting	information	so	that	things

that	are	different	can	be	treated	as	if	they	are	the	same.	Also,	the

program	entity	that	results	from	the	abstraction	process.

Abstraction	by	parameterization			The	process	of	abstracting

from	the	identity	of	specific	data	items	by	replacing	them	with

parameters.

Abstraction	by	specification			The	process	of	abstracting	from	how

a	program	module	is	implemented	to	what	the	module	does.

Abstraction	function			A	mapping	from	the	rep	of	an	object	to	the

abstract	state	that	the	rep	is	intended	to	represent.

Abstract	state			The	state	of	an	object	at	the	abstract	level,	as

determined	by	its	specification.

Acceptance	test	phase			A	phase	of	the	software	life	cycle	in	which	a

program	is	validated	by	having	it	pass	the	acceptance	tests.

Acceptance	tests			A	set	of	tests	used	to	determine	whether	a

program	is	acceptable.

Activation	record			A	block	of	storage	containing	a	procedure’s

actual	parameters;	the	activation	record	is	pushed	on	the	program

stack	when	the	procedure	is	called	and	popped	when	it	returns.

Actual	parameters			The	arguments	passed	to	a	procedure	when	it	is

called.

Actual	type			The	type	an	object	receives	when	it	is	created.

Adaptor	pattern			A	design	pattern	in	which	an	object	is	interposed

between	using	code	and	the	original	object	in	order	to	change	the

behavior	of	the	original	object.

Adequacy			A	data	type	is	adequate	if	it	provides	enough	operations

that	whatever	users	need	to	do	with	its	objects	can	be	done

conveniently	and	with	reasonable	efficiency.

Aliasing	errors			Errors	that	arise	when	two	different	formal

parameters	refer	to	the	same	actual	parameter.

Apparent	type			The	type	of	an	expression	that	can	be	deduced	by	a

compiler	from	information	available	in	declarations.

Assertion			A	predicate	that	applies	to	the	state	of	a	program.

Basis	step	of	data	type	induction			The	step	that	starts	an

inductive	proof	by	showing	that	a	predicate	holds	when	each

constructor	returns.

Behavioral	equivalence			Two	objects	are	behaviorally	equivalent	if

it	is	not	possible	to	distinguish	between	them	using	any	sequence	of



calls	to	the	objects’	methods.

Benevolent	side	effect			A	change	to	the	rep	of	an	object	that	does

not	affect	its	abstract	state.	Benevolent	side	effects	are	possible	only

when	the	abstraction	function	is	many-to-one.

Black	box	tests			Tests	based	on	a	program’s	specification,	not	its

implementation.

Bottom-up	development			A	development	process	in	which	all

modules	used	by	module	M	are	implemented	and	tested	before	M	is

implemented.

Bridge	pattern			A	design	pattern	that	separates	the	implementation

hierarchy	for	a	type	from	its	subtype	hierarchy.

Builder	pattern			A	design	pattern	that	provides	a	method	called	a

builder,	which	is	a	kind	of	factory	method	that	constructs	a

collection	of	new	objects.

Call	by	value			A	mechanism	for	passing	arguments	to	a	procedure	in

which	the	result	obtained	from	evaluating	an	argument	expression

is	assigned	to	the	associated	formal	parameter.

Candidate			An	abstraction	whose	implementation	has	not	yet	been

studied	during	a	design,	but	whose	specification	is	complete.

Casting			The	runtime	action	of	changing	the	type	of	an	object;	in

Java,	casting	succeeds	only	if	the	actual	type	of	the	object	is	a

subtype	of	the	type	to	which	it	is	being	cast.

Checked	exception			A	category	of	exception	types	in	Java.	Checked

exception	types	are	subtypes	of	Exception	but	not	of
RuntimeException.	Java	requires	that	a	checked	exception	must
either	be	handled	by	the	calling	procedure	or	be	listed	in	its	header.

Checks	clause			Part	of	the	specification	of	an	operation	in	a

requirements	specification.	The	checks	clause	identifies	illegal

inputs;	the	operation	is	required	to	check	for	such	an	input	and

provide	an	appropriate	error	message	if	it	occurs.

Class			The	Java	entity	used	to	implement	a	data	type	or	a	group	of

standalone	procedures.

Closure			A	procedure	with	prebound	arguments.

Coherence			A	property	of	an	abstraction;	an	abstraction	is	coherent

if	its	specification	indicates	that	it	has	a	single	well-defined

purpose.

Command	pattern			A	design	pattern	that	provides	procedure

objects,	where	the	using	context	expects	only	a	certain	interface	for

the	procedure.	This	pattern	is	related	to	the	strategy	pattern.

Compatible	signatures			The	signature	rule	of	the	substitution

property	requires	that	signatures	of	subtype	methods	be	compatible

with	those	of	corresponding	supertype	methods.	Java	enforces	this

by	requiring	identical	signatures	except	that	the	subtype	method

can	have	fewer	exceptions	than	the	supertype	method.

Complete	supertype			A	data	type	with	a	full	complement	of

methods,	each	having	a	sufficiently	complete	specification	so	that

using	code	can	be	written	based	on	the	supertype’s	specification.



Component	in	the	composite	pattern			An	interior	node	in	a	tree

formed	according	to	the	composite	pattern.

Composite	pattern			A	design	pattern	that	defines	a	tree	of	objects,

where	each	object	in	the	tree	belongs	to	the	same	type	family,	so

that	every	node	of	the	tree	can	be	treated	uniformly.

Composite	tree			The	tree	of	objects	that	results	from	the	composite

pattern.

Concrete	class			A	class	that	has	objects.

Concrete	state			The	state	of	an	object	at	the	rep	level.

Conjunctive	coherence			A	property	of	an	abstraction;	an

abstraction	exhibits	conjunctive	coherence	if	its	specification

indicates	that	it	does	more	than	one	thing.

Constraint	in	a	data	model			A	predicate	that	limits	some	relations

in	the	model.

Constructor			A	constructor	is	a	special	kind	of	method	that	is	used	to

initialize	a	newly	created	object.

Constructors	part	of	a	specification			The	part	of	a	specification

of	a	data	abstraction	that	specifies	the	behavior	of	the	abstraction’s

constructors.

Context	type			In	the	state	pattern,	this	is	the	type	whose	objects	are

represented	differently	when	they	are	in	different	states.

Creators			Operations	of	a	data	abstraction	that	produce	objects

“from	scratch”;	these	operations	are	constructors	that	do	not	have

arguments	belonging	to	their	type.

Dangling	reference			A	reference	to	storage	that	has	been

deallocated.	Dangling	references	are	not	possible	in	a	garbage-

collected	language	such	as	Java.

Data	abstraction			An	abstraction	that	hides	details	about	the	way

data	objects	are	implemented.

Data	model			A	model	describing	the	state	of	a	program.	It	consists	of

sets	and	relations	with	associated	constraints,	expressed	both

graphically	and	textually.

Data	type	induction			A	way	of	proving	invariants	for	data

abstractions	by	using	an	inductive	proof.	The	basis	step	shows	that

the	invariant	holds	for	each	newly	created	object.	The	inductive

step	shows	that	the	invariant	holds	after	each	method	call,

assuming	it	holds	just	before	the	call.

Debugging			The	process	of	finding	and	removing	errors	(bugs)	from

programs.

Decomposition			A	way	of	dividing	a	large	problem	into	smaller

subproblems.	We	do	decomposition	through	the	recognition	of

useful	abstractions.

Decorator	pattern			A	design	pattern	in	which	an	object	is

interposed	between	using	code	and	the	original	object	in	order	to

extend	the	behavior	of	the	original	object.	The	interposed	object

will	belong	to	a	subtype	of	the	type	of	the	original	object.



Defensive	programming			Writing	code	to	defend	against	errors.

Definitional	style			A	way	of	writing	specifications	by	describing

properties	that	specificands	are	intended	to	have.	We	use	this	style

in	this	book.

Derived	relation			A	relation	in	a	data	model	that	is	not	independent

but	can	be	defined	in	terms	of	other	relations.

Design			The	process	of	deciding	a	structure	for	the	implementation	of

a	program.	We	use	a	design	technique	based	on	the	recognition	of

useful	abstractions.

Design	notebook			A	document	describing	a	design;	it	consists	of	a

module	dependency	diagram	and	a	section	for	each	abstraction

containing	its	specification,	its	performance	requirements,	a	sketch

of	its	implementation,	and	other	information	including	a

justification	of	design	decisions.

Design	pattern			A	way	of	organizing	a	program	to	obtain	some

benefit	such	as	improved	performance	or	flexibility.

Design	phase			The	phase	of	the	software	life	cycle	in	which	a	design

for	a	software	product	is	developed.

Design	review			A	process	to	evaluate	the	correctness,	performance,

and	quality	of	a	design.

Deterministic	implementation			An	implementation	of	a

procedure	is	deterministic	if	any	two	calls	with	identical	inputs

produce	the	same	result.	Implementations	of	underdetermined

procedures	are	almost	always	deterministic.

Disjunctive	coherence			A	property	of	an	abstraction;	an

abstraction	exhibits	disjunctive	coherence	if	its	specification

indicates	that	it	does	one	of	a	number	of	things.

Dispatching			Causing	a	method	call	to	go	to	the	code	provided	by	the

method’s	object—that	is,	the	code	provided	by	its	class.

Dispatch	vector			A	way	of	implementing	dispatching	by	using	a

vector	that	points	to	an	object’s	methods.

Domain	in	a	data	model			A	set	in	the	model	that	is	not	a	subset	of

any	other	set	in	the	model.

Domain	of	a	procedure			The	number	and	types	of	a	procedure’s

arguments.

Driver			A	test	driver;	a	driver	runs	a	module	through	a	series	of	tests.

Effects	clause			Part	of	a	procedure’s	specification.	It	states	what	the

procedure	does,	assuming	its	requires	clause	is	satisfied.	The	effects

clause	gives	the	procedure’s	postcondition.

Element	subtype	approach	to	polymorphism			A	way	of	using

hierarchy	to	define	polymorphism.	The	polymorphic	abstraction	is

defined	in	terms	of	an	interface,	and	all	its	elements	must	belong	to

subtypes	of	the	type	defined	by	that	interface.

Encapsulation			The	hiding	of	implementation	details	so	that	they

are	inaccessible	outside	of	the	module	providing	the

implementation.



Evolution	property			A	property	of	a	data	type	that	holds	in	future

states:	if	the	property	is	true	for	an	object	of	the	data	type	at	a

particular	point	in	a	program,	then	it	is	true	for	that	object	at	all

future	points.

Exceptional	termination			Terminating	the	execution	of	a

procedure	by	throwing	an	exception.

Exception	mechanism			A	mechanism	that	allows	a	procedure	to

terminate	either	by	returning	or	by	throwing	exceptions.

Exposing	the	rep			An	implementation	exposes	the	rep	if	it	provides

users	of	its	objects	with	direct	access	to	some	mutable	component

of	the	rep.

Extensibility			The	process	of	adding	code	to	a	system	later,	thus

extending	its	behavior.

Extension	arc	in	a	module	dependency	diagram			This	kind	of

arc	indicates	that	one	module	is	a	subtype	of	another.

Extension	subtypes			Subtypes	that	extend	the	behavior	of	their

supertype—for	example,	by	providing	extra	methods.

Extra	method			A	method	of	a	subtype	that	is	not	also	a	method	of	its

supertype.

Extrinsic	state			State	that	is	retained	in	the	context	from	which	a

flyweight	is	used.

Factory	class			A	class	providing	a	number	of	factory	methods.

Factory	method			A	method	that	returns	a	newly	created	object,	but

the	method	is	not	a	constructor	of	that	object’s	class.

Factory	object			An	object	whose	methods	are	factory	methods.

Factory	pattern			A	design	pattern	that	allows	object	creation	to	be

hidden	through	the	use	of	factory	methods,	classes,	and	objects,

thus	reducing	dependencies	on	the	classes	of	objects.

Fixed	subset			A	subset	in	a	data	model	whose	membership	never

changes.

Flyweight			An	object	in	the	flyweight	pattern	that	represents	many

identical	objects.

Flyweight	pattern			A	design	pattern	that	allows	a	single	object	to

represent	many	identical	objects.

Formal	parameters			The	declared	arguments	of	a	procedure.	The

declaration	for	the	procedure	defines	the	name	and	type	of	each

formal	parameter.

Formal	specification			A	specification	written	in	a	specification

language	with	precise	semantics.

Formals			Formal	parameters.

FP			The	functional	part	of	a	program.	Its	job	is	to	carry	out	the	tasks

of	the	program	as	instructed	by	the	UI	(user	interface)	part	of	the

program.

Full	encapsulation			The	implementation	of	a	data	abstraction	is

fully	encapsulated	if	code	outside	the	abstraction’s	implementation

cannot	access	components	of	the	rep.



Fully	populates			A	class	fully	populates	the	type	it	implements	if,	for

every	abstract	state	of	the	type,	the	class	has	an	object	containing	a

corresponding	concrete	state.

Functional	requirements			In	a	requirements	specification,	a

description	of	how	a	program	behaves	both	in	the	presence	and

absence	of	errors.

Garbage	collection			The	automatic	collection	of	unused	storage	in

the	heap;	the	collected	storage	contains	objects	that	are	no	longer

accessible	by	the	program.

Generality			A	property	of	a	specification:	one	specification	is	more

general	than	another	if	it	can	handle	a	larger	class	of	inputs.

Generator			A	generator	is	an	object	that	produces	a	sequence	of

elements.	It	is	returned	by	an	iterator;	its	type	is	a	subtype	of

Iterator.

Glass	box	tests			Tests	based	on	the	program	text.

Graceful	degradation			A	program	degrades	gracefully	if,	in	the

presence	of	an	error,	it	provides	an	approximation	to	its	normal

behavior.

Handle	an	exception			Provide	code	to	catch	an	exception.	The	code

might	mask	or	reflect	the	exception.

Header			The	first	part	of	a	method	declaration,	which	defines	the

method	name,	the	types	of	its	arguments	and	result,	and	the	types

of	any	exceptions	it	throws.	The	header	defines	the	method’s

signature.

Heap			The	storage	area	in	which	objects	reside.

Helper	abstractions			Abstractions	invented	while	investigating	the

design	of	a	target	abstraction;	helpers	are	abstractions	that	would

be	useful	in	implementing	the	target	and	that	facilitate

decomposition	of	the	problem.

High	availability			A	program	is	highly	available	if	it	is	very	likely	to

be	up	and	running	all	the	time.

High	reliability			A	program	is	highly	reliable	if	it	is	unlikely	to	lose

information	even	in	the	presence	of	hardware	failures.

Immutability			An	object	is	immutable	if	its	state	never	changes.	A

data	type	is	immutable	if	its	objects	are	immutable.

Implementation	and	test	phase			The	phase	of	the	software	life

cycle	in	which	the	abstractions	identified	during	design	are

implemented	and	tested.

Incomplete	supertype			A	data	type	whose	specification	is	so	weak

that	using	code	is	highly	unlikely	to	be	written	in	terms	of	it.	Such	a

supertype	is	used	to	establish	naming	conventions	for	methods	of

its	subtypes.

Induction	step	of	data	type	induction			The	step	that	shows	for

each	method	of	the	type	that	a	predicate	holds	when	the	method

returns,	assuming	the	predicate	holds	when	the	method	is	called.

Informal	specification			A	specification	written	in	an	informal

specification	language	(e.g.,	English).	The	specifications	in	this



book	are	informal.

Inheritance			A	way	of	obtaining	code	without	writing	it.	In

particular,	a	subclass	can	inherit	the	implementations	of	its

superclass’s	methods.

Instance			An	object.

Instance	method			A	method	belonging	to	an	object.

Instance	variable			A	variable	that	is	part	of	the	rep	of	an	object.

Integration	testing			Testing	a	group	of	modules	together.

Interface			The	interface	of	an	abstraction	is	what	it	makes	visible	to

other	program	modules.	Also,	in	Java,	an	interface	is	an	entity	used

to	define	a	data	type	by	declaring	its	methods.

Interpreter	pattern			A	design	pattern	in	which	a	traversal	of	a

composite	tree	is	accomplished	by	calling	a	method	for	that

traversal	on	each	node	in	the	tree.

Intrinsic	state			The	information	stored	in	a	flyweight	object.

Invariant			A	predicate	on	the	program	state	that	is	always	true,	or

always	true	except	when	the	program	is	running	some	particular

piece	of	code.

Invariant	property			A	property	that	holds	for	each	object	of	a	data

type	whenever	control	is	not	inside	one	of	the	object’s	methods.

Inverse	of	a	relation			The	inverse	of	a	relation	in	a	data	model	is	a

map	that	goes	in	the	opposite	direction,	mapping	items	in	the

target	set	of	the	relation	to	the	source	items	that	the	original

relation	mapped	to	that	target	item.

Iteration	abstraction			An	abstraction	that	hides	details	about	how

items	in	a	collection	are	obtained;	it	allows	using	code	to	iterate

over	the	items	in	the	collection	in	an	abstract	way.

Iterator			An	iterator	is	a	procedure	that	returns	a	generator.	The

generator	belongs	to	a	subtype	of	type	Iterator.

Iterator	pattern			A	design	pattern	that	uses	iterators	to	provide

efficient	access	to	elements	of	collection	objects	without	either

violating	encapsulation	or	complicating	the	abstraction.

Leaf	in	the	composite	pattern			A	leaf	node	in	a	tree	formed

according	to	the	composite	pattern.

Locality			A	property	of	a	program	module;	a	module	exhibits	locality

if	its	code	can	be	read	or	written	without	needing	to	examine	the

code	of	any	other	module.	A	module	exhibits	locality	only	if	its	rep

is	not	exposed.

Maintenance			Maintaining	a	program	once	it	is	in	production	by

modifying	it	to	correct	errors.

Many-to-one	map			A	function	that	maps	many	items	to	the	same

result.	In	particular,	an	abstraction	function	is	many-to-one	if	it

maps	many	concrete	states	to	the	same	abstract	state.

Masking	an	exception			Responding	to	an	exception	thrown	by	a

call	by	handling	the	exception	and	resuming	normal	processing.

Mediator	pattern			A	design	pattern	that	allows	objects	to



communicate	through	an	intermediary.

Method			The	entity	used	in	Java	to	implement	a	procedure.	A

method	can	either	belong	to	an	object	or	be	static.

Methods	part	of	a	specification			The	part	of	a	specification	of	a

data	abstraction	that	specifies	the	behavior	of	the	methods	of	the

abstraction’s	objects.

Methods	rule			A	part	of	the	definition	of	the	substitution	principle,

requiring	that	subtype	methods	behave	like	the	corresponding

supertype	methods.

Minimality			A	property	of	a	specification:	one	specification	is	more

minimal	than	another	if	it	contains	fewer	constraints	on	allowable

behavior.

Modifiability			A	property	of	a	program	module;	a	module	exhibits

modifi-ability	if	it	can	be	reimplemented	without	requiring	changes

to	any	code	that	uses	it.	A	module	exhibits	modifiability	only	if	it	is

fully	encapsulated.

Modification	and	maintenance	phase			A	phase	of	the	software

life	cycle	that	occurs	once	a	program	is	in	production;	in	the

modification	and	maintenance	phase,	the	code	is	changed	either	to

correct	errors	or	to	satisfy	new	requirements.

Modifies	clause			Part	of	a	procedure’s	specification.	It	identifies	all

inputs	that	might	be	modified	by	the	procedure.

Modular	decomposition			A	design	technique	in	which	a	program	is

subdivided	into	a	number	of	interacting	modules.	We	use	a

decomposition	technique	that	is	based	on	the	recognition	of	useful

abstraction.

Module			A	unit	of	a	program.	In	this	book,	modules	implement

abstractions.

Module	dependency	diagram			A	graph	showing	how	abstractions

in	a	design	are	related.	The	nodes	represent	program	modules,	each

corresponding	to	an	abstraction.

Multiple	implementations			Several	classes	that	implement	the

same	type.	These	classes	define	subtypes	of	the	type	they

implement.

Multiplicity	of	a	relation			The	number	of	items	a	relation	in	a	data

model	maps	to	or	from.

Mutability			An	object	is	mutable	if	its	state	can	change.	A	data

abstraction	is	mutable	if	its	objects	are	mutable.

Mutability	of	a	relation			A	relation	in	a	data	model	is	immutable	if

the	mapping	it	defines	cannot	change	overtime;	otherwise,	it	is

mutable.

Mutator			A	method	of	an	object	that	modifies	the	object’s	state.	An

object	is	mutable	if	and	only	if	it	has	some	mutator	methods.

Normal	termination			Terminating	the	execution	of	a	procedure	by

returning.

Object			An	entity	in	a	program	that	encapsulates	its	state	and	allows

access	via	its	methods.



Observer			A	method	of	an	object	that	observes	its	state—that	is,

provides	information	about	the	object’s	state.

Observer	object	in	the	observer	pattern			An	object	that	must	be

informed	when	the	state	of	the	subject	object	changes.

Observer	pattern			A	design	pattern	that	captures	a	situation	in

which	changes	in	the	state	of	some	subject	object	are	of	interest	to

other	observer	objects.

Operational	style			A	way	of	writing	specifications	by	giving	a	recipe

for	constructing	specificands.

Overloading			Several	method	definitions	with	the	same	name.

Overriding			A	subclass	overrides	a	method	of	its	supertype	when	it

provides	its	own	implementation	for	that	method.

Overview	clause			Part	of	the	specification	of	a	data	abstraction.	It

gives	a	brief	description	of	the	data	abstraction	including	a	model

for	its	objects	in	terms	of	well-understood	concepts	or	in	terms	of	a

data	model.

Package			The	Java	mechanism	for	grouping	together	a	number	of

classes	and	interfaces.

Partial	procedure			A	procedure	is	partial	if	there	are	some	inputs

for	which	its	behavior	is	not	specified.

Path-complete	tests			Tests	that	exercise	every	path	in	the	code	at

least	once.

Performance	requirements			Requirements	on	program

performance—for	example,	how	fast	certain	actions	must	be.

Polymorphic	abstraction			An	abstraction	that	works	for	many

types.	A	procedure	or	iterator	can	be	polymorphic	with	respect	to

the	types	of	one	or	more	arguments.	A	data	abstraction	can	be

polymorphic	with	respect	to	the	types	of	elements	its	objects

contain.

Postcondition			An	assertion	that	holds	when	a	procedure	returns,

assuming	that	the	precondition	held	when	the	procedure	was

called.

Postcondition	rule			A	part	of	the	methods	rule	of	the	substitution

principle,	requiring	that	the	postcondition	of	a	subtype	method	not

be	weaker	than	the	postcondition	of	the	corresponding	supertype

method.

Precondition			An	assertion	that	must	hold	when	a	procedure	is

called.

Precondition	rule			A	part	of	the	methods	rule	of	the	substitution

principle,	requiring	that	the	precondition	of	a	subtype	method	not

be	stronger	than	the	precondition	of	the	corresponding	supertype

method.

Preserving	the	rep	invariant			An	implementation	preserves	the

rep	invariant	if	it	guarantees	that	the	invariant	holds	for	its	objects

whenever	one	of	their	methods	is	not	running.

Priming	a	generator			Consuming	some	of	the	items	produced	by	a

generator	before	looping	over	the	rest	of	them.



Procedural	abstraction			An	abstraction	that	hides	details

associated	with	executing	an	operation	or	task.

Procedural	approach	to	traversing	trees			A	way	of	traversing	a

composite	tree	by	using	a	class	per	traversal.	The	class	contains	a

static	method	for	each	node	type,	and	the	traversal	is	accomplished

by	calling	the	static	method	for	its	type	for	each	node	of	the	tree.

Procedure			A	procedural	abstraction.

Producers			Operations	of	a	data	abstraction	that	produce	new

objects	given	objects	of	that	type	as	arguments.

Production	phase			The	phase	of	the	software	life	cycle	in	which	the

program	is	used.

Programming	in	the	large			Programming	entire	systems	that	are

made	up	of	many	individual	modules.

Programming	in	the	small			Programming	individual	modules.

Program	maintenance			The	activity	of	making	changes	to	a

program	to	correct	errors	after	it	has	entered	the	production	phase.

Program	modification			The	activity	of	making	changes	to	a

program	after	it	has	entered	the	production	phase.	The	changes

might	be	to	correct	errors	or	to	provide	additional	features.

Properties	rule			A	part	of	the	definition	of	the	substitution

principle,	requiring	that	the	specification	of	the	subtype	must

preserve	all	properties	that	can	be	proved	about	supertype	objects.

Property			A	predicate.

Prototype	pattern			A	design	pattern	in	which	an	object	provides	a

factory	method	that	produces	a	new	object	of	its	own	class;	the	new

object	is	in	an	initial	state,	similar	to	what	would	normally	be

obtained	by	calling	a	constructor.

Proxy	pattern			A	design	pattern	in	which	an	object	is	interposed

between	using	code	and	the	original	object	in	order	to	control

access	to	the	original	object.	The	interposed	and	original	objects	are

both	members	of	the	same	type.

Publish/subscribe			A	way	of	communicating	in	which	an	object

publishes	information,	and	other	objects	(the	subscribers)	are

informed	about	the	new	information.

Pull	structure	in	the	observer	pattern			With	this	structure,	the

observer	is	notified	of	a	change	and	then	communicates	further

with	the	subject	to	determine	the	details	of	what	happened.

Push	structure	in	the	observer	pattern			With	this	structure,	the

observer	is	informed	about	the	state	of	the	subject	object	as	part	of

the	notification.

Range	of	a	procedure			The	type	of	a	procedure’s	result.

Record	type			A	data	type	consisting	of	a	set	of	visible	fields.	Its

abstraction	function	is	the	trivial	map,	and	its	rep	invariant	is

“true”.

Reflecting	an	exception			Responding	to	an	exception	thrown	by	a

call	by	throwing	another	exception;	this	typically	will	be	a	different



exception	than	the	one	thrown	by	the	call.

Regression	testing			The	process	of	methodically	rerunning	all	tests

after	each	error	is	corrected.

Related	subtype	approach	to	polymorphism			A	way	of	using

hierarchy	to	define	polymorphism.	The	polymorphic	abstraction	is

defined	in	terms	of	an	interface,	and	a	subtype	of	this	interface

must	be	defined	for	every	element	type.	The	interface	is	an	example

of	the	strategy	pattern.

Relation	in	a	data	model			A	mapping	between	sets	in	a	data	model,

indicating	how	items	in	one	set	are	related	to	items	in	another	set.

Rep			The	representation	of	a	data	abstraction.

Representation	invariant			A	predicate	that	accepts	only	legal

representations	for	objects	of	some	class.	It	defines	which

representations	are	legal	by	mapping	each	rep	to	either	true	(if	it	is

legal)	or	false	(if	it	is	not	legal).

Requirements			The	things	that	a	software	product	must	do	in	order

to	satisfy	the	needs	of	a	customer.

Requirements	analysis			A	process	for	discovering	the

requirements	for	a	proposed	software	product.

Requirements	analysis	phase			The	phase	of	the	software	life	cycle

in	which	the	requirements	for	a	software	product	are	defined.

Requirements	document			A	document	describing	the

requirements	for	a	software	product,	including	its	behavior	under

both	normal	and	error	conditions,	its	performance	requirements,

information	about	potential	modifications,	and	a	schedule	for

producing	the	product.

Requirements	specification			A	specification	of	the	behavior	of	a

software	product,	consisting	of	specifications	of	the	operations

provided	by	the	product.

Requires	clause			Part	of	a	procedure’s	specification.	It	states	any

preconditions	that	must	hold	when	the	procedure	is	called.	In

addition,	in	an	iterator	specification,	a	requires	clause	can

constrain	the	behavior	of	using	code	while	the	returned	generator	is

in	use.

Robust	program			A	program	that	continues	to	behave	reasonably

even	in	the	presence	of	errors.

Satisfying	a	specification			An	implementation	satisfies	a

specification	if	it	provides	the	described	behavior.

Scenario			A	step-by-step	walk	through	of	a	user	interaction	with	a

software	system,	assuming	the	system	itself	is	functioning	properly.

Scenarios	are	used	during	requirements	analysis.

Semantics			The	meaning	of	an	abstraction.	The	semantics	are

captured	by	a	specification.

Sharing			An	object	is	shared	by	two	variables	if	it	can	be	accessed

through	either	of	them.

Side	effect			A	program	has	a	side	effect	if	it	modifies	some	of	its

inputs.



Signature			A	description	of	the	argument	types,	result	type,	and

exception	types	of	a	procedure.

Signature	rule			A	part	of	the	definition	of	the	substitution	principle.

It	requires	that	subtype	objects	have	all	the	methods	of	the

supertype,	and	these	methods	must	have	signatures	compatible

with	those	of	the	corresponding	supertype	methods.

Similarity			Two	objects	are	similar	if	it	is	not	possible	to	distinguish

between	them	using	calls	to	their	observers.

Singleton			The	single	object	of	its	class	in	the	singleton	pattern.

Singleton	pattern			A	design	pattern	that	is	used	to	ensure	that	a

class	has	just	one	object.

Snippet			A	snippet	is	a	supertype	that	has	just	a	few	methods,	but

these	methods	have	sufficiently	complete	specifications	that	using

code	can	be	written	in	terms	of	the	supertype.

Software	life	cycle			The	set	of	activities	that	occurs	during	the

lifetime	of	a	software	product.

Source	in	a	data	model			The	source	is	the	set	in	the	model	that	a

relation	maps	from.

Specificand			A	program	that	satisfies	a	specification.

Specificand	set			The	set	of	all	programs	that	satisfy	the

specification.

Specification			A	description	of	the	intended	behavior	of	an

abstraction.	A	specification	can	be	either	formal	or	informal.

Specification	language			The	language	used	to	write	a	specification.

Spiral	model			A	software	life	cycle	model	in	which	a	development

phase	can	start	before	its	predecessor	phase	is	complete	and	the

process	contains	many	feedback	loops.

Stack			The	storage	area	in	which	program	variables	reside;	the

storage	is	managed	in	a	LIFO	(last-in,	first-out)	manner.

Standalone	procedure			A	procedure	that	is	not	a	method	of	an

object.

State	of	an	object			The	current	value	of	the	object.

State	pattern			A	design	pattern	that	allows	the	representation	of	a

mutable	object	to	change	as	the	object’s	state	changes.

State	type			In	the	state	pattern,	this	type	is	used	to	implement	the

object	whose	state	is	changing.

Static	inner	class			A	class	nested	inside	another	class.	We	use	static

inner	classes	to	implement	iterators.

Static	method			A	method	that	belongs	to	a	class	rather	than	to	an

object.

Static	subset			A	subset	in	a	data	model	whose	potential	membership

is	determined	statically.

Strategy	pattern			A	design	pattern	that	allows	the	use	of	procedures

as	objects,	where	the	using	context	expects	a	certain	behavior	from

the	procedure.	This	pattern	is	related	to	the	command	pattern.



Stronger	predicate			Predicate	A	is	stronger	than	predicate	B	if	we

can	prove	that	B	holds	assuming	A	holds.

Strong	type	checking			Type	checking	done	at	compile	time	that

catches	all	type	errors.

Stub			A	program	that	simulates	the	behavior	of	some	module.

Subclass			A	class	that	inherits	the	rep	and	methods	of	its	superclass.

The	subclass	implements	a	subtype	of	the	type	implemented	by	its

superclass.

Subject	object	in	the	observer	pattern			The	object	whose	state

changes	are	being	observed	by	other	objects.

Substitution	principle			A	principle	that	governs	the	behavior	of

types	in	a	hierarchy.	It	requires	that	subtypes	behave	in	accordance

with	the	specification	of	their	supertype.

Subscriber			The	object	that	receives	published	information	is	the

one	in	the	publish/subscribe	communication	pattern.

Subtype			A	type	that	extends	another	type,	which	is	called	its

supertype.

Sufficiently	general	specification			A	specification	is	sufficiently

general	if	it	does	not	preclude	acceptable	implementations.

Sufficiently	restrictive	specification			A	specification	is

sufficiently	restrictive	if	it	rules	out	all	implementations	that	are

unacceptable	to	an	abstraction’s	users.

Superclass			A	Java	class	that	can	have	subclasses—that	is,	classes

that	can	inherit	its	rep	and	methods.	The	superclass	implements	a

supertype	of	the	types	implemented	by	its	subclasses.

Supertype			A	type	that	has	subtypes.

Target	abstraction			The	abstraction	whose	implementation	is

currently	being	investigated	in	a	design.

Target	in	a	data	model			The	target	is	the	set	in	the	model	that	a

relation	maps	to.

Template	pattern			A	design	pattern	that	captures	the	idea	of

implementing	methods	in	a	superclass	in	terms	of	other	methods

that	will	be	implemented	in	subclasses;	the	method	implemented	in

the	superclass	defines	a	template	for	how	execution	proceeds,	but

the	details	are	filled	in	later,	when	the	subclasses	are	implemented.

Test	driver			A	program	that	runs	a	module	through	a	series	of	tests.

Testing			The	process	of	running	a	program	on	a	set	of	test	cases.

Top-down	design			A	design	process	in	which	the	design	progresses

by	considering	how	to	implement	abstractions	whose	specifications

are	complete.

Top-down	development			A	development	process	in	which	all

modules	that	use	module	M	are	implemented	and	tested	before	M

is	implemented.

Total	procedure			A	procedure	is	total	if	its	behavior	is	specified	for

all	inputs	that	could	be	given	to	it	at	runtime.

Type	checking			The	process	of	checking	the	types	of	expressions	and



variables	to	determine	whether	a	program	is	type	correct.

Type	correctness			A	program	is	type	correct	if	it	contains	no	type

errors.

Type	error			A	type	error	occurs	when	code	accesses	an	object	as	if	it

belongs	to	a	type	that	it	does	not	belong	to.

Type	family			A	group	of	related	types;	together	the	types	form	a	type

hierarchy.

Type	hierarchy			A	grouping	of	types	into	a	type	family	consisting	of

a	supertype	and	its	subtypes;	the	subtypes	may	in	turn	have

subtypes.

Type	safety			A	property	of	a	program	or	a	programming	language.	A

program	is	type	safe	if	it	contains	no	type	errors;	a	language	is	type

safe	if	its	compiler	is	able	to	recognize	and	reject	all	programs

containing	type	errors	at	compile	time.

UI			The	user	interface	part	of	a	program.	Its	job	is	to	interact	with	the

user	and	make	calls	on	the	FP	(functional	part)	to	carry	out

requested	tasks.

Unchecked	exception			A	category	of	exception	types	in	Java.

Unchecked	exception	types	are	subtypes	of	RuntimeException.
Java	allows	an	un-checked	exception	to	not	be	handled	in	the

calling	code.

Underdetermined	behavior			A	procedure	is	underdetermined	if,

for	certain	inputs,	its	specification	allows	more	than	one	possible

result.

Unit	testing			Testing	a	single	module	in	isolation	from	the	others.

Using	arc	in	a	module	dependency	diagram			An	arc	that	maps	a

module	to	the	modules	that	will	be	used	in	its	implementation.

Validation			A	process	designed	to	increase	confidence	that	a

program	works	as	intended.	Validation	can	be	done	through

verification	or	testing.

Value			A	primitive	item	of	data	such	as	an	integer	or	a	character.

Verification			A	formal	or	informal	argument	that	a	program	works

on	all	possible	inputs.

Visibility			The	scope	in	which	a	variable	or	method	is	accessible.

Visitor	class			A	class	defining	a	particular	traversal	according	to	the

visitor	pattern.

Visitor	object			An	object	belonging	to	a	visitor	class.

Visitor	pattern			A	design	pattern	in	which	a	traversal	of	a	composite

tree	is	accomplished	by	passing	a	visitor	object	to	each	node	of	the

tree.	In	this	pattern,	there	is	a	visitor	class	per	kind	of	traversal.

Walk-through			A	process	for	evaluating	a	design	in	a	design	review

by	walking	through	how	the	program	performs	on	a	set	of	test	data.

Waterfall	model			An	unrealistic	software	life	cycle	model	in	which

each	development	phase	completes	before	the	next	one	starts.

Weaker	predicate			Predicate	A	is	weaker	than	predicate	B	if	we	can

prove	that	A	holds	assuming	B	holds.



Weakly	uses			In	a	module	dependency	diagram,	a	module	weakly

uses	another	module	if	it	depends	on	that	module’s	existence	but

not	on	its	specification.

White	board			A	way	for	code	to	communicate	by	posting	and	looking

for	information	in	a	shared	data	base.

Wrapper			An	object	that	contains	within	it	another	object	or	value.

For	example,	an	object	of	type	Integer	wraps	the	contained	int.



Index

Abstract	classes,	153,	154,	161–166,	238

Abstract	invariant,	116

Abstract	methods,	153,	161

Abstract	state,	100

Abstract	subclasses,	165

Abstraction	by	parameterization,	6,	7–8,	39,	40,	77,	381

Abstraction	by	specification,	6,	7,	8–10,	39,	41,	77,	78

Abstraction	function,	99–102,	114,	121

for	generators,	137–138

implementing,	105–107

for	OrderedIntList,	140

and	rep	invariant,	106,	107

for	subclass,	159

for	subclasses	of	concrete	super-classes,	160

Abstractions,	4–6,	215,	218,	219,	301,	323,	341

benefits	of,	40–42

coherence	of,	353

and	decomposition,	2–3

within	design	notebook,	304,	305

for	hiding	details,	339

hierarchy,	5

kinds	of,	10–12

mechanisms,	7

See	also	Data	abstractions;	Procedural	abstractions;

Specifications

Abstraction	sections,	design	notebook,	308–310

Acceptance	tests/testing,	255,	256,	258,	263

Activation	record,	22,	23

Actual	parameter	values,	22



Actual	type,	26,	27,	149,	151

Adaptor	pattern,	399,	400,	401

Addable	type,	200

addDocs	method,	318,	326,	328,	332,	334

Adder	interface,	198,	199

addKey	method,	327,	329

add	method,	90

add	Zero,	177

Adequacy,	117,	118–119,	357

allPrimes	iterator,	132,	136,	231

Ambiguous	specifications,	238

Apparent	type,	24,	26,	27,	149,	150,	151

Arcs,	kinds	of,	305–307

Arrays,	19,	20,	116

bounds	checking	for,	24,	25,	249

class,	48,	54

constructor,	20

mutability	of,	21

array	type,	25

Assertions,	9

Assignments,	20,	149–150,	151

Automatic	propagation,	reflecting	exception	by,	67

Automatic	storage	management,	24,	25

Babbage,	Charles,	3

Bags,	209

Behaviorally	equivalent	object,	94

Benevolent	side	effects,	108,	109–111

BigSet,	384,	385

Binary	search,	51

Binding,	277

Black-box	tests/testing,	223–226,	235



Body

of	document,	293

of	expression,	7

Bottom-up	design,	343

Bottom-up	development,	360,	361,	362,	365,	367

advantages	with,	364

boundArray,	46

Boundary	conditions,	216

testing,	225–226

Bounds	checking,	for	arrays,	24,	25,	249

Bridge	pattern,	385–386

Buffered	Reader	objects,	32

Buffers,	32

Bugs,	230–231,	242–248

Builder	method,	375

C,	16,	25,	93

C++,	16,	25,	93

Call	by	value,	22

Calling	code,	50

Candidates,	324,	325,	341,	342

Canonicalization,	332,	351,	354–355

canon,	specification	of,	333

Captured	exceptions,	71

Casting,	26

Catch	clause,	65,	66,	67

Character	streams,	input/output	done	with,	32

char	type,	30,	32

Checked	exceptions,	61,	62,	63

unchecked	exceptions	versus,	70–72

Checks,	282

Checks	clause,	283,	284



choose	method,	82,	126,	130

Clarity,	209,	212–215,	218

ClassCastException,	26,	196

Class(es),	15,	16

abstract,	161–166

limiting	dependencies	on,	371

and	package	names,	18

in	packages,	17

static	methods	of,	44

types	defined	by,	79

clone	method,	94,	96,	97,	98,	192

CloneNotSupportedException,	96

Closure,	388,	389,	390

CLU,	16

Code

and	errors,	2,	25

and	exceptions,	65

modules,	305

in	package,	18

coeff	method,	93

Collection	subtypes,	183

Command-line	arguments,	33

Command	patterns,	389

structure	of,	390

Comments,	16

Comparable	interface,	195,	196,	201,	202,	203,	386,	387

Comparator	type,	201–202,	203

Compatibility,	175

between	subtype/supertype	methods,	177

Compilers,	and	composite	pattern,	391,	393

Compile-time	errors,	28,	62,	66

Compile-time	type	checking,	24



Completeness,	in	design,	349

Complete	supertypes,	183,	184

Component	nodes,	393

Components,	392

Composite	pattern,	392

Composites,	390–399

traversing	the	tree,	393–399

Computations,	7,	27

Concatenation	operator	(+),	21

Concrete	classes,	153

Concrete	methods,	369

Concrete	state,	100

Concrete	superclasses,	rep	invariant/abstraction	function

for	subclasses	of,	160

Concurrency,	336

Conditionals,	checking	of,	249

Conjunctive	coherence,	354,	355,	357,	361

Consistency,	design,	349

Constraints,	278,	284

defining,	298

for	file	system,	281

forms	of,	279

on	relations,	276

for	search	engine,	293,	296

for	stock	tracker,	286,	287,	288,	289

constructor	method,	157

Constructors,	20,	79,	80,	85,	282,	283

Container	objects,	194

Container	type,	implementation	of,	195

Context,	383

Control	of	complexity,	and	hiding	of	details,	339

Conversions,	and	overloading,	27–29



Correctness,	design,	348–352

Crashes,	268

Creators,	117–118

Current	position,	266,	267,	286

Customers,	270

requirements	analysis	for,	259–263

and	requirements	specification,	298

and	software	life	cycle,	255,	256,	258

Dangling	references,	25

Dashed	arcs,	306

Data	abstractions,	10,	11,	12,	77–122,	341

additional	methods	for,	94–99

aids	to	understanding	implementations,	99–108

design	issues	with,	116–120

implementing,	86–94

locality	and	modifiability	for,	120

operations	of,	117–118

polymorphic,	190–192,	203

properties	of,	117

properties	of	abstraction	implementation,	108–112

reasoning	about,	112–116

specifications	for,	79–85

testing,	232–235

using,	85–86,	193

Data	models,	272–273,	282,	298,	308,	342,	349

components	of,	273

and	design,	338,	353

module	dependency	diagrams	versus,	336–338

for	stock	tracker,	286–289

Data	structures,	78,	341

Data	types,	11,	15,	77,	145,	323



adequate,	119–120

for	hiding	details,	316

induction	of,	113,	114

role	of,	340

Debugging,	121,	221,	223,	242–248,	251,	252.	See	also

Errors;	Testing

Decomposition,	1,	12,	344

and	abstraction,	2–3

and	design	process,	301,	302,	304

Decorator	pattern,	399,	400,	401

Defensive	programming,	72–75,	221,	249–251,	252

Definitional	specifications,	211,	212

degree	method,	150

Delivery	schedule,	software,	269

DensePoly,	171,	172,	173,	174,	180,	237,	371

Dependencies,	321,	332

arcs	representing,	306,	307

factories	and	reduction	in,	374

limiting	of,	on	class,	371

reducing,	359–360

and	singleton	pattern,	380

in	visitor	pattern,	398

Derived	relations,	279

modifications	for,	285

Design,	301–344

“adequate,”	344

coherence	of	procedures	in,	353–357

coherence	of	types,	357–358

communication	between	modules,	358–359

continuing,	324–326,	341–342

correctness	and	performance,	348–352

and	data	abstraction,	116



and	data	models,	338

data	types	role,	340

evaluating,	347–360

of	exceptions,	68–72

finishing	up,	333–334

between	implementation	and,	347–367

interaction	between	FP	and	UI,	334–336

inventing	helpers,	339–340

and	iteration	abstraction,	143–144

method,	323–324

module	dependency	diagrams	versus	data	models,

336–338

notebook,	304–310,	342–343

overview	of	process,	301–304

of	procedural	abstractions,	50–55

purpose	of,	301

query	abstraction,	326–332

and	reducing	dependencies,	359–360

specifying	helpers	for,	340–341

starting,	315–323

structure,	353–360

top-down,	343–344

WordTable	abstraction,	332–333

Design	notebook,	304–310,	315,	342–343

abstraction	sections	of,	308–310

elements	within,	305

introductory	section	for,	304–308

Design	patterns,	13,	369–406

bridge	pattern,	385–386

composites,	390–399

flyweights,	375–378

hiding	object	creation,	371–375



neat	hacks,	375–384

power	of	indirection,	399–401

procedures	as	objects,	386–389

publish/subscribe,	402–405

singletons,	378–382

state	pattern,	382–384

usefulness	of,	406

Design	phase,	within	software	life	cycle,	255,	256–258

Design	review,	347,	349,	350,	367

evaluating	functionality,	353

evaluating	program	structure,	361

goals	of,	348

Details,	hiding,	316,	323,	339,	340,	371

Deterministic	implementation,	51,	52,	53

Development	strategy,	365

diff	method,	85

diff	routine,	132

Disjunctive	coherence,	355–357,	361

Dispatching,	29–30,	150–151

Dispatch	vector,	29,	151

Doc	class,	specification	of,	333

DocCnt	type,	329

specification	of,	331

Doc	method,	315

specification	of,	314,	321,	322

docProgress	method,	336

Documentation,	specifications	used	as,	217,	219

Document	fetching,	336,	340,	350,	351,	352

Documents,	search	engine,	292–296

Domain(s),	273

of	procedure,	57

for	stock	tracker,	286,	287



Double	dispatch,	398

doWork	method,	387

Drivers

test,	239,	241

writing,	246

DuplicateException,	140

Duplicates,	removing	from	vector,	50

Dynamic	operations,	283

specifications	for,	282

Edges,	272,	273

Effects	assertion,	9

Effects	clause,	43,	44,	46,	60,	224,	284,	285,	389

elements	iterator,	131,	155

Element	subtype	approach,	202,	203

Elems,	specifications	of,	210

Empty	input,	340

EmptyIntList,	169

Empty	list	objects,	171

Encapsulation,	17,	18

End	cases,	340

Engine	class

extended	module	dependency	diagram	for,	321,	323,

331

implementation/testing	order	for,	365–366

specification	of,	313

Engine	methods,	and	canonical	form,	332

Equality,	182,	193–195

equals	method,	25,	27,	48,	88,	90,	94,	95,	96,	97,	110,

182,	191,	193

Error	cases,	340

Errors,	58,	242,	246–247,	251,	267,	269,	293

aliasing,	226



and	boundary	checking,	225

checking,	33

in	code,	2

compile	time,	28

and	design	process/review,	304,	342,	348

and	module	dependency	diagram,	307

and	scenarios,	260–261

during	software	development,	256,	257,	258,	259

type,	24,	25

See	also	Debugging;	Defensive	programming;	Testing

Evolution	property,	180

Examples,	StockTracker	program,	264–268

Exceptional	terminations,	59

Exception	mechanism,	59,	61–67,	249

Exceptions,	16,	23,	47,	57–75,	216

coping	with	unchecked,	66–67

defensive	programming,	72–74

and	design	issues,	68–72

handling,	65–66

Java	exception	mechanism,	61–67

masking,	68

and	path-complete	tests,	229

programming	with,	67–68

reflecting,	67

specifications,	59–61

throwing,	60,	64

when	to	use,	70,	71

Exception	supertypes,	61

Exception	types,	59,	61,	161

defining,	62–64

Explicit	conversions,	28

Explicit	management,	25



Exposing	the	rep,	108,	109,	111–112

Expression,	body	of,	7

ExtendedSet,	defining,	385

Extensibility,	185

Extension	arc,	306

Extension	subtypes,	and	bridge	pattern,	386

Extension,	type,	24

Extra	methods,	153

Extrinsic	state,	378

Factorial	procedure,	58

Factories,	when	to	use,	375

Factory	class,	372,	373

Factory	methods,	371,	372,	373,	377,	378,	380

Factory	objects,	372,	373,	374,	406

Factory	pattern,	174,	371,	373

FailureException,	73,	75,	106,	250

fetch	method,	328

FileReader,	32

Files,	5

File	system

constraints	for,	281

sets	and	relations	described	for,	278

specifications	of	some	operations,	284

subset	relations	and	constraints	for,	274

FileWriter,	33

Filterer	interface	subtypes,	387

Final	methods,	153

findDoc	method,	318

Firewalls,	216

Fixed	subsets,	273,	278

Floats,	plus	(+)	operator	for,	28



Flyweight	pattern,	376

with	hidden	table,	377

with	visible	table,	379

Flyweights,	375–378

and	singletons,	382

Formal	parameters,	7,	16,	40

Formals,	16,	22,	23

Formal	specifications,	42

FP.	See	Functional	part	(FP)

FullDoc	abstraction,	352

FullIntList,	169

Fully	populated	types,	119

Fully	qualified	names,	18

Functional	part	(FP),	310,	315

benefits	of	separating	user	interface	and,	310,	311

connecting	user	interface	and,	311,	312

interaction	between	UI	and,	334–336

Functional	requirements,	263

Garbage	collector,	reclamation	by,	21

gcd	method,	17

Generality,	8,	52,	53,	56,	209,	211–212,	217,	218

Generalization,	356

Generators,	128,	130,	144,	231

rep	invariants	and	abstraction	functions

for,	137–138

using,	129,	133,	134

Generic	handling	of	exceptions,	67

getDocs,	325,	326

getDocs	iterator,	340

specification	of,	319

getIndex	method,	89



Glass-box	testing,	227–230

Global	properties,	design,	349

Graceful	degradation,	58

hashCode	method,	95,	96

Hash	tables,	95,	321,	326,	328,	332,	340,	382,	384

hasNext	method,	128,	130,	140

Header,	16,	43,	59,	60

Heap,	19,	25

objects	in,	21

Helper	abstraction,	303,	306

Helping	abstractions	(helpers),	302,	305

inventing,	302,	315,	339–340

specifying,	340–341

Hidden	paths,	232,	234

Hierarchy

benefits	of,	185

purposes	of,	385

testing,	238

type,	24–27

High-level	languages,	5,	41

Highly	available	system,	261

Highly	reliable	system,	261

IdentTable	type,	378,	380

Ident	type,	378

IfStmt	class,	397

implementation	of,	394

Immutable	abstractions,	109

Immutable	data	abstractions,	85,	117

Immutable	objects,	21,	94,	95

Immutable	relations,	276

Immutable	subtypes,	183



Immutable	types,	96,	181

Implementation(s),	255,	323

between	design	and,	347–367

development	strategy	before,	365

multiple,	371,	386

sketches	of,	341

Implicit	conversions,	27

Implicit	inputs,	44

import	statement,	18

Income	tax	program,	module	dependency	diagram	for,

364

Incomplete	supertypes,	183,	184

IndexOutOfBoundsException,	32,	59,	66,	68,	71,	72

index	relation,	337

indexString	procedure,	specification	of,	210

Indirection	power	of,	399–401

Informal	specifications,	42

Inheritance,	63,	94,	96,	97,	152,	153,	154,	167,	184

Initializing,	local	variables,	19

Input

arguments,	39

encapsulating,	340

InputStreams,	33

Input	streams,	32,	33

InRange,	249,	250

insert	method,	82

Instance	methods,	79,	282,	283

Instances,	79

Instance	variable,	87

Integer	arrays,	16

Integer.parseInt	method,	34

Integers,	plus	(+)	operator	for,	28



Integration	testing,	237–238,	242,	256

Interactive	operations,	283

Interactive	programs,	structure	of,	310–315

Interfaces,	15,	16,	166

and	package	names,	18

in	packages,	17

snippets	defined	by,	183

types	defined	by,	79

Interpreter	pattern,	393,	394

Interpreters,	and	composite	pattern,	391,	393

int[]	form,	17

IntList

implementation	of,	169

specification	of,	168

Intrinsic	state,	378

IntSet,	96,	121,	125–127,	369

constructor,	115

implementation	for,	155

implementation	of,	88–90

partial	implementation	of,	234

partial	specification	of,	233

specification	of,	80–83

toString	method	for,	99

int	type,	30,	32

intValue	method,	93

Inverse,	of	relation,	275

Investment	tracking	program,	264–268

IOException,	33,	34

Irrelevance,	40

isIn	method,	113,	232

isInteresting	method,	338,	354

isPrime	method,	17



isPrime	procedure,	40

ITable	lookup	method,	317

Iteration	abstraction,	10,	11,	12,	125–145

design	issues,	143–144

implementing	iterators,	134–137

iteration	in	Java,	128–130

ordered	lists,	138–143

rep	invariants	and	abstraction	functions

for	generators,	137–138

specifying	iterators,	130–132

using	iterators,	132–134

Iterator	interface,	144,	371

Iterator	pattern,	369

Iterators,	125,	127–128,	130,	144,	145

and	coherence	of	procedures,	353

and	design,	340

as	factory	methods,	371,	372

for	hiding	details,	316

implementing,	134–137,	137

polymorphic,	190,	203

specifying,	130–132

testing,	231,	236

using,	132–133

Iterator	type,	132,	134,	144,	167

Java	programming	language,	12

applications	in,	33–35

checked/unchecked	exceptions	used

in,	62

compile-time	type	checking	in,	249

data	abstractions	implemented	in,	87

dispatching,	29–30



hierarchies	defined	in,	152–154

iteration	in,	128–130

method	call	semantics,	22–23

mutability	in,	21–22

object-oriented	programming	support

by,	13

objects	and	variables	in,	15–35

origins	of,	16

overloaded	definitions	in,	85

packages	in,	17–18

partial	hierarchy	for,	392

polymorphism	in,	190

program	structure	of,	15–17

restricted	access	support	by,	121

stream	input/output	in,	32–33

superclasses	in,	153

type	checking	in,	24–29,	102

types	in,	30–32

Java	compiler,	24

Java	exception	mechanism,	61–67

defining	exception	types,	62–64

exception	types,	61–62

java.io	package,	32

java.lang,	19,	31,	33

java.util	package,	31,	128

Comparable	defined	in,	196

Comparable	interface	in,	387

hash	tables	in,	326,	339

Keywords,	292

Lambda	expression,	7,	8

Leaf	nodes,	392,	393



Legality

of	assignment,	24

of	conversions,	28

Linear	search,	51

Lisp,	16

Lists,	168–171

Locality,	55,	122

with	abstraction	by	specification,	41

for	data	abstraction,	120

Local	properties,	design,	349

Local	variables,	18

Logical	errors,	225

Long-lived	applications,	35

lookup	method,	of	WordTable,	327

Loops,	path-complete	testing	for,	229,	230

Macros,	3

main	method,	33,	34

Maintenance,	255,	301

program,	2,	3,	42

makeCurMatch	operation,	313

makeDirInCur,	283,	285

makeWord	method,	377

Many-to-one	functions,	100

Many-to-one	mapping,	4,	40,	111

mapWord	method,	377

Masking	an	exception,	68

MatchSet,	317,	318

specification	for,	319,	321

MaxIntSet,	156,	236

implementation	of,	158

rep	invariant	for,	159



specification	for,	157

max	method,	157

max	routine,	132

Mediator,	406

Mediator	object,	403

Mediator	pattern,	403,	404,	405

members	method,	126–127

Merge	sort,	3

Method	call	semantics,	22–23

Method	implementations,	323

Methods,	15,	16,	25,	79,	80

Methods	rule,	174,	176–179,	181

Minimality,	51,	52,	53,	56

minus	method,	90

Miscellaneous	abstraction	entry,	design

notebook,	309

Modifiability,	55,	122,	262

with	abstraction	by	specification,	41,	42

for	data	abstraction,	120

of	design,	352

and	hiding	of	details,	339

Modifications,	60,	255,	301

to	derived	relations,	285

program,	2,	3,	42

Modifies	clause,	43,	44,	389

Modular	structure,	defining,	302

Module	boundaries,	appropriateness	of,	353,	367

Module	dependency	diagrams,	305,	306,	308,	311,	324,

338,	341,	342,	349,	351

components	of,	306

data	models	versus,	336–338

for	income	tax	program,	364



initial,	315

for	modified	design,	360

for	program	using	factory	objects,	374

simple,	362

and	singleton,	381

UI,	335

for	visitor	pattern,	397

Module	M1,	305

Module	M2,	305

Modules,	1,	7,	13

communication	between,	358–359

testing,	256

mul	method,	90

Multiple	implementations,	148

and	bridge	pattern,	386

of	types,	147,	167

Multiplicity,	of	relations,	275

Multiset	data	type,	15

Multiset	operations,	11

Multisets,	209

Mutability,	21–22

with	data	abstractions,	117

of	relations,	275,	276

and	sharing,	22

Mutable	abstractions,	108,	121

Mutable	data	abstractions,	117

Mutable	objects,	21,	94,	95

Mutable	relations,	276

Mutable	rep,	109

Mutable	types,	96,	116,	118

bridge	pattern	for,	386

state	pattern	applied	to,	384



Mutators,	82,	117,	118,	119,	183

Mutual	recursion,	342

Names/naming

conflicts	in,	18

package,	18

Narrow	interfaces,	358,	359

Neat	hacks,	375–384

flyweights,	375–378

singletons,	378–382

state	pattern,	382–384

NegativeExponentException,	85

Negative	rationals,	109

new	operator,	19,	20

next	method,	128

Nodes,	272,	277,	305

component,	393

leaf,	392

of	module	dependency	diagram,	307

of	parse	tree,	391

and	visitor	pattern,	398–399

No-duplicates	condition,	88

Nondeterministic	implementations,	52

Normal	termination,	59

NoSuchElementException,	128

NotFoundException,	60,	73,	74

NotPossibleException,	312,	333

Null,	190,	191

NullPointerException,	60,	62,	68

NumberFormatException,	31,	34

Num	class,	17

examples	of	calls	of	methods	in,	16



Object	creation,	hiding,	371–375

Object	methods,	25,	94,	190,	195

Object-oriented	languages,	15,	386

Object-oriented	programming,	77

data	abstraction	as	basis	of,	12

Java	support	for,	13

Objects,	15

and	mutability,	21–22

procedures	used	as,	386–389

references	to,	19

sharing,	20

and	variables,	18–23

Object	types,	19,	25,	27,	30–31

Observer	pattern,	402,	403,	404

Observers,	82,	117,	118,	119,	183,	402,	403,	404,	406

One-pass	algorithms,	339

Open	portfolios,	266,	267,	286

Operational	specifications,	211,	212

Operations,	15,	282,	283,	284

categories	of,	118

of	data	abstraction,	118

reasoning	about,	114–115

OrderedIntList,	138,	140,	163,	195,	196

abstraction	function	and	rep	invariant	for,	140

Ordered	list	iterator,	implementation	of,	142

Ordered	lists,	138–142

partial	specification/implementation	of,	197

OrderedList	type,	195,	196

Output	arguments,	39

Output,	encapsulating,	340

OutputStreams,	33

Output	streams,	32,	33



Overloading,	63,	85

and	conversions,	27–29

Overriding,	153,	159,	182

Overview,	specification,	80

Packages,	17–18

Package-visible	instance	variable,	92

Palindrome	procedure,	244

Palindromes,	230–231

Parameterization,	abstraction	by,	6,	7–8,	39,	40,	77,	381

Parameters,	7

Parse	tree,	391,	392,	398

Partial	procedures,	44,	46,	53,	54,	56,	57–58,	74,	75

Path-completeness,	227–228,	230

Performance

design,	348–352,	349

and	design	patterns,	369,	370

and	singleton	pattern,	380

Performance	constraints,	308

expressing,	309

Performance	requirements,	261,	263,	264

Plus	(+)	operator,	28

Poly,	121,	235,	369

Poly	abstraction,	specification	of,	83–85

PolyAdder	class,	200,	235

Poly	class,	134

terms	iterator	of,	130

Poly	data	abstraction,	implementation	of,	89

PolyGen	class,	134

abstraction	function	for,	138

rep	invariant	for,	137

Poly	implementation,	101–102



Polymorphic	abstractions,	189–204

equality	revisited,	193–195

polymorphic	data	abstractions,	190–192

polymorphic	procedures,	202–203

requirements	of,	204

testing,	235

using,	193

Polymorphism,	190

Polynomials,	77,	171–174

abstract	invariants	for,	116

multiple	implementations	for,	371

Poly	objects,	96,	134

Poly	type,	171

Portfolios,	265–267,	286

Position

current,	286

within	portfolio,	265

Postcondition	rule,	176,	179

Postconditions,	9,	10,	176,	178

and	testing,	236

Post	notation,	85

Post	qualifier,	82

Precondition	rule,	176

Preconditions,	9,	176,	178

and	testing,	236

Predicate	calculus	notation,	103

Preserving	rep	invariant,	108,	112

Primary	relation,	275

PrimesGen

abstraction	function	and	rep	invariant	for,	138

next	method,	136

Priming,	of	generator,	132



Primitive	object	types,	30–31

Primitive	types,	19,	21

printAddress	procedure,	358–359

PrintStreams,	33

PrintWriter,	33

Private	visibility,	87,	89

Problem	structure,	program	structure	determined	by,

315–316,	324

Procedural	abstractions,	10,	11,	12,	39–56,	57

Procedural	approach,	393,	398,	399

and	traversing	the	tree,	395

Procedure	calls,	and	specifications,	9–10

Procedures,	6,	39,	55,	74

and	classes,	16

coherence	of,	353–357

and	design,	340

for	hiding	details,	316

implementing,	47–50

palindrome,	231,	244

polymorphic,	190,	202

properties	of,	and	their	implementations,	53

specifications,	8,	43–44

testing,	230–231

Producers,	117,	118,	119

Production	phase

of	program,	2

within	software	life	cycle,	255,	256

Program(s)

benefits	of	separating	UI	and	FP	in,	310,	311

construction	of,	13

design	patterns	and	complexity	of,	370

fragments,	6



of	high	quality,	1

lack	of	coherence	in,	354

modification	and	maintenance	of,	2,	3,	256

production	phase	of,	2

robust,	58

verification	of,	258

Program	development	process,	ordering,	360–366

Programming

and	debugging,	242–243

defensive,	72–74,	221,	249–251,	252

with	exceptions,	67–68

Programming	in	the	large,	13

Programming	in	the	small,	13

Program	modularity,	specifications	for,	215

Program	structure

problem	structure	determined	for,	315–316,	324

Properties	rule,	175,	179–181

Protected	members,	use	of,	166

Protected	methods,	154

Prototypes,	375

Prototyping,	258–259

Proxy	pattern,	399,	400,	401

Public	classes,	17

Public	interfaces,	17

Publish/subscribe,	402–406

abstracting	control,	403–406

Pull	structure,	402,	403,	404

Push	structure,	402,	403,	404

Queries,	292,	293,	325,	326,	327,	328

Query	abstraction,	326–332,	337

Query	class,	extended	specification	for,	330



queryFirst	method,	316,	317,	318,	332

Query	methods,	315

sketches	of	some,	329

specification	of,	314,	321,	322

queryMore	method,	318,	332

quickSort,	47,	48,	54,	329,	339

implementation	of,	49

specification	of,	331

Range,	of	procedure,	57

Reader	type,	32

Realizations,	40

Reasoning

at	abstract	level,	116

about	data	abstractions,	112–116

about	operations,	114–115

Records,	90–93

Record	types,	102,	104–105

Recursion,	277–278,	306

path-complete	testing	for,	229,	230

Recursive	implementation,	140

Redundancy,	213,	214,	215,	218

References,	to	objects,	19

Reflecting,	exceptions,	67

Reflexive	subtype	relation,	25

Registry	type,	400

Regression,	241

Regression	testing,	242,	311

Related	subtype	approach,	202,	203

Relation(s),	274–278

derived,	279

inverse	of,	275



for	search	engine,	293,	294

for	stock	tracker,	286,	287

Relevance,	4,	40

remove	method,	32,	82,	115,	126,	384

Rep	(representation),	86–87

in	design	notebook,	341

for	Engine	class,	321

Rep	invariants,	99,	102–105,	107–108,	115,	121

and	abstract	function,	107

checking	of,	249

for	generators,	137–138

implementing,	105–107

for	OrderedIntList,	140

preserving,	113–114

for	subclass,	159

for	subclasses	of	concrete	superclasses,	160

repOK	method,	105,	106,	107,	121,	249

implementation	of,	107

in	testing	data	types,	232

Requirements,	216

checking	of,	249

Requirements	analysis,	255–270,	298

goals	of,	263

issues	considered	during,	269

overview	of,	259–263

purpose	of,	256

in	software	life	cycle,	255–259

stock	tracker,	264–268

Requirements	document,	263,	264,	271

Requirements	specifications,	262,	263,	264,	271–298,

301,	302,	308,	337

contents	of,	282



data	models,	272–273

described,	282–286

relations,	274–278

for	search	engine,	291–297

for	Stock	Tracker,	286–291

subsets,	273–274

textual	information,	278–282

Requires	assertion,	9

Requires	clause,	43,	44,	53,	54,	60,	70,	73,	75,	131,	224

Response	time,	262

Restricted	access,	121

Restrictiveness,	208–210,	217,	218

Reusability,	262

Robust	programs,	58,	74

Root	directory,	279,	280

Runnable	interface,	389

RuntimeException,	61,	62

Runtime	stacks,	18

Satisfying	the	specification,	207,	208

Scenarios,	260,	269

for	StockTracker,	264

Scientific	method,	243

Search	engine,	337,	367

extensions	to,	295–296

graph	for,	295

implementation/testing	order	for,	365–366

requirements	specification	for,	291–297

sets	and	relations	for,	293,	294

search	procedure,	51

searchSorted,	47,	51

implementation	of,	48,	52



Semantics,	15

method	call,	22–23

Set	abstraction

implementation	of,	192

specification	of,	190

Set	collection,	192

Set	difference,	81

Set	insert	method,	384

Set	notation,	81,	82

Set	objects,	190,	385

Sets

abstract	invariants	for,	116

for	search	engine,	293,	294

SetState	methods,	385

SetState	objects,	385

SetState	type,	384

setSum,	implementation	of,	126

Set	type,	195

Set	union,	81

Sharing,	22

Short	names,	18

Side	effect,	44

Signature,	24

Signature	rule,	174,	179,	181

Similarity,	96

similar	method,	96

Simplicity,	53,	56

Simula67,	16

Singleton	pattern,	171,	380

Singletons,	378–382

and	flyweights,	382

site	relation,	337



size	method,	31,	83,	115

Sketches,	of	implementation,	341

SmallSet,	384,	385

SmallTalk,	16

smallToBig	iterator,	138,	143

Snippets,	183,	184

Software	life	cycle,	255–259,	269

models,	257

SortedIntSet,	162,	164

specification	of,	163

Sorted	trees,	140,	327,	328

Sorting,	3,	16–17

sort	procedure,	349

Source,	relation,	274

Source	abstraction,	305

Source	codes,	and	debugging,	247

SparsePoly,	172,	173,	180,	237,	371

Specificand	sets,	207–208

Specifications,	42–43,	59–61,	207–219

abstraction	by,	6,	7,	8–10,	39,	41,	77,	78

ambiguous,	238

benefits	of,	218

criteria	for,	208–215

for	data	abstractions,	79–85

good,	209

of	iterators,	130–132

language,	42,	of	ordered	lists,	139

of	procedural	abstractions,	43–47

reasons	for,	215–217

requirements,	271–298

rules	for,	175

and	singletons,	381



of	some	file	system	operations,	284

and	specificand	sets,	207–208

standalone	procedure,	45

stock	tracker,	289–291

testing	paths	through,	224–225

uses	for,	218

See	also	Abstractions

Specific	handling	of	exceptions,	67

Spiral	model,	257,	258

sqrt	procedure,	9,	10,	240

sqrtTop	method,	357–358

Stacks,	77

runtime,	18

Standalone	procedure,	39,	44,	45

State,	15

and	mutability,	21

State	pattern,	382–384,	406

and	bridge	pattern,	386

State	type,	383,	384

Static	factory	methods,	372

Static	inner	class,	134,	137

Static	methods,	44,	381

Static	operations,	283

specifications	for,	282

static	qualifier,	87

Static	subsets,	273,	274,	278

Stock	tracker,	graph	for,	288

Stock	tracker	requirements	specification,	286–291

StockTracker	program,	264–268

Strategy	pattern,	388,	389,	390

Stream	input/output,	32–33

Strings,	19,	20



bounds	checking	for,	249

immutability	of,	21

and	throwing	exceptions,	64

String	type,	19,	25,	27,	31

Strongly	typed	language,	24

and	type	safety,	25

Subclasses,	24,	152,	154,	246

implementation,	167

and	protected	members,	166

rep	invariant/abstraction	function	for,	160

Subject,	402,	403,	404,	406

Subproblems,	3

Subroutines,	3

Subsets,	273–274

Substitution	principle,	148,	174,	181,	183,	184,	185,

308,	370

subtype	method,	136,	176–178

Subtypes,	12,	24,	25,	26,	27,	147,	148,	308

black-box	tests	of,	236

and	design	patterns,	370

of	Filterer	interface,	387

glass-box	tests	for,	236

meaning	of,	174–176

specifications	of,	152

substitution	principle	satisfied	by,	183

testing,	237

in	top-down	development,	363

See	also	Supertypes

SumSet,	235

partial	specification/implementation	of,	200

type,	199

Superclasses,	24,	152,	153



Supertype	method,	177

Supertypes,	12,	24,	25,	26,	27,	147,	148,	152,	154,	308

black-box	tests	of,	235,	236

and	design	patterns,	370

kinds	of,	183–184

testing,	238

in	top-down	development,	363

See	also	Subtypes	Symbol	tables,	77

System.in,	33

System	integration,	3

System.out,	33

System	package,	33

Table	object,	378

Target	abstraction,	302,	303

Targets,	341,	342

choosing	from	among	candidates	(design),	325–326

relation,	274

Template	pattern,	161,	369

Termination	command,	336

terms	iterator,	implementation	of,	135

Test	cases,	350

Testing,	121,	217,	221–242,	251,	252,	255

black-box,	223–226

data	abstractions,	232–235

defined,	222

glass-box,	227–230

iterators,	231

paths	through	specification,	224–225

polymorphic	abstractions,	235

procedures,	230–231

regression,	241



tools	for,	239–241

type	hierarchy,	235–237

unit	and	integration,	237–239

See	also	Debugging;	Errors

Textual	information,	278–281

Throughput,	262

Throw	statement,	64

Throws	clause,	59

TitleTable,	318,	325,	326,	337,	365

specifications	of,	319,	320

Top-down	design,	343–344

Top-down	development,	360,	361,	362,	364,	365,	367

Top-level	abstractions,	design	of,	324

toString	method,	25,	27,	63,	94,	98,	99,	105,	106,	121,	246

Total	procedure,	44,	46,	53,	54,	56,	58

Tracing	the	program,	244–245

Transitive	subtype	relation,	25

Traversing	the	tree,	393–399

procedural	approach	to,	395

Tree	of	objects,	390

try-catch	construct,	34

try	statement,	65,	66–67

Two-pass	algorithms,	339

Type	checking,	24–29,	149

conversions	and	overloading,	27–29

and	traversing	the	tree,	394–398

type	hierarchy,	24–27

Type	errors,	24,	25

Type	extension,	24

Type	families,	12,	147,	148,	184,	185

Type	hierarchy,	12,	24–27,	147–185

abstract	classes,	161–165



assignment,	149–150

defining,	152

defining	in	Java,	152–154

and	design	patterns,	370

discussion	of,	183–184

dispatching,	150–151

equality,	182

exception	types,	161

interfaces,	166–167

lists,	168–171

meaning	of	subtypes,	174–176

methods	rule,	176–179

multiple	implementations,	167

polynomials,	171–174

properties	rule,	179–182

simple	example,	154–161

testing,	235–237

top-down	development	for,	363

Types,	19,	30–32

coherence	of,	357–360

and	design,	340

iterators	for,	143

multiple	implementations	of,	147,	167

primitive	object,	30–31

vectors,	31–32

Type	safety,	24,	25

UI.	See	User	interface

Unchecked	exceptions,	61,	62,	63,	66,	83

checked	exceptions	versus,	70–72

coping	with,	66–67

Unconstrained	subsets,	273,	278



Undetermined	abstractions,	56

Undetermined	behavior,	53

Undetermined	procedure,	51

Undo	facility,	268

Unit	testing,	237–238,	242,	256

User-defined	exceptions,	62

User	interface	(UI),	310

benefits	of	separating	functional	part	and,	310,	311

connecting	functional	part	and,	311,	312

interaction	between	FP	and,	334–336

Users.	See	Customers

User’s	manual,	263

Using	arc,	305–306

Validation,	221,	222

Values,	19

Variables

and	mutability,	21

and	objects,	18–23

Vectors,	31–32,	50,	89,	116

Verification,	222,	258

Very	high-level	languages,	5

Visibility,	17,	93

Visitor	classes,	396

Visitor	pattern,	393,	396,	397

dependencies	in,	398

Walk-through,	350,	351,	352,	353

Waterfall	model,	256,	257

Weakly	uses,	306

Weak	pointers,	378

Web	servers,	266,	268

White	board,	405,	406



Widening,	27,	28

WordTable,	338,	350,	365

abstraction,	332–333

extended	specification	for,	330

methods,	317,	318,	327–328,	354

specifications	of,	319,	320

Wrapper,	30

Wrapping,	33

Writers,	33

Zero	denominators,	109

Zero	Poly,	90,	114,	198
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